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Equalization of irregular data by iterative inversion
Nizar Chemingui* and Biondo Biondi, Stanford University

SUMMARY
Sampling irregularities in seismic data may introduce noise, cause am-
plitude distortions and even structural distortions when wave equation
processes such as dip moveout, azimuth moveout, and prestack migra-
tion are applied. Data regularization before imaging becomes a pro-
cessing requirement to preserve amplitude information and produce a
good quality final image. We propose a new technique to invert for re-
flectivity models while correcting for the effects of irregular sampling.
The final reflectivity model is a two-step solution where the data is
equalized in a first stage with an inverse filter and an imaging operator
is then applied to the equalized data to invert for a model. Based on
least-squares theory, the solution estimates an equalization filter that
corrects the imaging operator for the interdependencies between data
elements. Each element of the filter is a mapping between two data
elements. It reconstructs a data trace with given input geometry at the
geometry of the other data element. This mapping represents an AMO
transformation. The filter is therefore an AMO matrix with diagonal
elements being the identity and off-diagonal elements being trace-to-
trace AMO transforms. We explore the effectivness of the method in
the 2D case for the application of partial stacking by offset continua-
tion. The equalization step followed by imaging has proved to correct
and equalize the processing for the effects of fold variations.

technique is based on the method of least squares and consists of a
two-step solution to the imaging problem. In the first stage an in-
verse AMO filter is computed to account for the interdependencies
between data traces, then an imaging operator is applied to the filtered
data to invert for the final reflectivity model. In the next section we
show the relationship between irregular sampling and inverse theory
and present a formalism for the normalization filter. The computation
of each element of the filter requires the evaluation of an inner product
in the model space. We show that each inner product corresponds to
an AMO transformation between two data elements. We explore the
effectiveness of the method in the 2D case for the application of offset
continuation and partial stacking.

THEORY

Similarly to Ronen (1987), we pose processing as the inverse of mod-
eling irregular data from regularly sampled model. We formulate the
problem with the following system of equations:

d = L m (1)

where the vector d represents the irregular input data, L represents the
modeling operator, and the vector m is the model.

INTRODUCTION
Given the nature of multi-channel recording, the design of 3D surveys
and the acquisition problems mentioned earlier, it must be expected
that the number of data traces is different from the number of model
traces, most likely the number of observations is larger than the num-
ber of model parameters. One way to solve such a system of incon-
sistent equations is to look for a solution that minimizes the average
error in the set of equations. This minimization can be done in a least-
squares sense where the norm  Lm   is minimized. The choice
of m that makes this error a minimum gives the least-squares solution
(Strang, 1980) which can be expressed for the overdetermined case as

Processing seismic data for amplitude inversion has many applications
in AVO analysis, reservoir monitoring, detection of anisotropy, estima-
tion of fracture density and orientation and other related applications.
Such detailed exploration objectives have led to the careful design
of seismic surveys. Unfortunately, during the acquisition stage, ob-
structions, cable feathering, environmental objectives, economic con-
straints and many other factors cause seismic data to be sampled in
sparse and irregular fashion. These irregularities are often observed in
the form of variations in fold coverage, which can manifest itself as an
acquisition foot-print on prestack data or even the stacked image. If not
accounted for, irregular sampling can affect prestack data analyses and
may introduce noise, cause amplitude distortions, and even structural
distortions in the final image. (Gardner and Canning, 1994; Beasley,
1994; Chemingui and Biondi, 1996a). Many techniques with vary-
ing accuracy and cost have been proposed for processing irregularly-
sampled data; among them equalized DMO (Beasley and Klotz, 1992),
geometrically calibrated DMO (Ronen et al., 1995), spatial dealias-
ing (Ronen and Liner, 1987) and fold normalization (Chemingui and
Biondi, 1996b). The goal has been always to avoid aliasing, interpo-
late missing data, and normalize the imaging process for the effects of
fold variations.

