To enable the use of the survey-sinking algorithm, teleseismic data need to be reconfigured to an approximate equivalent of zero-offset geometry. One way that this can be achieved is to exploit the fact that planar teleseismic wavefields sweep across recording arrays in a linear fashion. This leads to a LMO of first arrivals in the recorded teleseismic section, with the degree of moveout being dependent on the incident wave's orientation to the strike of the array, as shown in Figure .

Geometry
Diagram of a simple teleseismic scattering
model. a) Earth model consisting of a planar discontinuity and
point scatterer. b) P-S forward-scattering expected for a source
parallel to receiver array-axis. Conversions are
parallel to the source wavefront, and the diffraction is symmetric about
the scattering point. c) As in b) but with source located perpendicular
to receiver array-axis.
Figure 1 |

Thus, as an initial approximation, I apply an adjoint LMO operator to remove the LMO recorded in the data. (The processing flow is depicted in Figure ).

In this new reference frame, zero time is defined by the arrival of the teleseismic source at each station. Since all arrivals now occur at zero-time, this may be considered as a zero-offset experiment. Note that reflections and mode conversions (i.e. P- to S-wave) from horizontal discontinuities are flattened by this transformation. One drawback, though, is that diffracted hyperbolas symmetric in the initial reference frame are now skewed to one side of the hyperbola apex. The degree to which they are skewed is dependent on the angle of the applied adjoint LMO (see Figure ). While this may not be an optimal physical representation, two observations support the use of this approximation. First, coherent events observed in the receiver wavefield predominately consist of planar reflected and converted events. These types of scattered energy are properly migrated by a zero-offset wave-equation method. Second, little-to-no LMO shift is applied to plane waves arriving from directions nearly or exactly coincident with the strike-axis of the recording array. In these cases planar events (plus diffractions if present) are properly migrated by a zero-offset algorithm.

Flow
Processing Flow.
Figure 2 |

7/8/2003