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Poroelastic fluid effects on shear for rocks with soft anisotropy
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SUMMARY

A general analysis of poroelasticity for vertical transverse isotropy (VTI) shows that four
eigenvectors are pure shear modes with no coupling to the pore-fluid mechanics. The remaining
two eigenvectors are linear combinations of pure compression and uniaxial shear, both of
which are coupled to the fluid mechanics. After reducing the problem to a 2 x 2 system, the
analysis shows in a relatively elementary fashion how a poroelastic system with isotropic solid
elastic frame, but with anisotropy introduced only through the poroelastic coefficients (and,
therefore, termed soft anisotropy), interacts with the mechanics of the pore fluid and produces
shear dependence on fluid properties in the overall poroelastic system. The analysis shows,
for example, that this effect is always present (though sometimes small in magnitude) in the
systems studied and can be comparatively large (on the order of 10 to 20 per cent) for wave
propagation studies in some rocks, including Sierra White granite and Spirit River sandstone.
Some of the results quoted here are obtained by using a new product formula relating local bulk
and uniaxial shear energy to the product of the two eigenvalues that are coupled to the fluid
mechanics. This product formula was first derived in prior work. The results obtained here are
observed to be useful both for explaining difficult to reconcile laboratory wave propagation
(especially ultrasonic) data showing that the shear modulus exhibits clear dependence on fluid
content and also for benchmarking of poroelastic codes.
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1 INTRODUCTION

Recent experimental results in ocean sediment acoustics (Williams
et al. 2002) tend to show that there are significant discrepancies be-
tween Biot’s theory (Biot 1962a,b) and measured poroelastic wave
attenuation in the frequency band 2.6-400 kHz. The observed atten-
uation shows a different frequency dependence and greater overall
reduction in wave amplitude than that predicted by the theory. Some
plausible alternative theories have been proposed to reconcile these
data, but so far none of these has been definitively determined to
be the true source of the discrepancies. Similarly, a series of experi-
ments on saturated sedimentary rocks by Sams ez al. (1997) ranging
from 30 Hz to 900 kHz has shown that the theory can be used to fit
these seismic, well-logging and laboratory ultrasonic data. However,
in order to do so, Biot’s theory must be supplemented with some
additional mechanisms to explain fully the poroelastic velocity dis-
persion and wave attenuation observed. Again the data available are
not yet sufficient to help us distinguish with certainty what the pre-
cise cause of these significant variations of the data with frequency
might be.

There have been many proposals made that supply physically
reasonable mechanisms resulting in greater dispersion and attenua-
tion in field data (see, for example, Pride ez al. 2004, and references
therein), but it is beyond our purpose and scope to review these here.
The point to be made instead is that the measured effects are clearly
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multiscale phenomena and they are usually not treated as such (but
see Pride er al. 2004, for one exception). Biot’s theory is a relatively
simple one for the complex systems considered. For fundamental
reasons required to produce such a simple phenomenological theory,
Biot necessarily assumed that the medium has constant porosity and
is microhomogeneous, linear, usually isotropic, etc. Virtually all of
these fundamental requirements of the theory are often violated in
the earth for the applications of interest. Nevertheless, it is known
that ultrasonic data (Plona 1980) on samples of sintered glass beads
(and satisfying all Biot’s assumptions) can be reconciled with the
theory in detail (Chin et al. 1985; Bourbié et al. 1987), including
wave speeds, attenuation and the predicted existence of a second
compressional wave. So, it is the present author’s working hypothesis
that the underlying reason for many of the observed discrepancies in
both laboratory, field and ocean sediment data, in all cases involving
earth materials, is heterogeneity or anisotropy, or some combination
of the two. If, for example, fluids affect the shear response of het-
erogeneous and anisotropic media at the microscale or mesoscale,
then there is a high probability that field results, which are usually
studied at the macroscale using isotropic models, will be misinter-
preted. So it is important first to understand what effects should be
expected and then later to produce properly upscaled equations that
more accurately reflect the behaviour of these complex systems.

In recent papers (Berryman 2004a,c; 2005), the author has ad-
dressed the issue of heterogeneity for elastic or poroelastic media
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in this context and shown how layering affects the overall shear
modulus of such a system. An important outcome of the work
(Berryman 2004a) was a rigorous product formula, valid for any
transversely isotropic (hexagonal symmetry) poroelastic medium,
and showing how the compressional and shear moduli are coupled
under undrained conditions. Such undrained conditions are typi-
cally studied in poroelastic wave problems (see Hellmich & Ulm
2004, for a biomechanics example) as a proxy for the more diffi-
cult problem of understanding exactly how the system behaves at
high frequencies, i.e. sufficiently high that the fluid is essentially
confined (some authors, e.g. Mavko & Jizba 1991, use the term un-
relaxed in this context) during the time of wave passage. We also
study the undrained shear modulus in the present contribution, but
no layering will be assumed: in order that we may separate out the
contributions of heterogeneity from those of anisotropy. In fact, we
find that the contributions from heterogeneity and anisotropy are
very similar in these systems. This is a result in part, of course,
of the fact that locally layered heterogeneity also leads to effective
overall anisotropy.

