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Descartes’ Rule of Signs states that the number of positive roots of a
polynomial p(x) with real coefficients does not exceed the number of sign
changes of the nonzero coefficients of p(x). More precisely, the number of
sign changes minus the number of positive roots is a multiple of two.

Back in high school, I was introduced to Descartes’ Rule of Signs as a
mysterious, almost magical, aid in polynomial root finding and factoring—
an otherwise tedious occupation when computers were unheard of in the
classroom. Even today Descartes’ Rule continues to be of interest to both
mathematicians and computer scientists [2].

Descartes’ Rule is plausible when we consider that each power of x dom-
inates in a different region of x > 0. When x is very large, then the highest
power of x in p(x), say xn, dominates and the sign of p(x) is that of the
leading coefficient pn. When x is very small, then the lowest power of x,
typically x0, rules. As we move along from the origin, each successive power
of x comes into play. If the sign of the coefficient of the new power of x does
not change, then the function continues the trend set by the previous power,
trending towards negative values if the coefficient is negative or positive val-
ues if the coefficient is positive. If there is to be a zero crossing, then there
needs to be a sign change. If there is a sign change but there isn’t a zero
crossing, then we must have turned away from the x axis due to another sign
change and will need to switch signs again to head back towards the x axis.
This explains why signs need to be dropped in pairs when counting roots.

∗stew @ sep.stanford.edu
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A Simple Example — Three Terms

A concrete example helps illustrate these ideas nicely:

Lemma 1 For arbitrary powers n > m > 0, examples of polynomials of the
form 1− axm + bxn with real coefficients having 0, 1, or 2 positive roots are
given by the following table1

Coefficient Number of
Inequalities Positive Roots

i) a < 0 , b > 0 0
ii) b < 0 1
iii) min(b, 1) > a > 0 0
iv) a− 1 > b > 0 2

.

Proof. i) is immediate since all terms are positive. For ii) we rewrite the
equation

1− axm + bxn = 0

with b < 0 as
|b|xn−m = x−m − a

and notice that the left hand side continually increases and the right hand
side continually decreases in x > 0 so that there is at most one positive root.
As x nears 0, the left hand side approaches zero and the right hand side is
arbitrarily large. As 1/x nears 0, the right hand side approaches −a and the
left hand side is arbitrarily large. Therefore, by continuity, the two curves
cross in x > 0 and there is exactly one root.
For iii) and iv), where a > 0 and b > 0, we write

1 =
1

a
x−m +

b

a
xn−m

and note that x−m is greater than 1 and xn−m is less than 1 for 0 < x < 1
while the opposite it true for x > 1. In particular if both coefficient ratios
are greater than 1, i.e. condition iii), then the equality cannot be satisfied
for x > 0. On the other hand if the coefficient ratios are positive but sum
to less than 1, i.e. condition iv), then the right hand side is less than 1 for
x = 1 and, as before, greater than 1 for both x approaching 0 and∞ and so

1Appendix A derives exact conditions, not just the sufficient conditions given here.
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has at least two positive roots, one less than 1 and one greater than 1. To
see that there are no more than two roots, let y = xm. Then the equation
becomes

b y
n
m = ay − 1

that is, the intersection of a line with the strictly convex function y
n
m which

can occur at most two times.
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b y
n
m

ay − 1

Hence these are the only two positive roots.2

Descartes’ Rule

Despite its intuitive plausibility, Descartes’ Rule of Signs was not directly
proven until over a century after its original statement3 in 1637 [3]. In this

2Technically, one should prove that this function is strictly convex. This follows, by a
marvelous elementary demonstration [8] too long to fit in this footnote (c.f. Appendix A),
from the ancient result that the arithmetic mean of positive numbers is strictly greater
than their geometric mean except when all the numbers are equal. However, Corollary 5
will independently show that no polynomial with more than 2 positive roots can have only
three nonzero terms.

3Isaac Newton restated the theorem in 1707, but apparently considered it too obvious to
merit proof. DeGua is generally considered the first mathematician to publish an adequate
proof in 1740.
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exposition I reacquaint the mathematical public with the proof by elemen-
tary means first presented by the Prince of Mathematicians, Carl Friedrich
Gauss [6]. I believe the following development is very clean and accessible,
capturing the essence of Gauss’ insight without obscuring it in unnecessary
formalism4. I then enhance Gauss’ proof with the addition of parity as noted
in Dickson [4, §67] or Albert [1]. Finally I resolve some questions about
Descartes’ Rule left open in a recent Monthly article [2].

