UP-SCALING ANALYSIS WITH RIGOROUS ERROR ESTIMATES FOR POROMECHANICS IN RANDOM POLYCRYSTALS OF POROUS LAMINATES

James G. Berryman

University of California
Lawrence Livermore National Laboratory
Livermore, CA
Double-porosity papers:

Random polycrystals of laminates papers:

• Double-Porosity (DP) geomechanics
 ◦ Phenomenology
 ◦ Rigorous two-component analysis
• Random polycrystals of (porous) laminates geomechanics
 ◦ Bounds
 ◦ Self-consistent estimates
• Combining these two ideas ($K^* \rightarrow \text{DP}$)
• Examples
• Conclusions
Single- and Double-Porosity Geomechanics

Single-porosity:
\[
\begin{pmatrix}
\delta e \\
-\delta \zeta
\end{pmatrix}
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{pmatrix}
\begin{pmatrix}
-\delta p_c \\
-\delta p_f
\end{pmatrix}.
\]

Double-porosity:
\[
\begin{pmatrix}
\delta e \\
-\delta \zeta^{(1)} \\
-\delta \zeta^{(2)}
\end{pmatrix}
=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{pmatrix}
\begin{pmatrix}
-\delta p_c \\
-\delta p_f^{(1)} \\
-\delta p_f^{(2)}
\end{pmatrix}.
\]

where \(\delta e \) is total volume dilatation,
\(\delta \zeta \) is the increment of fluid mass content
\(\delta p_c \) and \(\delta p_f \) are the changes in
confining pressure and pore-fluid pressure.
\[\left(\begin{array}{c} \delta e^{(1)} \\ -\delta \zeta^{(1)} \end{array} \right) = \frac{1}{K^{(1)}} \left(\begin{array}{cc} 1 & -\alpha^{(1)} \\ -\alpha^{(1)} & \alpha^{(1)}/B^{(1)} \end{array} \right) \left(\begin{array}{c} -\delta p_c^{(1)} \\ -\delta p_f^{(1)} \end{array} \right) \]

where \(K^{(1)} \) is the jacketed or drained bulk modulus,
\[\alpha^{(1)} = 1 - \frac{K^{(1)}}{K_s^{(1)}} \] is the Biot-Willis parameter,
\[B^{(1)} \] is Skempton’s coefficient for material 1.

Porosity is fairly uniform and, if cracks are present,
all the porosity is of that type.

A similar equation applies to other Gassmann constituents.
Equations for Mechanics of Core Sample

\[v^{(1)} \begin{pmatrix} \delta e^{(1)} \\ -\delta \zeta^{(1)}/v^{(1)} \end{pmatrix} = \begin{pmatrix} a_{11} + 2a_{13} + \bar{a}_{33} & a_{12} + a_{23} \\ a_{12} + a_{23} & a_{22} \end{pmatrix} \begin{pmatrix} -\delta p_{c}^{(1)} \\ -\delta p_{f}^{(1)} \end{pmatrix} \]

where \(\delta p_{c}^{(1)} \) is confining (external) pressure change on core sample,
\(\delta p_{f}^{(1)} \) is pressure change of saturating fluid in matrix,
\(v^{(1)} \approx 1 \) is volume fraction of matrix in total,
\(\delta e^{(1)} \) is volume dilatation of core sample, and
\(\delta \zeta^{(1)} \) is the increment of fluid mass content in the matrix.
Identifying Coefficients for Core Sample

\[
\begin{pmatrix}
\delta e^{(1)} \\
-\delta \zeta^{(1)}
\end{pmatrix} = \frac{1}{K^{(1)}} \begin{pmatrix}
1 & -\alpha^{(1)} \\
-\alpha^{(1)} & \alpha^{(1)}/B^{(1)}
\end{pmatrix} \begin{pmatrix}
-\delta p_c^{(1)} \\
-\delta p_f^{(1)}
\end{pmatrix}
\]

where \(K^{(1)} \) is the jacketed or drained bulk modulus,
\[
\alpha^{(1)} = 1 - K^{(1)}/K_s^{(1)}
\] is the Biot-Willis parameter,
\(B^{(1)} \) is Skempton’s coefficient for matrix.

Each constant is measured for rock matrix with no large-scale fractures (cores are too small).
Phenomenology Versus Two-Component Model

• The analysis of the phenomenological approach is harder than that of the second approach we will now present, but it is also more closely tied to experiments on real systems.