Chemingui and Biondi (1996) have demonstrated that the effects of
irregularly-sampled data on seismic amplitudes can be substantial and
have proposed a method for processing wide-azimuth 3D surveys that
can largely overcome these problems. The technique is based on ap-
plying the AMOtransformation (Biondi et al., 1996) in order to orga-
nize the data into common-azimuth common-offset cubes and, there-
fore, to allow interpolation to a regular grid before imaging. In a subse-
quent publication, (Chemingui and Biondi, 1996b) proposed an addi-
tional development in their technique to compensate for the effects of
irregular fold distributions. The method extends the multiplicity con-
cept to wave equation processes and uses a normalization procedure
to correct the imaging operator for the effects of irregular coverage.
The normalization presents an approximate solution to the problem of
fold variation by normalizing each input trace in the prestack process
according to the local fold of its corresponding bin.

In this report we present a new technique to invert for reflectivity mod-
els while properly handling the irregularities in spatial sampling. The

m  (2)

When solving the underdetermined problem, this solution takes a dif-
ferent expression:

m  (3)

where m is the minimum energy model that satisfies the linear equa-
tions .

These solutions define a least square inverse or pseudo-inverse to the
operator L (Strang, 1980). From equation (2), we write this inverse in
terms of L and its adjoint LT as:

 = (4)

whereas in (3) the inverse for the underdetermined problem is:

 = (5)

Applying the pseudo-inverse of (4) is equivalent to applying the ad-
joint operator LT followed by a spatial filtering of the model space
by the inverse of LTL. Therefore, we will refer to this inverse as
model-space inverse.

In equation (5) the adjoint operator is applied after the data have been
filtered with the inverse of LLT and, consequently, we will refer to
this inverse as data-space inverse.

In the next section we discuss the connection between the data-space
inverse and the inversion problem of irregularly sampled data.
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Data-space inverse for irregular geometry

Multichannel recording results in an abundance of seismic traces at
every CMP bin. Imaging aims at inverting for a reflectivity model
using the entire prestack volume. The model is regularly sampled at
the nominal CMP spacing. Therefore, considering multiple records at
every CMP bin to present redundant information, the inversion for a
reflectivity model is generally an overdetermined problem.

The reality of seismic acquisition results into variations in CMP loca-
tions within the nominal bin spacing and, therefore, could introduce
extra degrees of freedom if the model space were allowed to be sam-
pled at the resolution of these spatial variations. Moreover, whenever
gaps in seismic coverage occur, the inversion problem becomes locally
underdetermined. Therefore, the problem is never genuinely overde-
termined as often perceived.

In the context of preserving amplitudes by adapting the data to fit the
imaging operator, we seek a solution in which the input is first regular-
ized to correct for the interdependencies between data elements, then
an imaging operator is applied to solve for the model. This type of so-
lution lends itself readily to the definition of a data-space inverse. The
problem then reduces to estimating an inverse for the cross-product
matrix LLT, which we shall first define, and explain its properties.

The cross-product filter

The inverse of the cross product operator LLT acts as a filter for the
data space. Each element Aij of (LLT)-1 measures the correlation
between a data element di and another data element dj . The compu-
tation of each element Aij requires the evaluation of an inner product
in the model space. Since the model space is regularly sampled, the
inner products for several imaging operators can be computed analyti-
cally which leads to a fast and affordable evaluation of the elements of
LLT. This is the case for the solution we present in this paper.

Let’s consider an irregularly sampled input of n seismic traces and
let Lm,di be the operator that maps trace di into the model space m.
The operator that performs the inverse mapping is therefore   . In 
matrix notation, we write the cross-product matrix LLT as

        

       
 

       .