Although the actual proof of Descartes’ Rule is brief—Lemma 2 and The-
orem 2 cover less than a page—it is instructive to warm up to some special
cases, starting with all positive or all negative roots.

Remark 1 We may take the leading coefficient pn of p(x) to be unity without
loss of generality.

Multiplying or dividing p(x) by any nonzero real number affects neither the
location and number of sign changes in its coefficients nor the location and
number of its roots. We will continue to employ the symbol pn when it will
simplify notation.

Remark 2 We can safely assume the constant term p0 is nonzero, i.e. the
polynomial has no zero roots.

Removing any common factors of x does not change the number of positive
(or negative) roots, just the number of zero roots.

Proposition 1 If all the coefficients of p(x) are positive, then p(x) has no
positive roots.

Proof. If all the coefficients are positive, p(x) is a sum of positive terms for
any x > 0 and so cannot equal zero there.

Corollary 1 If all the coefficients of p(x) are nonzero and alternate in sign,
then p(x) has no negative roots.

Proof. p0 · p(−x)/| p0| has all positive coefficients, hence Proposition 1 ap-
plies. Therefore −x is not positive and x is not negative at a root5.

4Admittedly I had not seen that work before I came up with this version of the proof . . .
5The reader should note that the substitution of −x to deal with negative roots would

not have simply changed every other coefficient sign if some of the polynomial coefficients
were zero. In such cases, the signs are flipped only if an even number (including zero) of
consecutive coefficients are missing; c.f. Corollary 7.
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Proposition 2 If a polynomial p(x) of degree n has n positive roots, then its
coefficients are all nonzero and the signs of the coefficients of p(x) alternate.

Proof. We proceed by induction on n. For n = 0 there are no roots and
no sign changes. For n = 1, there is one sign alternation and the coefficients
of p1x− p0 are nonzero. Suppose now that n > 1 and the proposition holds
for polynomials of degree up to n− 1 and consider a polynomial of degree n
having n positive roots. By induction it may be written as the product

(x− α)
n−1∑
j=0

(−1)n−1−jpjx
j

with α and all pj positive. Expanding, we get

(−1)nαp0 +
n−1∑
j=1

[(−1)n−jαpj + (−1)n−j−2pj−1]x
j + pn−1x

n

= (−1)nαp0 +
n−1∑
j=1

(−1)n−j(αpj + pj−1)x
j + pn−1x

n

which also has nonzero coefficients with alternating signs.

Corollary 2 If a polynomial of degree n has n negative roots, then its coef-
ficients are all nonzero and the signs of the coefficients of p(x) all agree.

Proof. Apply the previous proposition to (−1)np(−x).6

The previous observations yielded somewhat stronger results for the spe-
cial cases of all positive and all negative roots.

We next show that if there is exactly one sign change in the coefficients,
there is at least one positive root. As Dickson [4, §22] notes, this follows
directly from a result due to Lagrange7:

Theorem 1 If in p(x) the first negative coefficient is preceded by k coeffi-
cients which are positive or zero, and if G denotes the greatest of the mag-
nitudes of the negative coefficients, then p(x) is always positive for x ≥
1 + k

√
G/pn and so all real roots are less than that value.

6While it’s shorter to trivially prove this corollary directly and apply it to (−1)np(−x)
to prove Proposition 2, we will later find the present induction argument useful.

7This derivation is even more direct than Dickson’s.
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Proof. We zero out all but the first of the leading k nonnegative coefficients
and replace all following coefficients with −G. Then for x > 1 we have

p(x) ≥ pnx
n −G

n−k∑
j=0

xj

> pnx
k−1(xn−k+1 − 1)−Gx

n−k+1 − 1

x− 1

>
xn−k+1 − 1

x− 1
(pn(x− 1)k −G)

Thus p(x) is positive for x− 1 ≥ k

√
G/pn and all real roots must be less than

1 + k

√
G/pn.