• The basic concepts used in both approaches are the same, and the key issue in both is also the same – namely that knowledge of the overall system bulk modulus is essential but usually unknown. This fact is why we are motivated to use the theory to estimate this parameter.
Suppose that both $\delta e = \delta e^{(1)} = \delta e^{(2)}$ (uniform strain), and $\delta p_c = \delta p_c^{(1)} = \delta p_c^{(2)}$ (uniform confining pressure) hold.

If these conditions can all be met simultaneously, then the system behaves **self-similarly**, and the effective constants of the system can be determined algebraically. The condition of uniform strain implies that

$$-\frac{1}{K^{(1)}}(\delta p_c - \alpha^{(1)} \delta p_f^{(1)}) = -\frac{1}{K^{(2)}}(\delta p_c - \alpha^{(2)} \delta p_f^{(2)}).$$

Thus, when δp_c and either of the two δp_f’s is specified, the other δp_f is then determined.
DOUBLE-POROSITY APPLICATIONS (1)

\[
\begin{pmatrix}
\delta e \\
-\delta\zeta^{(1)} \\
-\delta\zeta^{(2)}
\end{pmatrix}
=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{pmatrix}
\begin{pmatrix}
-\delta p_c \\
-\delta p_f^{(1)} \\
-\delta p_f^{(2)}
\end{pmatrix},
\]

where

\[
a_{11} = \frac{1}{K^*},
\]

\[
a_{22} = \frac{\nu^{(1)} \alpha^{(1)}}{K^{(1)}} \left(\frac{1}{B^{(1)}} - \frac{\alpha^{(1)}(1-Q_1)}{1-K^{(1)}/K^{(2)}} \right),
\]

\[
a_{12} = -\frac{\nu^{(1)} Q_1}{K^{(1)}} \alpha^{(1)},
\]

\[
a_{23} = \frac{\alpha^{(1)} \alpha^{(2)} K^{(1)} K^{(2)}}{[K^{(2)}-K^{(1)}]^2} \left[\frac{\nu^{(1)}}{K^{(1)}} + \frac{\nu^{(2)}}{K^{(2)}} - \frac{1}{K^*} \right],
\]
and where

\[v^{(1)} Q_1 = \frac{1 - K^{(2)}/K^*}{1 - K^{(2)}/K^{(1)}}. \]

The remaining coefficients can be found using phase-interchange symmetry.
\(a_{11} = \frac{1}{K^*} \) \quad \text{and} \quad D = \frac{\nu^{(1)}}{K^{(1)}} + \frac{\nu^{(2)}}{K^{(2)}} - \frac{1}{K^*} \\
\]
\[a_{12} = -\frac{\alpha^{(1)}}{K^{(1)}} \frac{1-K^{(2)}/K^*}{1-K^{(2)}/K^{(1)}} \]
\[a_{13} = -\frac{\alpha^{(2)}}{K^{(2)}} \frac{1-K^{(1)}/K^*}{1-K^{(1)}/K^{(2)}} \]
\[a_{22} = \frac{\nu^{(1)} \alpha^{(1)}}{B^{(1)} K^{(1)}} - \left(\frac{\alpha^{(1)}}{1-K^{(1)}/K^{(2)}} \right)^2 D \]
\[a_{23} = \frac{K^{(1)} K^{(2)} \alpha^{(1)} \alpha^{(2)}}{(K^{(2)} - K^{(1)})^2} D \]
The main point to observe is that the double-porosity coefficients are now completely determined except that we do not necessarily know the value of the overall drained bulk modulus K^\ast that appears in all the formulas. So, it would clearly be advantageous (if we have the choice, as we do here) to choose a microstructure for which we can obtain good estimates or formulas for K^\ast. This choice does not affect the preceding formulas as their form is independent of the microstructure! But of course their value depends on the microstructure entirely through the value of K^\ast.
Random Polycrystals of Laminates (1)

- Assume building blocks (crystalline grains) composed of layers
 - Use Backus averaging scheme to compute effective properties of these grains
 - Use Hashin-Shtrikman bounds based on layer properties to estimate behavior using only volume fraction and layer property information
Random Polycrystals of Laminates (2)

- Assume also that the grains are equi-axed: when all grains are considered, the axis of anisotropic grain symmetry due to the layering has no preferred direction

 - Use bounds based on these “anisotropic crystals” to estimate overall behavior of the resulting random polycrystal

 - Use self-consistent method to provide one type of direct estimate of the overall behavior
For poroelasticity, we also have two kinds of exact results:

- If layers are poroelastic (Gassmann – i.e., microhomogeneous) materials, then with just two types of layers exact results are available for Biot-Willis parameter and Skempton’s coefficient.