A brief history of the theory on this topic is this: an important
paper by Gassmann (1951) concerns the effects of fluids on the
mechanical properties of porous rock. His main result is the well-
known fluid-substitution formula (that now bears his name) for the
bulk modulus in undrained, isotropic poroelastic media. He also pos-
tulated that the effective undrained shear modulus would (in contrast
to the bulk modulus) be independent of the mechanical properties
of the fluid when the medium is isotropic. That the independence
of shear modulus from fluid effects is guaranteed for isotropic me-
dia at very low or quasi-static frequencies was shown recently by
Berryman (1999) to be tightly coupled to the original bulk modulus
result of Gassmann; each result implies the other in isotropic me-
dia. [Note that the recently discovered product formula (Berryman
2004a) suggests that there is also a similarly tight coupling between
the modes for heterogeneous and anisotropic systems, as will be
elaborated upon here.] It has gone mostly without discussion in
the literature that Gassmann (1951) also derived general results for
anisotropic porous rocks in the same 1951 paper. It is not hard to see
that these results imply that, contrary to the isotropic case, some of
the overall undrained (or, for ultrasonic data, some authors prefer the
term unrelaxed) shear moduli in fact may depend on fluid properties
in anisotropic media, thus mimicking the bulk modulus behaviour.
However, Gassmann’s paper does not remark at all on this differ-
ence in behaviour between isotropic and anisotropic porous rocks.
Brown & Korringa (1975) also address the same class of problems,
including both isotropic and anisotropic cases, but again they do not
remark on the shear modulus results in either case. Norris (1993)
studies partial saturation in isotropic layered materials in the low-
frequency regime (=100 Hz) and takes as a fundamental postulation
that Gassmann’s results hold for the low-frequency shear modulus,
but it seems that some further justification should be provided for
such an assumption and, furthermore, some indication of its range
of validity established.

On the other hand, Hudson (1981), in his early work on cracked
solids, explicitly demonstrates differences between fluid-saturated
and dry cracks, and relates his work to that of Walsh (1969) and
O’Connell & Budiansky (1974), but does not make any connection
to the work of Gassmann (1951), Biot & Willis (1957), or Brown
& Korringa (1975). Mukerji & Mavko (1994) show numerical re-
sults based on work of Gassmann (1951), Brown & Korringa (1975)
and Hudson (1981) demonstrating the fluid dependence of shear in
anisotropic rock, but again they do not remark on these results at
all. Mavko & Jizba (1991) use a rather simple reciprocity argument

within linear elasticity theory to establish a direct, but approximate,
connection between undrained shear response and undrained com-
pressional response in rocks containing very small volume cracks.
Berryman & Wang (2001) show that deviations from Gassmann’s
results sufficient to produce shear modulus dependence on fluid me-
chanical properties require the presence of some anisotropy on the
microscale, thereby explicitly violating the microhomogeneous and
microisotropy conditions implicit in Gassmann’s original deriva-
tion. Berryman et al. (2002a) go further and make use of differen-
tial effective medium analysis to show explicitly how the undrained,
overall isotropic shear modulus can depend on fluid trapped in ran-
domly oriented penny-shaped cracks. Meanwhile, laboratory results
for wave propagation (see Berryman ez al. 2002b) show conclusively
that the shear modulus does indeed depend on fluid mechanical prop-
erties for low-porosity, low-permeability rocks and high-frequency
laboratory experiments (> 500 kHz).

One thing lacking from all the preceding work is a simple ex-
ample showing how the presence of anisotropy influences the shear
modulus, and specifically when and how the shear modulus be-
comes fluid-dependent. Our main purpose in the present work is
therefore to demonstrate, in a set of (by design) quite elementary
examples, how the overall shear behaviour becomes coupled to fluid
compressional properties at high frequencies in anisotropic media:
even though overall shear modulus is always independent of the fluid
properties in microhomogeneous isotropic media at sufficiently low
frequencies, whether drained or undrained. Two other distinct but
related analyses addressing this topic have been presented recently
by the author (Berryman 2004a,c). Both of these prior papers have
made explicit use of layered media, composed of isotropic poroe-
lastic materials, together with exact results for such media based on
low-frequency, long-wavelength Backus averaging (Backus 1962).
In contrast, the present analysis does not make use of such a specific
model and is therefore believed to be about as simple as possible,
while still achieving the level of understanding desired for this rather
subtle technical issue. One important simplification we make here
in order to separate the part that is the reuslt of poroelastic effects
from whatever part would be present in any elastic (i.e. possibly
zero permeability) porous medium is to model each material as if
the elastic part is entirely isotropic, while the poroelastic effects
[i.e. the effective stress or Biot—Willis coefficients (Biot & Willis
1957) for the anisotropic overall material] provide the only sources
of anisotropy in the system. Thus, we specifically distinguish two
possible sources of anisotropy, the elastic or hard anisotropy that is
assumed not to be present here and the poroelastic or soft anisotropy
(presumably introduced by complex pore shapes and non-uniform
pore orientations) that is the only source of the effects we want to
study in the present paper.

Our analysis for general transversely isotropic media is presented
in Sections 2—4. To be specific, Section 4 also introduces the effec-
tive undrained shear modulus relevant to the general discussion.
Examples are presented for granite and sandstone in Section 5. The
results and conclusions of the paper are summarized in the final sec-
tion. Some mathematical details are collected in two Appendices.