Each inner product   is therefore a reconstruction of
a data trace with input offset hi to anew trace with offset hj . We rec-
ognize this mapping as our previously-defined AMO transformation.
Therefore, we call this cross product filter A, and we write it in terms
of its AMO elements as

  

    
(6)

where    is AMO from input offset hi to output offset hj and,
I is the identity operator (mapping from hi to hi). Cornforming to
the definition of AMO (Biondi et al., 1996),   is the adjoint of

    ; therefore, the filter A is Hermitian with diagonal elements
being the identity and off-diagonal elements being AMO transforms.

This is the fundamental definition of A that will allow a fast and ef-
ficient numerical approximation of its inverse, and thus of the whole

Handling fold variations

prestack imaging inverse problem. Being a narrow operator, the cost
of applying AMO to prestack data is almost negligible compared to
other imaging operators such as prestack migration.

DATA EQUALIZATION

For the data-space inverse solution, the input is first filtered with the
inverse of the operator A. The main challenge is then to solve for this
inverse. We start by writing the solution for m from equation (3) in
terms of A as

m  (7)

Then we change the problem formulation variable d to a new variable
d and recast the problem as

m  (8)

where  is the filtered input given by the substitution:

  (9)

Once the inverse of A is estimated to yield the filtered data d we
merely evaluate m =   to get the solution for the original problem.

Note that after filtering, one can use any imaging operator LT to invert
for m. The new input is well suited to prestack imaging based on
any wave equation operator. The role of the equalization filter was to
correct for the interdependencies between data elements.

Comparing the fold-normalization technique proposed by Chemingui
and Biondi (1996) to the least-squares solution in (8), the inverse of the
cross product matrix (LLT) was approximated by a diagonal matrix in
the normalization solution. The diagonal elements were heuristically
derived to be proportional to the inverse of the fold coverage.

Iterative solution for the inverse filter

The inversion of the cross-product matrix A can be a computationally
challenging task. We use an iterative solution to estimate the inverse
of A. This solves a huge set of simultaneous equations without the
need to write down the matrix of coefficients. The iterative technique
is based on the conjugate gradient method. Experience has shown
that a satisfactory solution for equation (9) can be achieved in less
than 10 iterations, where each iteration involves the application of the
adjoint followed by the forward operator. In every iteration, a total of
2n AMO operations are performed in order to project any trace to all
the other traces in the selected input. Note that both the forward and
transpose operations are AMO transformations.

EXAMPLE OF TWO-STEP SOLUTION

We now apply the concepts developed in the previous sections for
equalizing an irregular dataset before imaging. An application that
is of interest to us is the reduction of the size of prestack data while
accounting for the effects of fold variations. We consider the applica-
tion of partial stacking by offset continuation of a 2D synthetic data
example. The example was designed to illustrate the two steps in our
method. The model consists of a horizontal bed, a dipping reflector,
and a point diffractor in a constant velocity medium of 2.5/sec. The
input data represents eight constant-offset sections between 500 and
1200 meter offsets with a 100 meter offset spacing. To simulate the
fold variations between CMP bins, we randomly deleted about half
the total input traces. An area of missing coverage is generated around
CMP bin 80, as indicated on the fold chart (Figure 1). Figure 2 shows
an example of one constant-offset section from the irregularly sampled
input. Figure 3 shows the output of applying an offset-continuation to
this input section from an original 1200m offset to an effective off-
set of 850m. The output suffers poor resolution and severe amplitude
and phase distortions. Aliasing effects strongly contaminated the dip-
ping events and destroyed their phase. The non-aliased implementa-
tion of the operator following (Bevc and Claerbout, 1992) eliminated
that noise around the flat event even in presence of irregular sampling.
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For the sake of
correction since
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NMOconsistency, all the results are displayed after
AMO operates on moveout-corrected data.

inverse filter and an imaging operator is then applied to the precondi-
tioned data to invert for a model. The equalization filter corrects the
imaging operator for the interdependencies between data parameters.

