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Time-domain anisotropic processing in arbitrarily
inhomogeneous media

Tariq Alkhalifah, Sergey Fomel, and Biondo Biondi1

ABSTRACT

In transversely isotropic media with a vertical axis of symmetry (VTI media), we can
represent the image in vertical time, as opposed to depth, thus eliminating the inherent
ambiguity of resolving the verticalP-wave velocity from surface seismic data. In this
new (x − τ )-domain, the raytracing and eikonal equations are completely independent of
the verticalP-wave velocity, on the condition that the ratio of the vertical to normal-
moveout (NMO)P-wave velocity (α) is laterally invariant. Practical size departures of
α from lateral homogeneity affect traveltimes only slightly. As a result, for all practical
purposes, the VTI equations in the (x − τ )-domain become dependent on only two pa-
rameters in laterally inhomogeneous media: the NMO velocity for a horizontal reflector,
and an anisotropy parameter,η. An acoustic wave equation in the (x − τ )-domain is also
independent of the vertical velocity. It includes an unsymmetric Laplacian operator to
accommodate the unbalanced axis units in this new domain. In summary, we have estab-
lished the basis for a full inhomogeneous time-processing scheme in VTI media that is
dependent on onlyv andη, and independent of the verticalP-wave velocity.

INTRODUCTION

The main feature of the anisotropic parameter representation suggested by Alkhalifah and
Tsvankin (1995) is that time processing—normal moveout correction (NMO), dip moveout
(DMO), and time migration-become independent of verticalP—wave velocity, a parameter
necessary to resolve reflector depth. As a result, estimating the vertical velocity is unneces-
sary for time processing, which depends on only two parameters: the normal-moveout (NMO)
velocity for a horizontal reflector and an anisotropy parameter denoted byη. However, this
rather fortunate behavior of seismic waves in transversely isotropic media with a vertical sym-
metry axis (VTI media) seems to hold only for vertically inhomogeneous media. When lateral
inhomogeneity exists, three parameters are needed to characterize the medium and implement
processing.

Our goal is to implement time processing that truly honors the lateral inhomogeneity of
the medium, and yet is independent of the verticalP-wave velocity. Separating theP-wave
vertical velocity,vv, from the image processing stage helps in avoiding the intrinsic ambiguity
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that this velocity introduces into the problem of estimating parameters in VTI models. This
separation allows us to correct for the depth whenever such information becomes available,
for example, well-log data.

This report shows that certain lateral inhomogeneities fall into this fortunate category of
independence from verticalP-wave velocity when we replace the depth axis with the vertical
time. We refer to such an inhomogeneity as beingfactorized laterally. The termfactorizedwas
introduced by Shearer and Chapman (1988) to describe a medium in which the ratio between
the different elastic coefficients remains constant throughout the medium. In the case of our
new coordinate system, this constraint is needed only between the NMO velocity and vertical
velocity and it is needed only laterally. In other words,α, defined as the ratio between the
vertical and NMOP-wave velocity, can change only vertically. This condition still allows
for data processing in media of any lateral inhomogeneity, but does not allow for applying
any depth conversion. In fact, this condition is extremely convenient considering that reflector
depth is typically resolved at only one location along a given seismic line (at the well), and
that we can therefore use thisα(z), extracted from the well, to estimate depths. Whenα varies
laterally, the accuracy of the processing depends on the size of the variation. Our analysis
shows that such dependency is small for typical variations and, as a result, can be ignored.

The termtime processingimplies that an image of the subsurface is obtained with its
vertical axis given in time rather than in depth. Traditionally, only vertical inhomogeneity was
treated in the processing of this image. Such processing might include approximations to treat
mild inhomogeneities, but nothing that could come close to properly imaging complex data
such as the Marmousi model.Time processingtakes on a quite different meaning in this paper.
It includes exact treatment for media with any lateral inhomogeneity. Specifically, we develop
ray-theoretical solutions of wave propagation in the time domain, including the eikonal and
raytracing equations that can handle any lateral inhomogeneity. An acoustic wave equation
constrains all other aspects (such as amplitudes) of wave propagation in the (x − τ )-domain.

We also show numerical results of raytracing and examine its dependence on only two
parameters in VTI media.