2 FLUID-SATURATED
POROELASTIC ROCKS

In contrast to traditional elastic analysis, the presence in rock of a
saturating pore fluid introduces the possibility of an additional con-
trol field and an additional type of strain variable. The pressure p;
in the fluid is a new field parameter that can be controlled. Allow-
ing sufficient time for global pressure equilibration permits us to
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consider p¢ to be a constant throughout the percolating (connected)
pore fluid, while restricting the analysis to quasi-static processes.
(However, ultimately we are not interested in such quasi-static pro-
cesses in this paper, as we are trying to reconcile laboratory wave
data with the theory.) The change ¢ in the amount of fluid mass
contained in the pores (see Biot 1962a,b, or Berryman & Thigpen
1985) is a new type of strain variable, measuring how much of the
original fluid in the pores is squeezed out during the compression of
the pore volume while including the effects of compression or ex-
pansion of the pore fluid itself as a result of changes in py. It is most
convenient to write the resulting equations in terms of compliances
rather than stiffnesses, so the basic equation to be considered takes
the following form for isotropic media:

€1 S11 S12 S12 -B O11

€22 _ S12 S S12 —B 022 (1)
es3 s S s —B o |-

—¢ -8 B B v —Pr

The constants appearing in the matrix on the right-hand side will
be defined in the following two paragraphs. It is important to write
the equations this way rather than using the inverse relation in terms
of the stiffnesses, because the compliances s;; appearing in eq. (1)
are simply related to the drained elastic constants A4, and G4, in the
same way they are related in normal elasticity, whereas the individual
stiffnesses obtained by inverting the equation in eq. (1) must contain
coupling terms through the parameters 8 and y that depend on the
pore and fluid compliances. Thus, we find that

1 )\dr + Gdr

S = — 2
"7 Ey GaBBha+2Gq) @
and
Vdr
S = — d (3)

s
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where the drained Young’s modulus E 4, is defined by the second
equality of eq. (2) and the drained Poisson’s ratio is determined by

A dr

Vg = ——————. 4
= 3w+ Ga) @
When the external stress is hydrostatic sooc =01} =02 =033,
eq. (1) telescopes down to
( e )_( 1/1<dr _a/Kdr>< g ) (5)
_g - _a/Kdr a/BKdr —Pr ’

where e = e + exn + e33, Ko = Agr + %Gdr is the drained bulk
modulus, « = 1 — K 4/K, is the Biot—Willis parameter (Biot &
Willis 1957), with K, being the bulk modulus of the solid min-
erals present, and Skempton’s pore-pressure build-up parameter B
(Skempton 1954) is given by
1

B = .

I+ Ky(1/Ky — 1/Kn)

(6)

New parameters appearing in eq. (6) are the bulk modulus of the
pore fluid K  and the pore modulus K ;1 = /PK 4, where ¢ is the
porosity. The expressions for @ and B can be generalized slightly
by supposing that the solid frame is composed of more than one
constituent, in which case the K ,,, appearing in the definition of « is
replaced by K § and the K ,, appearing explicitly in eq. (6) is replaced
by K 4 (see Brown & Korringa 1975; Rice & Cleary 1976; Berryman
& Wang 1995). This is an important additional complication (Berge
& Berryman 1995), but (for the sake of desired simplicity) we will
not pursue the matter further here.
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Comparing eqs (1) and (5), we find that

a
T ™)
and

o
Y= 3K ®)

As we develop the ideas to be presented here, we will need to
treat eqs (1)—(6) as if they are true locally, but perhaps not globally.
In particular, if we assume overall drained conditions, then py =
a constant everywhere. However, if we assume locally undrained
conditions, then py ~ a constant in local patches, therefore these
locally constant values may differ from patch to patch. This way
of viewing the system is intended to mimic the behaviour expected
when a high-frequency wave propagates through a system having
either highly variable, or just uniformly very low, fluid permeability
everywhere.

3 RELATIONS FOR ANISOTROPY
IN POROELASTIC MATERIALS

Gassmann (1951), Brown & Korringa (1975) and others have con-
sidered the problem of obtaining effective constants for anisotropic
poroelastic materials when the pore fluid is confined within the
pores. The confinement condition amounts to a constraint that the
increment of fluid content ¢ = 0, while the external loading o is
changed and the pore-fluid pressure py¢ is allowed to respond as
necessary and thus equilibrate.

To provide an elementary derivation of the Gassmann equation
for anisotropic materials, we consider the anisotropic generalization
ofeq. (1):

€11 S11 S12 S13 —Bi o1

€2 _ S12 $22 823 —B2 022 )
€33 $13 823 8§33 —Bs 033 ’

- B =B —B 4 —Pr

Three shear contributions have been excluded from consideration
because they can easily be shown not to interact mechanically with
the fluid effects. This form is not completely general in that it in-
cludes orthorhombic, cubic, hexagonal and all isotropic systems, but
excludes triclinic, monoclinic, trigonal and some tetragonal systems
that would have some non-zero off-diagonal terms in the full elastic
matrix. Also, we have assumed that the material axes are aligned
with the spatial axes. However, this latter assumption is not signifi-
cant for the derivation that follows. Such an assumption is important
when properties of laminated materials having arbitrary orientation
relative to the spatial axes need to be considered, but we do not treat
this more general problem here.

If the fluid is confined (or undrained on the timescales of interest),
then ¢ = 0 in eq. (9) and pf becomes a linear function of oy,
0, 033. Eliminating p; from the resulting equations, we obtain
the general expression for the strain dependence on external stress
under confined conditions:

€11 S11 Si2 813 B o1l
en|=|[s2 s2 su|—v ' |B|B BB)||on
€33 S13 0 S23 833 B3 033
sit s s o1
=\, 85 S5 oy |- (10)
Sly sk S 033
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The s;; are fluid-drained constants, while the sy, are the fluid-
undrained (or fluid-confined) constants.