Step 1: Equalization of irregular data The filter represents an AMO matrix with diagonal elements being the

The first step in our method involves applying the inverse of the matrix
A to correct for the interdependencies between the data traces. Each
element of A is a 2D AMO (offset continuation) from one data trace
with a given offset to another offset geometry. For small offset con-
tinuations, the operator is very compact and inexpensive to apply. The
implementation defines a true amplitude transformation with ampli-
tude weights following (Fomel, 1996). A phase factor is also taken into
account and consists of applying a causal half differentiation for con-
tinuations to large offsets and anticausal half differentiation for con-
tinuations to small offsets. No antialiasing filter was implemented for
the computations of the trace-to-trace AMO transforms. A satisfac-
tory solution based on a conjugate gradient scheme was obtained after
5 iterations.

Step 2: Partial stacking by AMO

The second step in the solution involves imaging the equalized data.
As mentioned earlier, after the equalization stage, one can use any
imaging operator to invert for the model. We use the AMO operator for
partial stacking of the equalized data after transformation to a common
offset of 850 meters.

Previously, Chemingui and Biondi (1994) demonstrated on the Mar-
moussi dataset that stacking after AMO transformation to a common
offset eliminates the dip filtering effects of NMO stacking by recon-
structing dipping events and diffractions. In the context of true-amplitude
imaging, we will examine the effects of fold variations on partial stack-
ing by offset continuation and discuss the improvements provided by
our solution.

Synthetic results

In a first experiment, we stacked the traces after correcting for NMO
and normalizing by the CMP fold in each bin. As expected, NMO
stacking produced accurate amplitudes at the horizontal reflector and
the flat top of the diffraction hyperbola. However, it failed to preserve
the steep flanks of the hyperbola. The stacking process acted as a dip
filter which destroyed the steep slopes of the diffraction. Moreover,
the NMO stack action could not interpolate for the zero coverage area.

Partial stacking after AMO transformtion to a common offset of 850
meters preserved the steep flanks of the hyperbola. As result of the
narrow range of offset continuations and the efficient non-aliased im-
plementation of the 2D AMO operator, the result of the amo-stack as
shown on Figure 5 is quite good. Nevertheless, data aliasing effects
contaminated the dipping arrivals and introduced phase distortions.
Most noticeable are the amplitude distortions of the events including
the flat reflector (Figure 7).

The results of partial stacking after equalizing the input are shown in
Figure 6. The output is now smoother, it shows more continuity and
better resolution than the unequalized result. The equalization step
eliminated most of the phase distortions along the flanks of the dip-
ping events and helped restore the amplitude scales for the horizontal
reflector (Figure 7) as well as the dipping arrivals.

This simple inversion was inexpensive. Has anything been gained over
AMO stacking? First, we reduced the phase distortions due to data
aliasing. Second, we better preserved the true amplitude scales without
ever bothering to think about the number of contributing traces.

CONCLUSIONS

We have presented a new technique to invert for reflectivity models
while properly handling the irregular sampling of seismic data. The
technique is based on the method of least squares and consists of a two-
step solution for imaging. The data is equalized in a first stage with an

identity and off-diagonal elements being trace-to-trace AMO trans-
forms. We tested the effectiveness of the method in the 2D case for
the application of partial stacking by offset continuation. The equal-
ization step followed by imaging has proved to correct and equalize
the processing for the effects of fold variations by properly handling
the amplitude and phase of the data.

Figure 1: Fold distribution of the input (max = 7 ; min = 0)
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Figure: 2: A constant-offset section from the irregularly sampled input
data. (h=1200m)

Figure 3: Offset continuation of the irregularly sampled constant-
offset section (Figure 2) from 1200m to 850m.

Figure 4: Partial stack after NMO and normalization by the CMP fold
in each bin.

Figure 5: Partial stack after AMO transformation to a common offset
of 850m.

Figure 6: Output of the two-step solution at an effective offset of 850
meters.

Figure 7: Amplitude map at the flat reflector. Top: amo-stack result;
Bottom: Two-step solution.
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