next up previous print clean
Next: About this document ... Up: Curry: Iteratively re-weighted least-squares Previous: CONCLUSIONS

REFERENCES

Abma, R., 1995, Least-squares separation of signal and noise with multidimensional filters: Ph.D. thesis, Stanford University.

Brown, M., 2002, Conjugate gradient total least-squares in geophysical optimization problems: SEP-112, 161-170.

Chemingui, N., 1999, Imaging irregularly sampled 3D prestacked data: Ph.D. thesis, Stanford University.

Claerbout, J. F., and Muir, F., 1973, Robust modeling with erratic data: Geophysics, 38, 820-844.

Claerbout, J. F., 1992, Earth Soundings Analysis: Processing Versus Inversion: Blackwell Scientific Publications.

Claerbout, J. F., 1993, 3-D local monoplane annihilator: SEP-77, 19-25.

Claerbout, J., 1999, Geophysical estimation by example: Environmental soundings image enhancement: Stanford Exploration Project, http://sepwww.stanford.edu/sep/prof/.

Crawley, S., 2000, Seismic trace interpolation with nonstationary prediction-error filters: Ph.D. thesis, Stanford University.

Curry, W., and Brown, M., 2001, A new multiscale prediction-error filter for sparse data interpolation: SEP-110, 113-122.

Curry, W., 2002, Non-stationary, multi-scale prediction-error filters and irregularly sampled data: SEP-111, 327-337.

Darche, G., 1989, Iterative l1 deconvolution: SEP-61, 281-301.

Fomel, S., and Claerbout, J., 1995, Searching the sea of Galilee: SEP-84, 259-270.

Fomel, S., 2001, Three-dimensional seismic data regularization: Ph.D. thesis, Stanford University.

Guitton, A., 2000, Huber solver versus IRLS algorithm for quasi L1 inversion: SEP-103, 255-271.

Guitton, A., 2003, Multiple attenuation with multidimensional prediction-error filters: SEP-113, 57-74.

NabelekJ., X.-Q. L. S. A. J. B. A. F. B. L. A. M. T., and Zandt, G., 1993, A high-resolution image of the cascadia subduction zone from teleseismic converted phases recorded by a broadband seismic array: Eos Trans. AGU, 74(43), 431.

Scales, J. A., and Gersztenkorn, A., 1988, Robust methods in inverse theory: Inverse Problems, 4, 1071-1091.

Schonewille, M., 2000, Fourier reconstruction of irregularly sampled seismic data: Ph.d. thesis: Delft University of Technology.

Shragge, J., 2003, Phase-shift migration of approximate zero-offset teleseismic data: SEP-113, 145-156.

Spitz, S., 1991, Seismic trace interpolation in the f-x domain: Seismic trace interpolation in the f-x domain:, Soc. of Expl. Geophys., Geophysics, 785-794.

Vlad, I., and Biondi, B., 2001, Effective AMO implementation in the log-stretch, frequency-wavenumber domain: SEP-110, 63-70.

 



Stanford Exploration Project
7/8/2003