Theorem 1 confirms much of our intuition about the dominance of certain
powers of x in certain ranges of x > 0. In particular:

Corollary 3 For all sufficiently large x > 0, the sign of a polynomial matches
the sign of its leading coefficient.

Proof. Divide the polynomial by its leading coefficient. Either all coefficients
are positive and the result is immediate or some later coefficient is negative
and Theorem 1 applies.

Corollary 4 For all sufficiently small x > 0, the sign of a polynomial p(x)
matches the sign of its trailing coefficient.

Proof. Apply Corollary 3 to xnp(1/x).

Returning from our small digression, we now show that

Proposition 3 If there is one sign change in the coefficients of p(x), then
it has at least one positive root.

Proof. By our hypothesis, p(0) = p0 < 0. On the other hand, Theorem 1
says p(x) is positive for sufficiently large x. Therefore, by continuity, p(x) = 0
for some x > 0.
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Using an argument from the days before calculus was invented, we now
show that there is exactly one positive root if there is one sign change8. We
start with a simple observation about the function

∑k−1
j=0 x

j :

Observation 1 Let φ0(x) = 0, φk(x) = φk−1(x)+xk−1 for k = 1, . . . . Then
φk(x) satisfies the three relations:

• φk(1) = k,

• φk(y) ≥ φk(x) for y ≥ x ≥ 1, and

• φm(x) ≥ φk(x) for m ≥ k when x ≥ 0.

Proposition 4 If there is one sign change in the coefficients of p(x), then
it has exactly one positive root.

Proof. By Proposition 3, there is at least one positive root. Let α > 0
be the smallest and form the polynomial p̂(x) = α−np(αx). The coefficients
of this new polynomial have the same signs as the original and the smallest
positive root is shifted to x = 1. We now show that p̂ is positive for x > 1
and that x = 1 is a simple root.

Splitting the positive and negative terms out, we write p̂(x) = q(x)−r(x),
where the coefficients of q and r are nonnegative, and let k be as in Theorem 1
so that q has k coefficients. Factoring we have

p̂(x) = p̂(x)− p̂(1)

=
n∑

j=n−k+1

qj(x
j − 1)−

n−k∑
j=0

rj(x
j − 1)

= (x− 1)

 n∑
j=n−k+1

qjφj(x)−
n−k∑
j=0

rjφj(x)


= (x− 1)s(x) .

Note that the j = 0 term in the second term is identically zero. Writing
0 = r0 − r0, we now show that s(x) is positive for x ≥ 1, and thus x = 1 is a

8Dickson [4, §67, problem 9] outlines a related approach which ignores the possibility
of a repeated root.
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simple root and p̂(x) is positive for x > 1.

s(x) ≥ φn−k+1(x)

r0 +
n∑

j=n−k+1

qj −
n−k∑
j=0

rj


≥ φn−k+1(1) [r0 + p̂(1)]

= (n− k + 1) · r0

> 0 .

We conclude therefore that p̂(x) and hence p(x) has exactly one positive
root.

Looking back, Propositions 1, 3 and 4 made Descartes-like statements
about the number and location of roots given information about the signs of
coefficients and were proven along the lines suggested by our initial plausibil-
ity arguments. When multiple coefficient sign changes arise, the number of
possibilities grows combinatorially, making direct analysis by such methods
quite daunting. Interestingly, our one result in the opposite direction, taking
roots and making statements about coefficients (Proposition 2), was proven
using a very different argument that foreshadows Lemma 2:

Lemma 2 If a polynomial q(x) with real coefficients exhibits m sign changes,
then for any α > 0, the polynomial p(x) = (x−α)q(x) exhibits at least m+1
sign changes.

Proof. Let the degree of q(x) be n. Then forming p(x) = (x−α)q(x) we get

p(x) = −αq0 +
n∑
j=1

(qj−1 − αqj)xj + qnx
n+1

This says that pn+1 = qn (= 1) and hence has the same sign. Furthermore,
as we scan from j = n down to j = 1 we have that at every sign transition
between qj and qj−1 the value of pj = qj−1 − αqj has the same sign as qj−1.
Thus, starting with pn+1, there is a subsequence of pj, call it pjk , that has the
same coefficient signs as the corresponding subsequence qjk−1 of coefficients
of q(x). Since the number of sign changes in the full sequence pj is no less
than the number of sign changes in any subsequence, we have accounted for
at least m sign changes in p(x). Finally, p0 has a sign opposite to that of q0
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and hence opposite to that of pjm . Therefore p(x) has at least m + 1 sign
changes.9

Corollary 5 A polynomial with m positive roots has more than m nonzero
coefficients.