The fundamental result (10) was obtained earlier by both
Gassmann (1951) and Brown & Korringa (1975), and may be written
simply as
s;;.:s,-j—’gff, for i,j=1,23. (11)
This expression is just the anisotropic generalization of the well-
known Gassmann equation for isotropic, microhomogeneous porous
media.

4 EIGENVECTORS FOR
TRANSVERSE ISOTROPY

The 3 x 3 system (10) can be analysed fairly easily, and in particular
the eigenfunctions and eigenvalues of this system can be obtained in
general. However, such general results do not provide much physical
insight into the problem we are trying to study, so instead of pro-
ceeding in this direction we will now restrict attention to transversely
isotropic materials. This case is relevant to many layered earth ma-
terials and also industrial systems, and it is convenient because we
can immediately eliminate one of the eigenvectors from further con-
sideration. Three mutually orthogonal (but unnormalized) vectors
of interest are

1 1
v = 1], Uy = —-11, vy = 1 . (12)
1 0 -2

Treating these vectors as stresses, the first corresponds to a simple
hydrostatic stress, the second to a planar shear stress and the third
to a pure shear stress applied uniaxially along the z-axis (which
would also be the symmetry axis for a layered system, but we are
not treating such layered systems here). The relationship of these
vectors to the standard triaxial testing scenario used in rock and soil
mechanics is discussed in Appendix A.

Transverse isotropy of the layered system requires s1; = s,
s13 = $p; and, for the poroelastic problem, §; = B,. Thus, it is
immediately apparent that the planar shear stress v is an eigenvector
of'the system and, furthermore, it results in no contribution from the
pore fluid. Therefore, this vector will be of no further interest here
and the system can thereby be reduced to 2 x 2.

4.1 Compliance formulation

If we define the effective compliance matrix for the system as S*
having the matrix elements given in eq. (11), then the bulk modulus
for this system is defined in terms of v, by

S =] S* =
K u Kdr

where the T superscript indicates the transpose and 1/Kg =
Z? j=15ij. This is the result usually quoted as Gassmann’s equa-
tion for the bulk modulus of the undrained (or confined) anisotropic
(vertical transverse isotropy, VTI) system. Also, note that in general

-y QB+ B (13)

3
D B =21+ Bs = /Ky (14)
i=1

Thus, even though v, is not an eigenvector of this system, it never-
theless plays a fundamental role in the poromechanics. Furthermore,
this role is quite well understood. What is perhaps not as well un-
derstood then, especially for poroelastic systems, is the role of vs.

Understanding this role will be one main focus for the remainder of
this discussion.

The true eigenvectors of the subproblem of interest (i.e. in the
space orthogonal to the four pure shear eigenvectors already dis-
cussed) are necessarily linear combinations of v; and v;. We can
construct the relevant contracted operator for the 2 x 2 subsystem
by considering

T * *
oI o _ [ 94y, 1843
<v3T>S (v vs)= (18A’1‘3 3643 (15)
(in all cases the * superscripts indicate that the pore-fluid effects are
included) and the reduced matrix

T = Ajviv] 4+ A7 (vivg + vsv]) + Aiyvsvy, (16)
where

A7) = [Z(STI + 5% +2ST3) +S§3]/9’

Ay = (STI + 57, = 513 —33‘3)/9,

Ay = (st + sy — 4sfy + 25%3)/18. (17)

Providing some understanding of these connections and the impli-
cations for shear modulus dependence on fluid content is one of our
goals.

First, we remark that 47, = 1/9K,, where K is again the
undrained (or Gassmann) bulk modulus for the system in eq. (13).
Therefore, A7, is proportional to the undrained bulk compliance of
this system. The other two matrix elements cannot be given such
simple interpretations in general. To simplify the analysis somewhat
further we note that, at least for purposes of modeling, anisotropy of
the compliances s;; and the poroelastic coefficients 8; can be treated
independently. Anisotropy displayed in the s; corresponds mostly
to the anisotropy in the solid elastic components of the system,
while anisotropy in the f; corresponds mostly to anisotropy in the
shapes and spatial distribution and orientation of the porosity. We
will therefore distinguish these contributions by calling anisotropy
appearing in the s;; the hard anisotropy and the anisotropy in the 8;
will in contrast be called the soft anisotropy.

Now, it is clear (also see the discussion in Appendix B for more
details) that the eigenvectors having unit magnitude /(@) for this
problem (i.e. for the reduced operator X*) necessarily take the form

f(6) =7, cos@ + V3 sinéb, (18)

where U, = v;/+/3 and U3 = v3/+/6 are the normalized basis vec-
tors. The 2 x 2 system must have two eigenvectors, corresponding
to two angles we label 6 . and 0 _ (for the =+ signs appearing in the
quadratic forms that appear in the eigenvalue formulae). Further-
more, the orthogonality condition for the eigenvectors is

0= fT(6,)f(6_) = cosf, cosf_ +sinf, sin_ = cos(h, — 6_),

(19)
which implies that the difference 0 . — 60 _ = £ /2. The two solu-
tions for the rotation angle, when chosen appropriately, may there-

fore be related by 6 and 6 = 6, + 7. It is easily seen that the
eigenvalues are given by

* * * * * 2 * )2
Ai:3[A33+A11/2i\/(A33—A”/2) +2(41)’] (20)
and the rotation angles are determined by

