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DEFINITION OF CRACK DENSITY ρ

A key parameter is crack density ρ = na3, where

a is the radius of a penny-shaped crack and n = N/V

is the number (N) of cracks per unit volume (V ).

A penny-shaped crack is an oblate spheroidal void

i.e., an ellipsoid having principal axis dimensions

a ≥ b ≥ c such that a = b and c = αa, where

α < 1 is the aspect ratio. For flat cracks, α can

be very small. Crack density does not depend on α.



ANISOTROPY DUE TO FRACTURES (1)

The isotropic compliance matrix (inverse of the stiffness

matrix) for an elastic material is often written as S =

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where E is Young’s modulus, ν is Poisson’s ratio,

and G = E/2(1 + ν) is the shear modulus.



ANISOTROPY DUE TO FRACTURES (2)

Sayers and Kachanov (1991) show that corrections ∆

to the isotropic matrix Sij , induced by low crack

densities (ρ = na3 << 1), can be written as

∆
(

1
G

)

= 4η2ρ/3,
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= 2(η1 + η2)ρ/3,

where η1 and η2 are parameters to be found from EMT.



ANISOTROPY DUE TO FRACTURES (3)

Thus, for isotropic crack distributions, we have

∆Sij = (2ρ/3)×















(η1 + η2) η1 η1

η1 (η1 + η2) η1

η1 η1 (η1 + η2)
2η2

2η2

2η2















.



ANISOTROPY DUE TO FRACTURES (4)

For horizontal cracks, we get an anisotropic medium

whose correction matrix is

∆Sij = ρ×
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ANISOTROPY DUE TO FRACTURES (5)

For vertical cracks whose axis of symmetry is randomly

oriented in the xy-plane, we have another anisotropic

medium whose correction matrix is

∆Sij = ρ×
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ANISOTROPY DUE TO FRACTURES (6)

Examples of the values of the η’s for isotropic quartz

found using various effective medium theories are:

EMT η1 η2

NI −0.000216 0.0287
DS −0.000216 0.0290

CPA −0.000258 0.0290
SC −.0000207 0.0290

Note that |η1|/η2 < 0.01 in all these cases. So only

one parameter is important for quartz-like host media.



NIA EXAMPLES (1)

Since it makes little difference at low crack densities

which theoretical method we use, we might as well

consider the simplest one which is surely the

non-interaction approximation (NIA).

It is well-known (e.g., see Zimmerman’s book) that:
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both obviously linear expressions in the crack density ρ.



NIA EXAMPLES (2)

But we also have
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NIA EXAMPLES (3)

Thus, we find directly that

η2 = 1
G

8(1−ν)(5−ν)
15(2−ν)

and

η1 = − 1
G

4ν(1−ν)
15(2−ν) ,

where we also used the fact that

1/2G = (1 + ν)/3K(1 − 2ν).

Especially note that, in the NIA, η1 is negative and

directly proportional to Poisson’s ratio ν, and that

η1/η2 = −ν/2(5 − ν).



POISSON’S RATIO FROM SEISMIC DATA

Standard expressions for shear and compressional wave

speeds in isotropic media of mass density ρm are:

v2
s = G/ρm,

v2
p = (K + 4G/3)/ρm.

Poisson’s ratio can be expressed then as

ν = 1
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)

.

So seismic data in the background medium for regions

where there are no cracks would be useful for

determining the parameters needed in the theory.



THOMSEN PARAMETERS (1)

For the case of randomly oriented vertical fractures,

two of the Thomsen parameters can be expressed as:

γ ≡ C66−C44

2C44

= −η2ρ
G
2 ,

ε ≡ C11−C33

2C33

' −η2ρ
G

1−ν .

The remaining Thomsen parameter δ, which

determines degree of anellipticity in angular dependence

of the wave speeds is given exactly by δ = ε,

showing there is no deviation from ellipticity.



THOMSEN PARAMETERS (2)

For the case of horizontal fractures, the same two

Thomsen parameters can be expressed as:

γ ≡ C66−C44

2C44

= η2ρG

ε ≡ C11−C33

2C33

' η2ρ
2G
1−ν .

Note: these results both differ exactly by a factor of -2

from previous results for randomly oriented vertical

fractures. This fact can be easily understood in terms

of the Sayers and Kachanov style of analysis.



THOMSEN PARAMETERS (3)

Inverting the expressions for vertical fractures

gives two formulas for the crack density ρ:

ρ = −2γ/η2G = −C66−C44

η2GC44

,

and

ρ = −ε(1 − ν)/2η2G = − (C11−C33)(1−ν)
2η2GC33

,

providing some redundancy if all the required data are

available. If shear wave data in the fractured region

are not available, then the second formula is the

pertinent one – but values of G and ν seem to be

needed. However, η2 ∝ 1/G, so only ν is required.



THOMSEN PARAMETERS (4)

And similarly, inverting the expressions for horizontal

fractures gives two formulas for the crack density ρ:

ρ = γ/η2G = C66−C44

2η2GC44

and

ρ = ε(1 − ν)/2η2G = (C11−C33)(1−ν)
4η2GC33

,

providing some redundancy if all the desired data are

available. If shear wave data in the fractured region

are not available, then the second formula is again the

pertinent one – again values of G and ν seem to be

needed. However, η2 ∝ 1/G, so only ν is required.



RAYLEIGH WAVE SPEED

For a transversely isotropic medium with vertical axis

of symmetry (which is true of both the cases described

so far), the Rayleigh surface wave has a speed

determined by the following equation:

1
16q3 − 1

2q2 +
(

3
2 − C66

C11

)

q +
(

C66

C11

− 1
)

= 0,

where q ≡ v2
R/v2

s and v2
s = C66/ρ0,

with ρ0 being the inertial mass density of the medium.

Recall that C66 = C44(1 + 2γ) and that C11 = C33(1 + 2ε)

in terms of Thomsen parameters.



GASSMANN’S EQUATIONS (1)

Ku = Kd + α2

(α−φ)/Km+φ/Kf
,

where Ku is the undrained bulk modulus, Kd is the

drained bulk modulus, Km is the mineral (or solid)

modulus, Kf is the pore fluid bulk modulus, φ is

the porosity, and α = 1 − Kd/Km. Rearranging into

compliance form, we have
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Also, porosity φ = 4πa
3b

Nb3

V = 4πa
3b ρ.



GASSMANN’S EQUATIONS (2)

Compliance correction matrix for fluid inclusions:

∆Sij = −γ−1
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The fluid effects (Kf ) appear only in the overall factor

γ. The coefficients βi, i = 1, 2, 3, satisfy a sumrule

of the form β1 + β2 + β3 = 1/Kd − 1/Km ≡ α/Kd.

Kd is the drained bulk modulus. Km is the mineral

(i.e., solid) modulus.



GASSMANN CORRECTIONS TO

SAYERS-KACHANOV FORMULAS

With ρ = Nr3/V being the crack density parameter,

and η2 being the Sayers-Kachanov parameter that

perturbs the shear compliance, we have
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MAVKO-JIZBA REDERIVED

It is now easy to show that
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.



CONCLUSIONS

• The Sayers and Kachanov (1991) approach has some

powerful advantages for both forward and inverse

modeling in fractured systems, especially when used

in conjunction with measured Thomsen parameters.

• For a given material (e.g., quartz) and a given

crack shape (e.g., penny-shaped), η1 and

η2 can be computed once and for all.

• Measured Thomsen parameters can then be inverted

for crack density.

• Incorporating fluid dependence rigorously into this

problem is easy using the Sayers-Kachanov parameters.
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