next up previous print clean
Next: REFERENCES Up: Sava and Biondi: WEMVA Previous: Field data example

Conclusions

We present an extension of our recursive wave-equation migration velocity analysis method operating in the image domain. Our method is based on the linearization of the downward continuation operator that relates perturbations in slowness to perturbations in image. The fundamental idea is to improve the quality of the slowness function by optimizing the focusing of the migrated image, and not by fitting the data recorded at the surface directly.

We construct the image perturbations by a differential operator applied to the reference image. In this way, we ensure that we do not violate the inherent Born approximation made in our method. This method directly constructs the image perturbation from the background image, and is always compliant with the Born approximation which is the underlying assumption of WEMVA. We show that we can obtain slowness anomalies that are fully consistent with those obtained by the application of the forward and adjoint WEMVA operators.


next up previous print clean
Next: REFERENCES Up: Sava and Biondi: WEMVA Previous: Field data example
Stanford Exploration Project
7/8/2003