AL /3 — A7
tan 60} = 71/ 1
V24is
* * * * 2 * \2
|:A33_A11/2:t (A33_A11/2) +2(A13) ] (21)
- Vadi, '
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One part of the rotation angle is the result of the drained (fluid free)
hard anisotropic nature of the rock frame material. We will call this
part 0. The remainder is the result of the presence of the fluid in the
pores and we will call this part 8¢ = #* — 6 for the soft anisotropy.
Using a standard formula for tangents, we have

tan 0% — tan @
= = ) . (22)

86, = tan™! <7_
1 + tan 03 tan O,

Furthermore, definite formulae for 6. are found from eq. (21) by
taking y — oo (corresponding to air saturation of the pores).
Because eq. (19) implies that

tan @ - tan0* = —1, (23)

it is sufficient to consider just one of the signs in front of the radical
ineq. (21). The most convenient choice for analytical purposes turns
out to be the minus sign (which corresponds to the eigenvector with
the larger component of pure compression). Furthermore, it is also
clear from the form of eq. (21) that often the behaviour of most
interest to us here occurs for cases when A7 # 0.

In the limit of a nearly isotropic solid frame (so the hard anisotropy
vanishes and thus we will also call this the quasi-isotropic limit), it
is not hard to see that

L (Bi=B)
12Ga 9

where G g, is the drained shear modulus of the quasi-isotropic solid
frame. Similarly, the remaining coefficient

gt~ B = BB+ Bs)
13~ 9y ;

because all the solid contributions approximately cancel in this limit.
To clarify the situation further, we enumerate three cases, which
follow.

24

(25)

4.1.1 Casel: A%y — A% /2#0, A3 =0

Whenever 43, — A47,/2 # 0 and 47; — 0, we find easily 6% —
0, while 0% — 7 /2. In this case, v; and v3 are themselves the
eigenvectors, while the eigenvalues are proportional to A7}, and
A3;. In the quasi-isotropic limit, 4j; can vanish only if g, —
B3 =0, in which case 43, also does not depend on fluid properties.
For media differing significantly from the quasi-isotropic limit, 47,
could vanish for some physically interesting situations, but the re-
sulting physical constraints are too special (and complicated) for us
to consider them further here.

4.1.2 Casell: A3y — A7,/2=0, Ay #£0

For this case, tan6% = %1, so 6 = =£x /4. The two eigenvectors
are v;/+/6 & v3/+/12, with no dependence on the fluid properties.
However, the eigenvalues continue to be functions of the fluid prop-
erties. This seems to be a rather special case, but again considering
the quasi-isotropic limit, we find that 43, — A7, /2~ v/2E + [(2B:
+ B3)® — 2(B1 — B3)*1/18y, where v is Poisson’s ratio and E is
Young’s modulus. For this combination of the parameters to vanish
for special values does not appear to violate any of the well-known
constraints (such as positivity, etc.) on these parameters. For exam-
ple, if B, = 0, the term depending on the fluid properties clearly
makes a negative contribution, which might be large enough to can-
cel the contribution from the solid. However, for now, this case seems
rather artificial, so we will not consider it further here.
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4.1.3 Caselll: A%y — A% /240, A1y #0

This case is the most general one of the three and the one we will
study at greater length in the remainder of this discussion.

We want to understand how the introduction of liquid into the
pore space affects the shear modulus. We also want to know how the
anisotropy influences, i.e. aids or hinders, the impact of the liquid
on the shear behaviour. To achieve this understanding, it should
be sufficient to consider the case when (4};)? < (4%, — 4%,/2)%,
assuming as we do that both factors are non-zero. Then, expanding
the square root in eq. (20), we have

AL =645+ A and AT =34} — A, (26)
where A is defined consistently by either of the two preceeding
expressions or by 2A = A% — A* + 34, — 6433 and is also given
approximately for cases of interest here by
2
L 34D
43, — 47,/2
In the quasi-isotropic soft anisotropy limit under consideration, we
find

@7

A~ 2(81 — B3)*2B1 + B3)*/27y? 28)
CV/E+[QB1+ B3 = 2B — Bl /9y

All of the mechanical effects of the liquid that contribute to this
formula appear in the factor y. The order at which y appears depends
on the relative importance of the two terms in the denominator of
this expression. If the second term ever dominates, then one factor
of y cancels and therefore A ~ O(y~!), and furthermore A ~
2(81 — B3)*/3y if [B1 — B3l < 1281 + Bsl. If what seems to
be the more likely situation holds, then instead the first term in the
denominator dominates and A ~ O(y ~2). So in either of these cases,
as long as B — B3 # 0 (which is the condition for soft anisotropy),
we always have contributions to A from liquid mechanical effects.
There do not appear to be any combinations of the parameters for
which the fluid effects disappear whenever the material is in the
class of anisotropic solids considered here.

4.2 Stiffness formulation

The dual to the problem just studied replaces compliances every-
where with stiffnesses and then proceeds as before. Eqs (15)—(18)
are replaced by

o 9B%  18B:
Lot (i) = ! N (29)
V] 18B7,  36B%

(in all cases the * superscripts indicate that the pore-fluid effects are
included) and the reduced matrix

(%" = Bijviv] + B (vivg + vsvf) 4 Bijvsvsg, (30)
where

By, = [2(071 +ch + 2CT3) + C§3]/97

By = (071 +c — s - c§3)/9,

By = (cf) +¢f, —4ciy +2¢3)/18. (€2))
It is a straightforward exercise to check that the two reduced prob-
lems are in fact inverses of each other. We will not repeat this analysis
here, as it is wholly repetitive of what has gone before. The main
difference in the details is that the expressions for the Bs in terms
of the Bs are rather more complicated than those for the compli-

ance version, which is also why we chose to display the compliance
formulation instead.
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4.3 Effective and undrained shear moduli G and G,