Proof. By Lemma 2 there are at least m sign changes in the coefficients of
a polynomial with m positive roots, hence at least m+ 1 coefficients for the
sign changes to occur between.

Theorem 2 [ Descartes’ Rule of Signs—I ] The number of positive roots of
a polynomial p(x) with real coefficients does not exceed the number of sign
changes of its coefficients. A zero coefficient is not counted as a sign change.

Proof. We proceed by induction on the number of positive roots of p(x).
If p(x) has no positive roots, the result is immediate. Suppose now that it
holds true for less than k positive roots and that we have a polynomial p(x)
with k positive roots. Then for any root α > 0,

p(x) = (x− α)q(x)

for some polynomial q(x) with k−1 positive roots. By induction, q(x) has at
least k−1 sign changes. Therefore, by Lemma 2, p(x) has at least (k−1)+1
= k sign changes.

To show further that the difference between the number of sign changes
and the numbers of roots is even, we employ a pretty observation on parity:

Proposition 5 [ Parity ] The parity, i.e. the remainder upon division by 2,
of the number of sign changes in a sequence of nonzero real numbers sj,
j = 0, . . . , n is equal to the number of sign changes in the two element
subsequence s0 sn.

Proof. Let σj be the sign of sj. Then the ratio σj/σj+1 is −1 at each sign
change and 1 otherwise. Therefore

(−1)# sign changes =
j=n−1∏
j=0

σj
σj+1

=
σ0

σn

9For infinite series one does not necessarily increase the number of sign changes, but
the number does not decrease. If the series converges at x = α, however, the number of
sign changes does increase. [10]
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which says that difference in the number of sign changes in the whole sequence
and the number of sign changes (i.e. 0 or 1) in the subsequence s0 sn is even.

Using this result, we can immediately expand Lemma 2 to reflect that any
additional sign changes must come in pairs between existing sign changes:

Lemma 3 If a polynomial q(x) with real coefficients exhibits m sign changes,
then for any α > 0, the polynomial p(x) = (x − α)q(x) exhibits m + 1 + 2l
sign changes for some integer l ≥ 0.

Finally, when we include parity in Descartes’ Rule, the n = 0 case of the
induction is no longer immediate, but is, fortunately, readily established:

Proposition 6 If p(x) has no positive roots then its coefficients have an
even number of sign changes.

Proof. Since pn is positive, by parity we need only show p0 is also positive.
Suppose it is negative. Then p(0) is negative. By Theorem 1, p(x) is positive
for sufficiently large x, so p(x) is zero for some x > 0, contradicting the
hypothesis that p(x) has no positive roots.

Theorem 3 [ Descartes’ Rule of Signs—II ] The number of positive roots of
a polynomial p(x) with real coefficients does not exceed the number of sign
changes of its coefficients and differs from it by a multiple of two. A zero
coefficient is not counted as a sign change.

For the record, Propositions 1 and 4 are one-liners:

Corollary 6 If all the coefficients of p(x) are positive, then p(x) has no
positive roots. If there is one sign change in the coefficients of p(x), then it
has at exactly one positive root.

Proof. 0 is the only nonnegative even number ≤ 0 and 1 is the only non-
negative odd number ≤ 1.

To find out about negative roots, we look at the sign changes in p(−x).
In terms of of p(x) itself, sign changes in p(−x) correspond to one of two sign
behaviors:

• No sign change (a sign series or permanence) between powers of x
separated by an even number, including zero, of missing terms, or
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• A sign change between powers of x separated by an odd number of
missing terms.

Corollary 7 The number of negative roots of p(x) does not exceed the num-
ber of sign series separated by an even number of missing terms added to the
number of sign changes separated by an odd number of missing terms in p(x).
Furthermore, the difference is an even number.

Corollary 8 The number of complex roots10 of p(x) exceeds by a nonnegative
even integer the number of missing terms plus the number of sign series
separated by an odd number of terms less the number of sign changes separated
by an odd number of missing terms.

