ALIGNED VERTICAL FRACTURES, HTI SYMMETRY, AND THOMSEN PARAMETERS

James G. Berryman
Geophysics Department
Earth Sciences Division
Lawrence Berkeley National Laboratory
OUTLINE

• Review Standard Seismic Results for TI Media

• Anisotropy Due to Low Density Fractures
 ◦ Seismic velocities in TI media
 ◦ Sayers-Kachanov method

• Higher Crack Densities
 ◦ Higher order Sayers-Kachanov η’s
 ◦ Thomsen’s weak anisotropy formulation

• Discussion and Conclusions
Standard results for
PHASE VELOCITIES IN TI MEDIA (1)

SH-wave velocity:

\[v_{sh}^2(\theta) = \frac{1}{\rho} \left[c_{44} + (c_{66} - c_{44}) \sin^2 \theta \right]. \]
PHASE VELOCITIES IN TI MEDIA (2)

Quasi-P wave velocity:

\[v_{p}^{2}(\theta) = \frac{1}{2\rho} \left\{ \left[(c_{11} + c_{44}) \sin^{2} \theta + (c_{33} + c_{44}) \cos^{2} \theta \right] + R(\theta) \right\} \]

Quasi-SV wave velocity:

\[v_{sv}^{2}(\theta) = \frac{1}{2\rho} \left\{ \left[(c_{11} + c_{44}) \sin^{2} \theta + (c_{33} + c_{44}) \cos^{2} \theta \right] - R(\theta) \right\} \]

where \(R(\theta) \) is determined by

\[R^{2}(\theta) = \left[(c_{11} - c_{44}) \sin^{2} \theta - (c_{33} - c_{44}) \cos^{2} \theta \right]^{2} + 4(c_{13} + c_{44})^{2} \sin^{2} \theta \cos^{2} \theta \]
The isotropic stiffness matrix (inverse of the compliance matrix) for an elastic material is often written as $C =$

$$
\begin{pmatrix}
\lambda + 2G & \lambda & \lambda \\
\lambda & \lambda + 2G & \lambda \\
\lambda & \lambda & \lambda + 2G \\
\end{pmatrix}
$$

where λ and G are the two Lamé parameters, G is shear modulus, and $K = \lambda + 2G/3$ is bulk modulus.
ANISOTROPY DUE TO FRACTURES (1)

The isotropic compliance matrix (inverse of the stiffness matrix) for an elastic material is often written as

\[S = \begin{pmatrix} \frac{1}{E} & -\frac{\nu}{E} & -\frac{\nu}{E} \\ -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu}{E} \\ -\frac{\nu}{E} & -\frac{\nu}{E} & \frac{1}{E} \end{pmatrix} \begin{pmatrix} \frac{1}{G} & 0 & 0 \\ 0 & \frac{1}{G} & 0 \\ 0 & 0 & \frac{1}{G} \end{pmatrix} \]

where \(E \) is Young’s modulus, \(\nu \) is Poisson’s ratio, and \(G = E/(1 + \nu) \) is the shear modulus.
We assume all the fractures/cracks are in the form of penny-shaped cracks. These are defined as oblate spheroids, being round/flat holes, circular in cross-section with area $A = \pi b^2$, and volume $V_c = \frac{4\pi ab^2}{3}$, or $V_c = \frac{4\pi \alpha b^3}{3}$, where $\alpha \equiv \frac{a}{b}$ is the aspect ratio. We assume $\alpha = \frac{a}{b} \ll 1$, so the crack porosity $\phi = \frac{V_c}{V} \ll 1$.

The crack density parameter $\rho = \rho_c = \frac{N b^3}{V}$, where N/V is the number of cracks per unit volume, and b is the radius of the (assumed) penny-shaped crack.
ANISOTROPY DUE TO FRACTURES (3)

Sayers and Kachanov (1991) show that corrections to the isotropic matrix S_{ij}, caused by low crack densities ($\rho << 1$), can be written as

\[
\Delta \left(\frac{1}{G} \right) = 4\eta_2 \rho / 3,
\]

\[
\Delta \left(-\frac{\nu}{E} \right) = 2\eta_1 \rho / 3,
\]

\[
\Delta \left(\frac{1}{E} \right) = 2(\eta_1 + \eta_2) \rho / 3,
\]

where η_1 and η_2 are parameters to be found from EMT.
ANISOTROPY DUE TO FRACTURES (4)