Four out of five shear moduli are easily defined for the anisotropic
system under study. Furthermore, because we are treating only soft
anisotropy, all of these moduli are the same, i.e. G; = G fori =
1,...,4. They are related to the four shear eigenvalues/eigenvectors
of the system and they do not couple to the pore-fluid mechanics.
However, the eigenvectors in the reduced 2 x 2 system studied
here are usually mixed in character, being quasi-compressional or
quasi-shear modes. It is therefore somewhat problematic to find a
proper definition for a fifth shear modulus. The author has analysed
this problem previously (Berryman 2004b) and concluded that a
sensible (though approximate) definition can be made using G5 =
G . There are several different ways of arriving at the same result,
but for the present analysis the most useful of these is to express
G o in terms of the product A ; A _ (the eigenvalue product, which
is also the determinant of the 2 x 2 compliance system). For our
present application, this result states that the product formula is

1 1
3Ky 2Ger

* * * 2
=A A =18 [A11A33_(A13) ]7 (32)
which we take as the definition of G.¢. Also, because 47, =1/9K ,

we have

1

eff

= 12[ 45, = (4p)'/ 47 ] (33)

To obtain one possible choice for an estimate of the isotropic average
overall undrained shear modulus, we next take the arithmetic mean
of these five shear compliances:

11 1
_Egza. (34)

Combining these definitions and results gives

1 1 4 (B —B) aB
G, Gg& 15 1—aB Ky
_AG-pr 1 1 (35)
15 1—aB \K, Kg/°

where the s are defined by B; = B,K 4/«. The final equality is
presented to emphasize the similarity of the present results to those
of both Mavko & Jizba (1991) and Berryman et al. (2002b). Setting
By =0,y =1,B=1and a ~ 0 recovers the form of Mavko
& Jizba (1991) for the case of a very dilute system of flat cracks.
The Mavko—Jizba form was used successfully by Sams ez al. (1997)
while reconciling their high-frequency data with the theory.

Note that eq. (34) takes the form of a Reuss-type average (har-
monic mean and lower bound) of the undrained shear modulus. Also
note that, contrary to eq. (34), the definition (33) of G is actually
based instead on the Voigt average. In terms of mathematical preci-
sion, the result (35) therefore cannot be considered strictly rigorous;
it is neither an upper nor a lower bound. A partial justification for
the formula comes not from absolute rigour, but instead from ob-
servations (some of which are presented in the next section) that
G 1s in fact a very close estimate of the energy per unit volume
in the fifth shear mode (though still an upper bound). So, for these
reasons, the result (35) should be viewed, not as a rigorous formula
(it is not), but as a good physical estimate of the undrained shear
modulus. Berryman et al. (2002b) show that the Mavko & Jizba
(1991) results suffer from the same lack of rigour.

For applications in which rigour is demanded, we should instead
use the Voigt average

G, = % Z G, (36)

as our estimate of the effective undrained shear modulus. Berryman
(2004a) shows that this choice is often a very accurate estimate,
although strictly speaking it should still be viewed as an upper bound
on the overall modulus for a random, heterogeneous and anisotropic
system.

5 EXAMPLES AND DISCUSSION

It is clear from eq. (26) that fluid effects in A cannot increase the
overall compliance eigenvalues simultaneously for both the quasi-
bulk and the quasi-shear modes. Rather, if one increases, the other
must decrease. Furthermore, it is certainly always true that the pres-
ence of pore liquid either has no effect or else strengthens (i.e. stiff-
ens) the porous medium in compression. However, this effect on the
bulk modulus has been at least partially accounted for in 4}, =
1/9K* through the original contribution derived by Gassmann
(1951). So presumably the contribution of A to compliance can-
not be so large as to negate completely the liquid effects on the
undrained bulk modulus.

5.1 Examples

To clarify the situation, we show some examples in Figs 1-4. The
details of the analysis that produces these constant energy ellipses
are summarized in Appendix B. The main point is that, for the
compliance version of the analysis, the contours of constant energy
are ellipses when the vector f in eq. (18) is interpreted as a stress.
Analogously, when the vector is treated as a strain, the contours of
constant energy are ellipses for the dual (or stiftness) formulation. If
we choose to think of these figures as diagrams in the complex plane,
then we note that, while circles and lines transform to circles and
lines when transforming back and forth between these two planes,
the shapes of ellipses are not preserved (except, of course, in the
special case, which is precisely that of isotropy, when the ellipses
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Figure 1. For Sierra White granite using the parameters from Table 1, the
locus of points z = Re'? (see eq. A2) having constant energy, when the linear
combination of pure compression and pure uniaxial shear is interpreted
as a strain field applied to the stiffness matrix (solid line). The plot is in
the complex z plane, with the inverse of the corresponding expression for
the compliance energy superposed for comparison (dashed line). Circles at
the two points of intersection correspond to the two eigenvalues/eigenvectors
of the system of equations. The ellipse (solid curved line) in this plane
corresponds to the more complex curve in Fig. 2.
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4r SIERRA WHITE GRANITE 1

Normalized Uniaxial Shear Stress

1 1 1 1l
-2 -1 0 1 2 3
Normalized Compressional Stress

Figure 2. Same parameters as Fig. 1, but the linear combination of pure
compression and pure uniaxial shear is interpreted as a stress field and is ap-
plied to the compliance matrix (dashed line). The plot is again in the complex
z plane, with the inverse of the corresponding expression for the stiffness
energy superposed for comparison (solid line). Circles at the two points of
intersection correspond to the two eigenvalues/eigenvectors of the system of
equations. The ellipse (dashed line) corresponds to the more complex curve
in Fig. 1.