The proof of this last corollary, also from Gauss [6], is left to the reader.

Going the Other Way

Quite recently this Monthly [2] addressed the question of whether given any
particular sign sequence all positive root combinations allowed by Descartes’
Rule were possible. With the stipulation that all coefficients be nonzero, the
answer given was yes. Left open was the question of whether their theorem
holds in the presence of missing terms. Grabiner [7] proves that the extension
to missing coefficients is possible by a very pretty direct construction of such
polynomials11.

In this section, we will shortly develop, and later generalize, an elementary
inductive proof of this extension, first tackling the easier question of whether
given any particular list of powers of x there are examples of polynomials
with those nonzero terms that have any given numbers of positive roots and
sign changes allowable by Theorem 3. We can show this is the case using our
original simple three term constructions:

Theorem 4 Given any specified sequence of exponents 0 = m0 < m1 <
. . . < mn, there exist polynomials p0xm0 + p1xm1 . . . + pnxmn whose number

10As per Remark 2 we assume we have previously factored out all zero roots. Drucker
[5] provides a variant formula that includes the number of zero roots.

11Laguerre [9] has shown that Descartes’ Rule holds for arbitrary real exponents of x,
positive or negative, rational or irrational, which would suggest that the “missing terms”
result holds in this more general setting and this is indeed the case.
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of positive roots equals the upper bound given by Descartes’ Rule of Signs.
Furthermore there also exist such polynomials having a (nonnegative) number
of positive roots differing from this upper bound by every possible multiple of
two.

Proof. We proceed by induction and show how to construct suitable exam-
ples featuring only simple (or no) positive roots. The first problem here is to
figure out what to induct on. The degree of the polynomial? The number of
nonzero coefficients? The trick is to induct on the number of sign changes,
N ≤ n, and, because of parity, to work even and odd numbers separately.
For N = 0 and N = 1 the result follows immediately from Propositions 1
and 4. Suppose now that the theorem holds for N = k− 2 ≤ n− 2. We now
construct polynomials with the desired n nonzero coefficients having k sign
changes and either 0 or 2 additional roots.

By hypothesis, there is a polynomial

q(x) =
n−2∑
j=0

qjx
mn−2−mj

having k− 2 sign changes and n− 1 nonzero coefficients, where we may take
the constant term qn−2 to have the value 1. We now write the polynomial

p(x) = bxmn − axmn−1 + xmn−2q
(
α

x

)
= xmn−2

[
(bxn1 − axn2) + q

(
α

x

)]
with k sign changes, where a, b and α are to-be-chosen positive numbers and
the integers n1 = mn −mn−2 and n2 = mn−1 −mn−2 satisfy n1 > n2 > 0.

If the positive roots of q(x) are greater than x1, then the roots of q(α/x) lie
strictly between 0 and α/x1. By taking α sufficiently small, we can guarantee
two key conditions hold:

• bxn1 − axn2 is as small as we please within some larger range, say for
x ≤ x2 with all the positive roots (if any) of bxn1 − axn2 + 1 greater
than x2, and

• the slope of q(α/x) at its (simple) zeros is as large as we please.

This ensures that p(x) has the same number of roots as q for x ≤ x2. (For
the purposes of exposition, I omit some technical continuity and finiteness
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arguments. Appendix A contains elementary machinery to fill in the details
without calculus.)

-

α
x1

x2

6

?

bxn1 − axn2

q
(
α

x

)

Similarly, substituting x̂ = α/x and possibly making α even smaller,
we interchange the roles of bxn1 − axn2 and q and can ensure that p(x) and
bxn1−axn2 +1 have the same number of roots for x ≥ x2 which, by Lemma 1,
can be made to number either 0 or 2.

The argument we have employed to construct new roots without destroy-
ing existing roots is a special case of a more general (ancient) lemma whose
proof is left to the interested reader:

Lemma 4 Let p(x) be a polynomial of degree m with p(0) = 1 having only
simple real roots with M+ of them positive and M− of them negative. Let
q(x) be a polynomial of degree n with leading coefficient 1 having only simple
real roots with N+ of them positive and N− of them negative. Then the
polynomial

xn(p(x)− 1) + xnq
(
α

x

)
has exactly M+ + N+ positive roots and M− + N− negative roots for suffi-
ciently small α and these real roots are all simple.