Thus, in the isotropic case, we have

\[
\Delta S_{ij} = (2\rho/3) \times \\
\begin{pmatrix}
(\eta_1 + \eta_2) & \eta_1 & \eta_1 \\
\eta_1 & (\eta_1 + \eta_2) & \eta_1 \\
\eta_1 & \eta_1 & (\eta_1 + \eta_2)
\end{pmatrix}.
\]
ANISOTROPY DUE TO FRACTURES (5)

For horizontal cracks, we get an anisotropic medium
whose correction matrix is

$$\Delta S_{ij} = \rho \times$$

$$
\begin{pmatrix}
0 & 0 & \eta_1 \\
0 & 0 & \eta_1 \\
\eta_1 & \eta_1 & 2(\eta_1 + \eta_2) \\
\eta_1 & \eta_1 & 2(\eta_1 + \eta_2) \\
\eta_1 & \eta_1 & 2(\eta_1 + \eta_2) \\
2\eta_2 & 2\eta_2 & 0
\end{pmatrix}.
$$
ANISOTROPY DUE TO FRACTURES (6)

For vertical cracks whose axis of symmetry is randomly oriented in the xy-plane, we have another anisotropic medium whose correction matrix is

$$\Delta S_{ij} = \rho \times$$

$$\begin{pmatrix}
(\eta_1 + \eta_2) & \eta_1 & \eta_1/2 \\
\eta_1 & (\eta_1 + \eta_2) & \eta_1/2 \\
\eta_1/2 & \eta_1/2 & 0
\end{pmatrix}.$$

$$\begin{pmatrix}
\eta_2 \\
\eta_2 \\
2\eta_2
\end{pmatrix}.$$
ANISOTROPY DUE TO FRACTURES (7)

Examples of the values of the η’s found from various effective medium theories are:

<table>
<thead>
<tr>
<th>EMT</th>
<th>η_1</th>
<th>η_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI</td>
<td>-0.000216</td>
<td>0.0287</td>
</tr>
<tr>
<td>DS</td>
<td>-0.000216</td>
<td>0.0290</td>
</tr>
<tr>
<td>CPA</td>
<td>-0.000258</td>
<td>0.0290</td>
</tr>
<tr>
<td>SC</td>
<td>-0.000207</td>
<td>0.0290</td>
</tr>
</tbody>
</table>
THOMSEN PARAMETERS (1)

For the case of randomly oriented vertical fractures, two of the Thomsen parameters can be expressed as:

\[\gamma \equiv \frac{C_{66} - C_{44}}{2C_{44}} = -\eta_2 \rho \frac{E}{4(1+\nu)} = -\eta_2 \rho \frac{G}{2} \]

\[\epsilon \equiv \frac{C_{11} - C_{33}}{2C_{33}} \simeq -\eta_2 \rho \frac{G}{1-\nu}. \]

The remaining Thomsen parameter \(\delta \), which is the one that determines the degree of anellipticity in angular dependence of the wave speeds is given exactly by \(\delta = \epsilon \), which means there is no deviation from ellipticity.
For the case of horizontal fractures, the same two Thomsen parameters can be expressed as:

\[\gamma \equiv \frac{C_{66} - C_{44}}{2C_{44}} = \eta_2 \rho G \]

\[\epsilon \equiv \frac{C_{11} - C_{33}}{2C_{33}} \simeq \eta_2 \rho \frac{2G}{1-\nu} \]

Note that these results both differ exactly by a factor of -2 from the previous results for randomly oriented vertical fractures. This fact can be easily understood in terms of the Sayers and Kachanov style of analysis.
ANISOTROPY DUE TO HIGHER CRACK DENSITY

For horizontal cracks, we get an anisotropic medium whose second order compliance correction matrix is

\[\Delta^{(2)} S_{ij} = \rho^2 \times \]

\[
\begin{pmatrix}
0 & 0 & \eta_4 \\
0 & 0 & \eta_4 \\
\eta_4 & \eta_4 & 2(\eta_3 + \eta_4 + \eta_5) \\
\eta_4 & \eta_4 & 2\eta_5 \\
2\eta_5 & 2\eta_5 & 0
\end{pmatrix}.
\]
CRACK-INFLUENCE PARAMETERS

