The following rules are used to generate the subset of Walsh functions corresponding to order N:
k_{N} = 2^{N-1}
.Beginning with the functions of order 0 (W^{0}=1) and 1 (W^{1}=1,-1), it is possible to generate a complete set by using this iterative process.
There is a direct relationship between Walsh functions and the particular wavelet transform described by Ottolini (1990), which had a two-sample signal function as the basis wavelet. In contrast to the Walsh set, the wavelet set has only one component of order N, but the number of parameters associated with this component is equal to the number of Walsh functions of the same order. Figure b shows that adding all Walsh components of a given order results in the wavelet component of the same order. In general, any wavelet component can be obtained as a superposition of all the Walsh components of same order.
The Walsh functions have some properties that make them suitable for certain geophysical applications. Lanning and Johnson (1983) used the Walsh decomposition to develop an automated algorithm to identify rock boundaries in well-log data. They claim that the discrete transitions in signal level of these functions make them ideal for describing layered media. Figure a shows a sonic-log from the Gulf of Mexico and its Walsh spectrum, while Figure b compares the sonic smoothed with a triangle filter, with a band-limited (order 0 to 6 for a maximum order of 12) Walsh composition of the same sonic-log. Both curves show the same basic features, but the Walsh composition manifest a ``blocky" structure that can be better correlated with the geologic layers.
In traveltime inversion the advantage of using Walsh instead of Fourier decomposition lies in the simplicity of the forward modeling computation, since the samples of the basis functions can only assume values 1 or -1, and only a few samples are required to describe the lower frequency components. Replacing square functions by Walsh functions in the nonlinear scheme described in the preceding section leads to a solution similar to the set of equations (7).