We now generalize Lemma 1 a bit so that the approach used to prove the
last theorem allows us to specify the exact sequence of coefficient signs, not
just the number of sign changes:
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Lemma 5 The coefficients of a polynomial with exactly two sign changes
can be modified without changing its coefficient signs to produce two other
polynomials, one with zero and the other with two positive roots.

Proof. Taking the leading coefficient to be 1 as before, write the given
polynomial p(x) as

p(x) = xnq(x)− xmr(x) + s(x)

where the coefficients of q, r and s are positive and n and m are the appro-
priate positive integers. We note (c.f. Corollary 3 and 4) that p(x) is positive
for all sufficiently small and all sufficiently large positive x. Choose any two
arbitrary positive values x1 < x2. Then

min
x1≤x≤x2

[xnq(x) + s(x)] = xn1q(x1) + s(x1) , and

max
x1≤x≤x2

[xnq(x) + s(x)] = xn2q(x2) + s(x2) .

We now construct the polynomial

xnq(x) − γxmr(x) + s(x)

and adjust the parameter γ > 0 to ensure either 0 or 2 roots respectively.
Since

min
x1≤x≤x2

[xmr(x)] = xm1 r(x1) , and

max
x1≤x≤x2

[xmr(x)] = xm2 r(x2) ,

the ratio of xnq(x) + s(x) to xmr(x) satisfies

min
x1≤x≤x2

xnq(x) + s(x)

xmr(x)
≥ xn1q(x1) + s(x1)

xm2 r(x2)
, and

max
x1≤x≤x2

xnq(x) + s(x)

xmr(x)
≤ xn2q(x2) + s(x2)

xm1 r(x1)
.

Therefore the following choices for γ

Number of
γ Positive Roots

a) 1
2

xn1q(x1) + s(x1)

xm2 r(x2)
0

b) 2
xn2q(x2) + s(x2)

xm1 r(x1)
2
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meet our need. If p originally had 2 positive roots, then let x1 and x2 be their
locations. Using choice a) above for γ shifts p upwards everywhere in x > 0
and makes it also now positive in x1 ≤ x ≤ x2, eliminating the two roots. On
the other hand, if p originally had no positive roots, choose any convenient
x1 and x2 and choice b) above for γ shifts p downwards everywhere in x > 0
and makes both p(x1) and p(x2) negative, ensuring p has two positive roots.

Theorem 5 Given any specified sequence of coefficient signs, σ0, . . . , σn
and corresponding exponents 0 = m0 < m1 < . . . < mn, there exist poly-
nomials p0xm0 + p1xm1 . . . + pnxmn whose number of roots equals the upper
bound given by Descartes’ Rule of Signs. Furthermore there also exists such
polynomials having a (nonnegative) number of positive roots differing from
this upper bound by every possible multiple of two.

Proof. We again proceed by induction on the number of sign changes,
N ≤ n. As before, for N = 0 and N = 1 the result follows immediately
from Corollary 6. Suppose now that the theorem holds for N ≤ l − 2 and
let p(x) be a polynomial with the given exponents and l ≥ 2 prescribed sign
changes.

Since p(x) has at least 2 sign changes, we can split off the first two sign
changes and write

p(x) = xk1q(x) − xk2r(x) + s(x)

where the coefficients of q and r are positive. Writing

s(x) =
k∑
j=0

sjx
mj ,

by induction there is a corresponding polynomial ŝ taking the form

ŝ(x) =
k∑
j=0

sjx
k−mj

having l− 2 sign changes and any number of allowable roots with its leading
coefficient sk positive.

By Lemma 5 the polynomial

xk1q(x)− γxk2r(x) + sk
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can be made to have either zero or two positive roots simply by adjusting
γ > 0 appropriately. Thus, using Lemma 4, we may construct a polynomial

p̂(x) = xk1q(x)− γxk2r(x) + xkŝ
(
α

x

)
for which we may make α sufficiently small so as to both preserve the number
of roots from s and add to that the 0 or 2 additional roots determined by
selection of γ.

