The conventional imaging condition for shot-profile migration
is based on the crosscorrelation in time of the
source wavefield (*S*) with the receiver wavefield (*R*).
The equivalent of the stacked image
is the average over sources (*s*)
of the zero lag of this
crosscorrelation;
that is:

(1) |

The imaging condition expressed in
equation (1)
has the substantial disadvantage
of not providing prestack information
that can be used for
either velocity updates or amplitude analysis.
Equation (1)
can be generalized
Biondi and Shan (2002); Rickett and Sava (2002); de Bruin et al. (1990)
by crosscorrelating
the wavefields shifted horizontally
with respect to each other.
The prestack image becomes a function
of the horizontal relative shift,
which has the physical meaning
of a *subsurface half offset* (*x*_{h}).
It can be computed as

(2) |

cig-simple-v2
Geometry of an ADCIG for a single event
migrated with the wrong (low in this case) velocity.
The propagation direction of the source ray
forms the angle with the vertical,
and the propagation direction of the receiver ray
forms the angle with the vertical;
is the apparent aperture angle,
and is the apparent reflector dip.
The source ray and the receiver ray cross at .Notice that in this figure and are positive,
but is negative.
Figure 1 |

Sava and Fomel (2002) presented a simple method for transforming HOCIGs into ADCIGs by a slant stack transformation applied independently to each HOCIG Schultz and Claerbout (1978):

(3) |

(4) |

Sava and Fomel (2002) demonstrated
the validity of equation (4)
based only on Snell's law and on the geometric relationships between
the propagation directions of the source ray
(determined by in Figure )
and receiver ray
(determined by in Figure ).
Its validity is thus independent
of the focusing of the reflected energy at zero offset;
that is,
it is valid regardless of whether
the image point
coincides with the intersection of the two rays
(marked as in Figure ).
In other words, it is independent of whether
the correct migration velocity
is used.
The only assumption about the migration velocity
is that
the velocity
at the imaging depth
is locally the same along the source ray and the receiver ray.
This condition is obviously fulfilled when
the reflected energy focuses at zero offset,
but it is, at least approximately, fulfilled
in most practical situations of interest.
In most practical cases we can assume that the migration velocity function
is smooth in a neighborhood of the imaging point,
and thus that the velocity at the end point of the source ray
is approximately the same as the velocity at the end point
of the receiver ray.
The only exception of practical importance
is when the reflection is caused by a high-contrast
interface, such as a salt-sediment interface.
In these cases, our results must be applied with
particular care.
When the migration velocity is correct,
and are respectively the
true reflector dip and the true aperture angle;
otherwise they are the *apparent*
dip and the apparent aperture angle.
In Figure ,
the box around the imaging point signifies
the local nature of the geometric relationships
relevant to our discussion;
it emphasizes that
these relationships depend only on the local velocity function.

When the velocity is correct, the image point obviously coincides with the crossing point of the two rays .However, the position of the image point when the velocity is not correct has been left undefined by previous analyses Prucha et al. (1999); Sava and Fomel (2002). In this paper, we demonstrate the important result that in an ADCIGs, when the migration velocity is incorrect, the image point lies along the direction normal to the apparent geological dip. We identify this normal direction with the unit vector that we define as oriented in the direction of increasing traveltimes for the rays (see Figure ).

Notice that the geometric arguments presented in this paper are based on the assumption that the source and receiver rays cross, even when the data were migrated with the wrong velocity. This assumption is valid in 2-D except in degenerate cases of marginal practical interest (e.g. diverging rays). In 3-D, this assumption is more easily violated, because the two rays are not always coplanar. This discrepancy between 2-D and 3-D geometries makes the generalization to 3-D of the results presented in this paper less than trivial. Therefore, we consider the 3-D generalization beyond the scope of this paper.

As will be discussed in the following and
exemplified by the real-data example
in Figure a,
the HOCIGs, and consequently the ADCIGs computed
from the HOCIGs
(Figure a),
have problems when the reflectors
are steeply dipping.
At the limit,
the HOCIGs become useless
when imaging almost vertical reflectors
using either
overturned events
or prismatic reflections.
To create useful ADCIGs in these situations
we introduce
a new kind of CIGs
Biondi and Shan (2002).
This new kind of CIG is computed by introducing
a *vertical half offset* (*z*_{h}) into
equation (1) to obtain:

(5) |

As for the HOCIGs, the VOCIGs can be transformed into an ADCIG by applying a slant stack transformation to each individual VOCIG; that is:

(6) |

(7) |

Notice that our notation distinguishes the result of the two transformations to ADCIG ,because they are different objects even though they are images defined in the same domain .One of the main results of this paper is the definition of the relationship between and ,and the derivation of a robust algorithm to ``optimally'' merge the two sets of ADCIGs. To achieve this goal we will first analyze the kinematic properties of HOCIGs and VOCIGs.

cig-gen-v6
Geometry of the three different kinds of offset-domain
(horizontal, vertical and geological-dip)
CIG for a single event
migrated with the wrong velocity.
Figure 2 I_{xh} is
the horizontal-offset image point,
I_{zh} is
the vertical-offset image point,
and
I is
the geological-dip offset image point.
_{0} |

7/8/2003