next up previous print clean
Next: About this document ... Up: Guitton: Multiple attenuation Previous: Acknowledgments

REFERENCES

Abma, R., 1995, Least-squares separation of signal and noise with multidimensional filters: Ph.D. thesis, Stanford University.

Berkhout, A. J., and Verschuur, D. J., 1997, Estimation of multiple scattering by iterative inversion, Part I: Theoretical considerations: Geophysics, 62, no. 05, 1586-1595.

Brown, M., and Clapp, R., 2000, T-x domain, pattern-based ground-roll removal: 70th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2103-2106.

Brown, M., 2003, Prestack time imaging operator for 2-D and 3-D pegleg multiples over nonflat geology: SEP-113, 85-96.

Broyden, C. G., 1969, A new double-rank minimization algorithm: AMS Notices, 16, 670.

Claerbout, J., and Fomel, S., 2001, Geophysical Estimation by Example: Class notes, http://sepwww.stanford.edu/sep/prof/index.html.

Claerbout, J., 1998, Multidimensional recursive filters via a helix: Geophysics, 63, no. 05, 1532-1541.

Crawley, S., 2000, Seismic trace interpolation with nonstationary prediction-error filters: SEP-104.

Dragoset, W. H., and Jericevic, Z., 1998, Some remarks on surface multiple attenuation: Geophysics, 63, no. 02s, 772-789.

Fletcher, R., 1970, A new approach to variable metric methods: Comput. J., 13, 317-322.

Foster, D. J., and Mosher, C. C., 1992, Suppression of multiple reflections using the Radon transform: Geophysics, 57, no. 03, 386-395.

Goldfarb, D., 1970, A family of variable metric methods derived by variational means: Math. Comp., 24, 23-26.

Guitton, A., and Cambois, G., 1998, Prestack elimination of complex multiples: A Gulf of Mexico subsalt example: 68th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 1329-1332.

Guitton, A., and Symes, W., 1999, Robust and stable velocity analysis using the Huber function: 69th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 1166-1169.

Guitton, A., and Verschuur, E., 2002, Adaptive subtraction of multiples with the ${\ell^1}$-norm: SEP-111, 157-171.

Guitton, A., Brown, M., Rickett, J., and Clapp, R., 2001a, Multiple attenuation using a t-x pattern-based subtraction method: 71st Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 1305-1308.

Guitton, A., Brown, M., Rickett, J., and Clapp, R., 2001b, A pattern-based technique for ground-roll and multiple attenuation: SEP-108, 249-274.

Guitton, A., 2003, Multiple attenuation with multidimensional prediction-error filters: SEP-113, 57-74.

Haines, S., Guitton, A., and Sava, P., 2003, Multiple suppression in the angle domain with non-stationary prediction-error filters: SEP-113, 45-56.

Kostov, C., and Nichols, D., 1995, Moveout-discriminating adaptive subtraction of multiples: 65th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 1464-1467.

Lumley, D. E., Nichols, D., and Rekdal, T., 1995, Amplitude-preserved multiple suppression: 65th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 1460-1463.

Manin, M., and Spitz, S., 1995, 3D attenuation of targeted multiples with a pattern recognition technique: 57th Mtg., Eur. Assn. Expl. Geophys., Expanded Abstracts, Session:B046.

Matson, K. H., Paschal, D., and Weglein, A. B., 1999, A comparison of three multiple-attenuation methods applied to a hard water-bottom data set: The Leading Edge, 18, no. 1, 120-126.

Mersereau, R. M., and Dudgeon, D. E., 1974, The Representation of Two-Dimensional Sequences as One-Dimensional Sequences: IEEE Trans. Acoust., Speech, Signal Processing, 22, no. 5, 320-325.

Nocedal, J., 1980, Updating quasi-Newton matrices with limited storage: Mathematics of Computation, 95, 339-353.

Rickett, J., Guitton, A., and Gratwick, D., 2001, Adaptive Multiple Subtraction with Non-Stationary Helical Shaping Filters: 63rd Mtg., Eur. Assn. Geosci. Eng., Expanded Abstracts, Session: P167.

Robinson, E. A., and Treitel, S., 1980, Geophysical signal analysis: Prentice-Hall, Inc.

Sacchi, M. D., and Ulrych, T. J., 1995, High-resolution velocity gathers and offset space reconstruction: Geophysics, 60, no. 04, 1169-1177.

Sava, P., and Guitton, A., 2003, Multiple attenuation in the image space: SEP-113, 31-44.

Shanno, D. F., 1970, Conditioning of quasi-Newton methods for function minimization: Math. Comp., 24, 647-657.

Soubaras, R., 2001, Dispersive noise attenuation for converted wave data: 71st Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 802-805.

Spitz, S., 1999, Pattern recognition, spatial predictability, and subtraction of multiple events: The Leading Edge, 18, no. 1, 55-58.

Thorson, J. R., and Claerbout, J. F., 1985, Velocity stack and slant stochastic inversion: Geophysics, 50, no. 12, 2727-2741.

Verschuur, D. J., and Berkhout, A. J., 1997, Estimation of multiple scattering by iterative inversion, Part II: Practical aspects and examples: Geophysics, 62, no. 05, 1596-1611.

Verschuur, D. J., and Kelamis, P. G., 1997, Surface-related multiple elimination on 3-D land data: 67th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 1383-1386.

Verschuur, D. J., Berkhout, A. J., and Wapenaar, C. P. A., 1992, Adaptive surface-related multiple elimination: Geophysics, 57, no. 09, 1166-1177.

Wang, Y., and Levin, S. A., 1994, An investigation into eliminating surface multiples: SEP-80, 589-602.

Weglein, A. B., Gasparotto, F. A. F., Carvalho, P. M., and Stolt, R. H., 1997, An inverse-scattering series method for attenuating multiples in seismic reflection data: Geophysics, 62, no. 06, 1975-1989.

 



Stanford Exploration Project
7/8/2003