In addition to the question we have just reanswered affirmatively of
whether missing terms are allowable, the Monthly article [2] concludes with
the question: Given a sign sequence (which may include some zeros), do there
exist polynomials containing positive and negative roots numbering each of the
possible combinations allowed by Descartes’ Rule of Signs?

In general, the answer is no and Grabiner [7] provides nice quartic coun-
terexamples. However, when there are no missing terms, which we’ll term
a complete polynomial, we can extend Theorem 4. We start with a simple
observation:

Proposition 7 When a polynomial p(x) is complete, then any sign change
in p(x) is not a sign change in p(−x) and vice versa.

Proof. Let any two consecutive terms be axm and bxm−1. Substituting
−x transforms them into (−1)maxm and (−1)m−1bxm−1. The ratio of the
coefficients signs σm/σm−1 thus transforms to −σm/σm−1 demonstrating the
result.

Corollary 9 The sum of the number of sign changes in p(x) and the number
of sign changes in p(−x) is n for a complete polynomial of degree n.

Theorem 6 For any specified number of coefficient sign changes, there exist
complete polynomials having any possible combination of numbers of positive
and negative roots allowable by Descartes’ Rule of Signs.

Proof. We mimic Theorem 4 by inducting on the number of sign changes
N . Because we must worry about an indefinite number of negative roots, the
cases N = 0 and N = 1 are not trivial. Fortunately, Theorem 4 guarantees
examples of p(x) with all permissible combinations of negative roots and
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Corollary 6 guarantees that any such example must have exactly 0 or 1
positive root respectively. Therefore the theorem is true for these initial
cases.

Having established these initial cases, following the induction on the num-
ber of sign changes from k− 2→ k in Theorem 4 is clear sailing. By adding
two consecutive leading sign changes, with 0 or 2 accompanying positive
roots, Proposition 7 guarantees we add no further sign changes to p(−x) and
hence introduce no new possible combinations of the numbers of signs and
negative roots. Thus we can construct a polynomial withN = k sign changes
and which has any allowable numbers of positive and negative roots.
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APPENDIX—Elementary Convexity

The following arguments are adapted from Korovkin [8].

Theorem A If the product of n positive numbers equals 1 their sum is not
less than n. Furthermore equality holds only when all the numbers are equal
to 1.

Proof. We proceed by induction. The case n = 1 is immediate. Suppose
now that it holds for all n ≤ k and consider the product of k + 1 positive
numbers12

x1x2 . . . xkxk+1 = 1 .

Two cases may arise:

• All the numbers are identical, i.e.

x1 = x2 = . . . = xk = xk+1 , or

• Some factors are different.

In the first case all the terms are equal to 1 and their sum is k + 1.

In the second case at least one of the terms is less than 1 and one greater
than 1. After suitable renumbering, we may suppose that x1 < 1 and
xk+1 > 1. Putting y1 = x1xk+1 we have

y1x2 . . . xk = 1 .

By our induction hypothesis, we have

y1 + x2 + . . . + xk ≥ k .

But

x1 + x2 + . . . + xk + xk+1

= (y1 + x2 + . . . + xk) + xk+1 − y1 + x1

≥ (k + 1) + xk+1 − y1 + x1 − 1

= (k + 1) + (xk+1 − 1)(1− x1) ,

12The famous classical proof of this result by Cauchy is done using induction from
n → 2n. The interested reader should easily reconstruct that proof after understanding
the present one.
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remembering that y1 = x1xk+1. As x1 < 1 and xk+1 > 1, the product
(xk+1 − 1)(1− x1) is positive and so

x1 + x2 + . . . + xk + xk+1 > k + 1 ,

proving Theorem A.

Recalling the definitions of the geometric mean

G = n
√
x1x2 . . . xn

and the arithmetic mean

A =
x1 + x2 + . . . + xn

n
,

we now show

Theorem B The geometric mean of positive numbers is not greater than the
arithmetic mean of the same numbers and equality holds only when all the
numbers are equal.

Proof. From the definition of G we have
x1

G
x2

G . . .
xn
G = 1

and hence by Theorem A

x1

G +
x2

G + . . . +
xn
G ≥ n .

Multiplying both sides by G and dividing by n we have

A =
x1 + x2 + . . . + xn

n
≥ G

with equality holding only when all the xj’s are equal.

We now use this inequality to study (1 + x)α.