Examples of the values of the η’s found from simulation results supplied by V. Grechka are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$\nu_0 = 0.00$</th>
<th>$\nu_0 = 0.4375$</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_1</td>
<td>0.0000</td>
<td>−0.0192</td>
</tr>
<tr>
<td>η_2</td>
<td>0.1941</td>
<td>0.3994</td>
</tr>
<tr>
<td>η_3</td>
<td>−0.3666</td>
<td>−1.3750</td>
</tr>
<tr>
<td>η_4</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>η_5</td>
<td>−0.0917</td>
<td>0.5500</td>
</tr>
</tbody>
</table>
THOMSEN WEAK ANISOTROPY FORMULAS

\[v_p(\theta) = v_p(0) \left(1 + \delta \sin^2 \theta \cos^2 \theta + \epsilon \sin^4 \theta \right), \]

\[v_{sv}(\theta) = v_s(0) \left(1 + \frac{c_{33}}{c_{44}}(\epsilon - \delta) \sin^2 \theta \cos^2 \theta \right), \]

\[v_{sh}(\theta) = v_s(0) \left(1 + \gamma \sin^2 \theta \right). \]

where

\[\delta = \left(\frac{c_{13} + c_{33}}{2c_{33}} \right) \left(\frac{c_{13} + 2c_{44} - c_{33}}{c_{33} - c_{44}} \right) \]

and

\[\frac{c_{33}}{c_{44}} = \frac{v_p^2(0)}{v_s^2(0)} \]
EXAMPLES OF SEISMIC VELOCITIES

Series of examples have been computed using the “empirical” crack influence parameters.
CONCLUSIONS

- The Sayers and Kachanov (1991) approach has some powerful advantages for both forward and inverse modeling in fractured systems, especially when used in conjunction with measured Thomsen parameters.
- For a given material (e.g., quartz) and a given crack shape (e.g., penny-shaped), η_1 and η_2 can be computed once and for all.
- Measured Thomsen parameters can then be inverted for crack density.
- Incorporating fluid dependence rigorously into this problem is easy using the Sayers-Kachanov parameters.
REFERENCES – RECENT PAPERS

- J. G. Berryman and V. Grechka, “Random polycrystals of grains containing cracks: Model of quasistatic elastic behavior for fractured systems,”

- J. G. Berryman, “Geomechanical analysis with rigorous error estimates for a double-porosity reservoir model,”

- J. G. Berryman, “Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries,”
OLDER REFERENCES (1)

OLDER REFERENCES (2)

OLDER REFERENCES (3)

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. Department of Energy (DOE) by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC03-76SF00098 and supported specifically by the Geosciences Research Program of the DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. All support of the work is gratefully acknowledged.
Extending Thomsen’s Approach to Stronger Anisotropies (1)

Reconsider
\[R^2(\theta) = \left[(c_{11} - c_{44}) \sin^2 \theta - (c_{33} - c_{44}) \cos^2 \theta \right]^2 + 4(c_{13} + c_{44})^2 \sin^2 \theta \cos^2 \theta \]

and rewrite this way:
\[R(\theta) = \left[(c_{11} - c_{44}) \sin^2 \theta + (c_{33} - c_{44}) \cos^2 \theta \right] \sqrt{1 - \zeta(\theta)} \]

where
\[\zeta(\theta) \equiv 4 \frac{[(c_{11} - c_{44})(c_{33} - c_{44}) - (c_{13} + c_{44})^2] \sin^2 \theta \cos^2 \theta}{[(c_{11} - c_{44}) \sin^2 \theta + (c_{33} - c_{44}) \cos^2 \theta]^2} \]

This probably does not look like progress to you yet, but the next step shows the usefulness of this rearrangement:
\[\zeta(\theta) = \frac{\zeta_m \sin^2 2\theta_m \sin^2 2\theta}{[1 - \cos 2\theta_m \cos 2\theta]^2}. \]
Extending Thomsen’s Approach to Stronger Anisotropies (2)

The maximum/minimum value of $\zeta(\theta)$ over all θ’s is

$$\zeta_m = \frac{2(\epsilon-\delta)v_p^2(0)}{v_p^2(0)(1+2\epsilon)-v_s^2(0)},$$

while the location of this extreme value of $\zeta(\theta)$ is determined by

$$\tan^2\theta_m = (c_{33} - c_{44})/(c_{11} - c_{44}),$$

which can also be rewritten in terms of Thomsen parameters as

$$\tan^2\theta_m = \frac{v_p^2(0)-v_s^2(0)}{(1+2\epsilon)v_p^2(0)-v_s^2(0)}.$$