- If, in addition, the permeability of these two types of layers are very different, then double-porosity modeling can also be pursued and this also gives exact results for two components.

- The exact results do not predict the drained constants, but the random polycrystals of laminates model gives very close bounds.
Uniaxial Shear Energy per Unit Volume
and the Product Formula

For an applied uniaxial shear $strain$ applied along the symmetry axis
i.e., $(e_{11}, e_{22}, e_{33}) = (1, 1, -2)/\sqrt{6}$

$$G_{eff}^v \equiv (c_{11} + c_{33} - 2c_{13} - c_{66})/3$$

For an applied uniaxial shear $stress$ applied along the symmetry axis
i.e., $(\sigma_{11}, \sigma_{22}, \sigma_{33}) = (1, 1, -2)/\sqrt{6}$

$$G_{eff}^r \equiv K_{Reuss}G_{eff}^v/K_{Voigt}.$$

The latter expression is the product formula, relating the shear energies per unit volume to Voigt and Reuss bounds on K.

Hashin-Shtrikman-type bounds for elastic constants of isotropic random polycrystals are known, given first by Peselnick and Meister (1965), later improved by Watt and Peselnick (1980).

The bounds for the bulk modulus can be expressed in terms of these uniaxial shear energies per unit volume as

\[K_{PM}^\pm = K_V \frac{G_{eff}^r + \zeta^\pm}{G_{eff}^\nu + \zeta^\pm} \]

where

\[\zeta^\pm = \frac{G^\pm}{6} \left(\frac{9K^\pm + 8G^\pm}{K^\pm + 2G^\pm} \right). \]

Parameters \(G^\pm, K^\pm \) were defined by Watt and Peselnick.
The bounds on shear modulus can be expressed similarly as
\[
\frac{5}{G_{PM}^\pm + \zeta_\pm} = \frac{1-X_\pm}{G_{eff}^\nu + \zeta_\pm + Y_\pm} + \frac{2}{c_{44} + \zeta_\pm} + \frac{2}{c_{66} + \zeta_\pm}
\]
where \(X_\pm\) and \(Y_\pm\) are additional parameters depending on \(G_\pm\) and \(K_\pm\).

Note that in both cases when \(\zeta_- \to 0\) the bounds go to the Reuss average (lower bound), and when \(\zeta_+ \to \infty\) the bounds go to the Voigt average (upper bound). For example,
\[
K_{PM}^- \to K_V G_{eff}^r / G_{eff}^u \equiv K_R
\]
from the product formulas.
Self-consistent estimates are obtained (approximately) by taking $K_\pm \to K_{SC}^*$ and $G_\pm \to G_{SC}^*$. The resulting formulas are:

$$K_{SC}^* = KV \frac{G_{eff}^r + \zeta_{SC}^*}{G_{eff}^v + \zeta_{SC}^*}$$

where

$$\zeta_{SC}^* = \frac{G_{SC}^*}{6} \left(\frac{9K_{SC}^* + 8G_{SC}^*}{K_{SC}^* + 2G_{SC}^*} \right),$$

and

$$\frac{5}{G_{SC}^* + \zeta_{SC}^*} = \frac{1 - X_{SC}^*}{G_{eff}^v + \zeta_{SC}^*} + \frac{2}{c_{44} + \zeta_{SC}^*} + \frac{2}{c_{66} + \zeta_{SC}^*}.$$

These formulas can then be used together with the bounds to compute bounds and estimates on the double-porosity coefficients.
CONCLUSIONS

- Double-porosity coefficients can be determined exactly when the medium is composed of two Gassmann porous media (i.e., microhomogeneous constituents), but the overall bulk modulus K^* must be determined to make the formulas useful.
- The random polycrystals of laminates model imposes a microstructure for which very good estimates (both bounds and self-consistent-type estimates) are available.
- Numerical results show that the formulas obtained should be very useful for benchmarking double-porosity geomechanics codes.
ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48 and supported specifically by the Geosciences Research Program of the DOE Office of Energy Research within the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. All support of the work is gratefully acknowledged.