0.3} SO, l

Normalized Uniaxial Shear Strain

O—0.4 -03 -02 -01 0 0.1 0.2 0.3 0.4
Normalized Compressional Strain

Figure 3. Same as Fig. 1 for Spirit River sandstone using the parameters
from the Table 1.

degenerate to circles). Eigenvectors are determined by the directions
in which the points of contact of these two curves lie (indicated by
small circles).

For the two sets of examples, the values used for the moduli of
the samples are taken from results contained in Berryman (2004a),
wherein it was shown how certain laboratory data could be fit using
an elastic differential effective medium scheme. These results are
summarized in the Table 1.

Figs 1 and 2 present results for Sierra White granite. Laboratory
data on this material were presented by Murphy (1982). The values
chosen for 8 and B3 were f; = 0.05¢/K 4, and B3 = 0.90« /K ;.
The value of the energy used for normalization was U =~ 900.0 GPa.
Computed values for the effective and undrained shear moduli were
G =39.8 GPaand G, = 28.3 GPa.

Figs 3 and 4 present results for Spirit River sandstone. Laboratory
data on this material were presented by Knight & Nolen-Hoeksema
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7r SPIRIT RIVER SANDSTONE 1

Normalized Uniaxial Shear Stress

-3 —2 -1 1 2 3 4
Normalized Compressional Stress

Figure 4. Same as Fig. 2 for Spirit River sandstone using the parameters
from the Table 1. The two rectangles illustrate the product formula (32)
derived and used in the text. The shapes of these rectangles, although very
similar, are not identical; however, their areas are identical.

Table 1. Elastic and poroelastic parameters of the two
rock samples considered in the text. Bulk and shear mod-
uli of the grains K, and G, bulk and shear moduli of
the drained porous frame K ¢ and G 4, the effective and
undrained shear moduli G ¢ and G, and the Biot—Willis
parameter « = | — K g;/K . The porosity is ¢.

Elastic and Sierra Spirit
poroelastic White River
parameters granite sandstone
G (GPa) 31.7 69.0
Gy (GPa) 28.3 12.41
Gar (GPa) 26.4 11.33
Gfr (GPa) 39.8 20.11
K (GPa) 57.7 30.0
K ¢ (GPa) 38.3 7.04
o 0.336 0.765
¢ 0.008 0.052

(1990). The values chosen for 8, and 83 were 8, = 0.25¢/K 4 and
B3=0.50c/K 4. The value of the energy used for normalization was
U ~ 900.0 GPa. Computed values for the effective and undrained
shear moduli were G = 20.11 GPa and G, = 12.41 GPa.

5.2 Discussion

We can compare the results obtained with results obtained for the
same rocks using differential effective medium theory to fit data.
The two characteristics that will interest us here are: (i) comparisons
between the values chosen in our examples for the anisotropic 8 and
the best-fitting crack aspect ratios found in Berryman (2004a); and
(i1) comparisons between the magnitudes of changes in the overall
shear moduli from their drained to undrained values.

The preferred crack aspect ratios found for Sierra White granite
and Spirit River sandstone in Berryman (2004a) were 0.005 and
0.0125, respectively. Here, we found that (8}, B3) for the same sam-
ples were (0.05, 0.90) and (0.25, 0.50), respectively. Clearly, these
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values are at least weakly correlated with those of the aspect ratios
for the same samples, but no stronger conclusions can be reached
at the present time concerning these values.

Similarly, the comparisons of the changes in shear modulus mag-
nitude from drained to undrained also show a weak correlation.
The increases in shear moduli observed in the measured labora-
tory data for Sierra White granite and Spirit River sandstone are
approximately 10 and 20 per cent, respectively. As seen in Table 1,
the magnitude of the changes predicted here is essentially approxi-
mately 10 per cent in both of these cases. Thus, agreement is good
both qualitatively and semi-quantitatively in the cases shown here.
We conclude that the theory presented is correctly predicting the
magnitudes of these shear modulus enhancements resulting from
pore-fluid effects.

6 SYNOPSIS AND CONCLUSIONS

The preceding discussion shows how overall shear modulus de-
pendence on pore-fluid mechanics arises in simple anisotropic (the
specific example used was transversely isotropic) media. The results
(both the product formula derived previously by the author and the
new formulae such as eq. 35) demonstrate in a wholly elementary
fashion how compression-to-shear coupling enters the analysis for
anisotropic materials and, furthermore, how this coupling leads to
overall shear dependence on the mechanics of fluids in the pore
system.

These effects need not always be large. However, the effect can
be very substantial (on the order of a 10 to 20 per cent increase
in the overall shear modulus) in cracked or fractured materials,
when these pores are liquid filled. Then, the anisotropy and lig-
uid stiffening effects both come strongly into play in the results,
such as those illustrated in Figs 1-4. In particular, if 8, ~ 83,
then soft anisotropy does not make a significant contribution. How-
ever, if either 8, <« B3 or 81 > B3, then the contribution can be
significant.