Theorem C For rational α and x ≥ −1 if 0 < α < 1, then

(1 + x)α ≤ 1 + αx .

But if α > 1,
(1 + x)α ≥ 1 + αx .
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Proof. Write α = m
n . If 1 ≤ m < n, then using Theorem B we have

(1 + x)α = n
√

(1 + x)m · 1n−m

≤ m(1 + x) + (n−m) · 1
n

= 1 +
m

n
x = 1 + αx

with equality holding only when x = 0, proving the first part of the theorem.
For the second part, let α > 1. If 1 + αx < 0 the inequality is immediate

as (1 + x)α is nonnegative. For 1 + αx ≥ 0, that is αx ≥ −1, the first part
of the theorem gives us

(1 + αx)
1
α ≤ 1 +

1

α
αx = 1 + x .

Raising both sides to the power α we obtain

1 + αx ≤ (1 + x)α

with equality holding only for x = 0.

We note that the second inequality applies for α < 0, but we will not need
that for the main result that follows:

Theorem D Let y > x > 0 and α be rational and greater than 1. Then for
0 < λ < 1 we have

λxα + (1− λ)yα > (λx+ (1− λ)y)α .

Proof. We divide the left hand side by the right hand side and show the
result, R, is greater than 1:

λxα + (1− λ)yα

(λx+ (1− λ)y)α
= λ

(
x

λx+ (1− λ)y

)α
+ (1− λ)

(
y

λx+ (1− λ)y

)α
= λ dα1 + (1− λ) dα2

where we note λd1 + (1− λ)d2 = 1 and both d1 and d2 are positive. Writing

d1 = 1 +
z1

λ

d2 = 1 +
z2

1− λ ,
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we have
z1 + z2 = λ(d1 − 1) + (1− λ)(d2 − 1) = 0 .

Invoking Theorem C, we can write

R > λ(1 + α
z1

λ
) + (1− λ)(1 + α

z2

1− λ) = 1 + α(z1 + z2) = 1 ,

completing the proof.

From Theorem C, we can precisely determine the tangent line to y = x
n
m

and sharpen Lemma 1.

Lemma A Let α > 1 be rational. Then the tangent line to y = xα at
x = x0 ≥ 0 is given by the formula

y = xα0 + αxα−1
0 (x− x0) .

Proof. For x ≥ 0, Theorem C yields the formula(
1 + α

x− x0

x0

)
≤
(
1 +

x− x0

x0

)α
with equality exactly when x = x0. Multiplying through by xα0 yields

xα0 + αxα−1
0 (x− x0) ≤ xα

again with equality only for x = x0. Therefore

y = xα0 + αxα−1
0 (x− x0)

touches the curve y = xα exactly at the point y = xα0 and hence is the tangent
line there.

Proposition A For arbitrary integer powers n > m > 0, polynomials of the
form 1− axm + bxn with nonvanishing real coefficients a and b, have either
0, 1, or 2 positive roots according the following table

Coefficient Number of
Inequalities Positive Roots

i) a < 0 , b > 0 0
ii) b < 0 1
iii) a > 0, (a/α)α(α− 1)α−1 ≥ b > 0 2
iv) a > 0, b > (a/α)(α− 1)α−1 0
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where α = n
m.

Proof. i) and ii) were shown in Lemma 1. For iii) and iv), where a > 0
and b > 0, we repeat the substitution y = xm of Lemma 1 to transform the
problem to the determination of the roots of

ay − 1 = byα .

From Lemma A, the line ay − 1 will be tangent to byα if both slope and
intercepts match

a = bαyα−1
0

1 = y0(a− byα−1
0 )

for some abscissa y0 > 0.
Solving the slope equation for y0, we have

byα−1
0 =

a

α

y0 =
(
a

αb

) 1
α−1

which we can plug into the intercept condition to find

1 = a
(
a

αb

) 1
α−1

(
1− 1

α

)
whence a and b must satisfy

b =
(
a

α

)α
(α− 1)α−1

to achieve tangency.
When b is less than or equal to this value, the line −1 + ay intersects byα

in two positive roots (or a root of multiplicity two if exactly equal), while if b
is greater than this value the line falls entirely below the curve and there are
no positive roots. This establishes cases iii) and iv), completing the proof.
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