The results presented here are expected to be useful in reconciling
high-frequency shear wave data with the poroelastic theory and also
as a tool for the benchmarking of poroelastic codes for complex,
heterogeneous earth systems such as reservoirs.
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APPENDIX A: TRIAXIAL VERSUS
UNIAXIAL STRESS/STRAIN

Because a strain of the form v!’ = (1, 1, —2) (as defined in eq. 12) is
clearly volume preserving, it is one type of shear strain. Furthermore,
because this mode plays a key role in our analysis, we call it uniaxial
shear. We also use the same term when the shear state of interest is
an applied stress with the principal stress components proportional
tov] =(1,1,-2).

To see why this terminology might be appropriate, consider two
definitions of stress appropriate to triaxial tests (see Jaeger & Cook
1976; Paterson 1978; Zimmerman 1991) :

0. = (011 + 022+ 033)/3 (A1)
and, most importantly,
q =03 — (011 +02)/2. (A2)

Eq. (Al) is a definition of the average confining stress, while
eq. (A2) is related in general to the shear stress. Using the
definitions in eq. (12) as a basis for the principal stresses, we
have

o1
oy | =o.v1 +avy + bus. (A3)
033

So,o01=0.+a+b,0yy=0.—a+bandos; =0, — 2b, and,
therefore, for the polyaxial case we have

q = —3b, (Ad)

where b is the coefficient of v;. In the typical triaxial (or perhaps a
better term is axisymmetric) experiment, it is assumed that the inter-
mediate stress 05, = o1, which also implies that a = 0. However,
this condition does not change the result (A4). Triaxial testing has
been developed especially to study failure in rock and soil, which
can depend strongly on both the hydrostatic and shear components
of the stress. It clearly makes use of a superposition of hydrostatic
pressure and uniaxial stress.

In our context, the term uniaxial shear refers either to a shear
stress proportional to v; and, therefore, orthogonal to a hydrostatic
stress state, or to a shear strain proportional to v that is orthogonal
to uniform strain in all directions. If a pure uniaxial stress or strain
of magnitude 3 units is applied in direction 3, then we have
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0 1 1
ol=1]-|1 (A5)
3 1 -2

Thus, a pure uniaxial stress or strain is the difference of a pure hy-
drostatic component v; and shear component v;. It therefore seems
natural to call this shear component the uniaxial shear. Although
clearly related to the triaxial test, this concept was developed mostly
as a theoretical one, convenient for distinguishing that part of the
shear energy that can be coupled to externally applied hydrostatic
compression or tension in a transversely isotropic (hexagonal sym-
metry) poroelastic system and vice versa. The same concept is also
useful for some other important symmetry classes such as trigonal,
tetragonal and cubic.

APPENDIX B: ENERGY ELLIPSES

The equation of an ellipse centred at the origin whose semi-major
and semi-minor axes are of lengths a and b, and whose angle of
rotation with respect to the x-axis in the (x, y) plane is ¥ is given by

(x cos ¥ + ysiny)?/a® + (—x siny + ycosy)?/b> = 1. (Bl)

For comparison, when x = r cosf, y = r sinf and a stress of
magnitude » = /x2 + y? is applied to a poroelastic system, the
energy stored in the anisotropic media of interest here (using eqs 16
and 18) is given by

P2 f1O)=* f(0) = U(r, 0)
= 3r2(A41 cos> 0 + 24/243 cos 0 sin 6 + 2 433 sin® 0)

= R2U(ro, 6). (B2)

In the second equation, R =r /r( and r is an arbitrary number (say
unity) having the dimensions of stress (i.e. dimensions of Pa). It is
not hard to see that, when U(r, 6) = const, the two eqs (B1) and
(B2) have the same functional form and, therefore, that contours
of constant energy in the complex (z = x + iy) plane are ellipses.
Furthermore, we can solve for the parameters of the ellipse by setting
U = 1 (in arbitrary units for now) in eq. (B2) and then factoring r>
out of both equations. We find that

cosy  sin’ Y

341,

a? b’
6+/2A3 = sin2y (iz - i) ,
a b?
sin Y cos2y
643 = = 2 (B3)

These three equations can be inverted for the parameters of the
ellipse, giving

I 34y cos’y — 643y sin’

a? cos 2vr ’
1 34y sin’§ — 6435 cos” ¥
b cos 2y ’
2424
tan 2y = g (B4)
All - 2A33

Although contours of constant energy are of some interest, it is
probably more useful to our intuition fporoelastic application to
think instead about contours associated with applied stresses and
strains of unit magnitude, i.e. for » = 1 (in appropriate units) and 0
varying from 0 to  (again see definition 18). We then have the im-
portant function U(1, 0). (Note that, when 6 varies instead between
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7 and 27, we just get a copy of the behaviour for 0 between 0 and
7. The only difference is that the stress and strain vectors have an
overall minus sign relative to those on the other half-circle. For a
linear system, such an overall phase factor of unit magnitude is ir-
relevant to the mechanics of the problem.) Then, if we set U(r, 0) =
const = R% U(rg, #) and plot z = Re’’ in the complex plane, we will
have a plot of the ellipse of interest with R determined analytically
by

R =JU(r,0)/U(ro, 0) = /const/ U(ro, ). (B5)

We call R the magnitude of the normalized stress (i.e. normalized
with respect to 7).

The analysis just outlined can then be repeated for the stiff-
ness matrix and applied strain vectors. The mathematics is com-
pletely analogous to the case already discussed, so we will not re-
peat it here. Because strain is already a dimensionless quantity,
the factor that plays the same role as r( above can in this case
be chosen to be unity if desired, as the main purpose of the fac-
tor ( above was to keep track of the dimensions of the stress
components.
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