PARAMETERIZATION IN ANISOTROPIC MEDIA

In homogeneous transversely isotropic media with a vertical symmetry axis (VTI media),P-
andSV-waves2 can be described by the vertical velocitiesVP0 andVS0 of P- andS-waves,
respectively, and two dimensionless parametersε and δ (Thomsen, 1986). Tsvankin and
Thomsen (1994) and Alkhalifah (1997a) demonstrated thatP-wave velocity and traveltime
are practically independent ofVS0, even for strong anisotropy. Thus, for practical purposes,
P-wave kinematic signatures can be considered a function of just three parameters:VP0, δ,
andε.

Alkhalifah and Tsvankin (1995) further demonstrated that a new representation in terms
of just two parameters is sufficient for performing all time-related processing, such as normal

2We omit the qualifiers inquasi-P-waveandquasi-SV-wavefor brevity.
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moveout correction (including nonhyperbolic moveout correction, if necessary), dip-moveout
removal, and prestack and post-stack time migration, assuming that the velocity varies only
vertically. These two parameters are the normal-moveout velocity for a horizontal reflector

Vnmo(0) = Vp0
√

1+2δ , (1)

and the anisotropy coefficient

η ≡ 0.5

(
V2

h

V2
nmo(0)

−1

)
=

ε − δ

1+2δ
, (2)

whereVh is the horizontal velocity. Instead ofVnmo, we usev to denote the interval NMO
velocity in both isotropic and TI media.

THE DEPTH ISSUE

The depth axis has always been a source of uncertainty in seismic processing. Geophysicist
have shied away from predicting depths from surface seismicP-wave data. Typically, well-
log data are used for such a task. However, since well-log data are rare and sparse, seismically
based interpolation of well-log information is commonly used. Although the conventional
isotropic theory suggests that depth can be resolved using the velocity field that focuses the
seismic image, field data have rarely agreed with this isotropic principal. Anisotropy, on the
other hand, suggests that depth cannot be resolved using surface seismic data. The velocity
needed to resolve depth is the vertical velocity, which is different from the imaging velocity
(the velocity that yields the best image). This difference accords with the typical field data
experience. In fact, in VTI media, processing is controlled by three velocities: one responsi-
ble for depth mapping, another for stacking, and the third for migration. Although this is a
simplistic representation and theory suggests that there is more interaction between these ve-
locities and their influences, such a representation is close to what actually happens in practice.
Two of these velocities are resolvable from surface seismic data, or, in a general inhomoge-
neous case, two combinations of these velocities are resolvable, which implies the existence
of a null space in the three-parameter representation of VTI media.

Considering that depth in VTI media is determined by multiplying half of the vertical
traveltime with the vertical velocity, it seems that representing data with the vertical time,
instead of depth, could absorb the vertical velocity influence. This has been shown to be the
case for vertically inhomogeneous media (Alkhalifah and Tsvankin, 1995) but has yet to be
shown for more general inhomogeneity. In the next section, we replace the depth axis with
vertical time to represent more general, arbitrarily inhomogeneous media.

REPRESENTING DEPTH WITH VERTICAL TIME

In this section, we derive the relation between the depth and vertical time axis for a general
inhomogeneous medium. Using this relation, the VTI eikonal equation is represented in the
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new (x − τ )-domain coordinate system. We have derived a similar relation in another paper
(Biondo et al., 1997); for isotropic media. Also Hatton et al. (1981) implemented a similar
mapping to show the limitations of time migration.

Two-way vertical time is related to depth by the following relation,

τ (x,z) =

∫ z

0

2

vv(x,ζ )
dζ , (3)

wherevv is the verticalP-wave velocity, which can vary vertically as well as laterally. As
follows from equation 3, the stretch applied to the depth axis is laterally variant.

Alkhalifah (1997b) derived a simple form of the eikonal equation for VTI media, based on
setting the shear wave velocity to zero. For 2-D media, it is

v2 (1+2η)

(
∂t

∂x

)2

−vv
2
(

∂t

∂z

)2
(

1−2v2η

(
∂t

∂x

)2
)

= 1. (4)

This equation, based on the acoustic medium assumption in VTI media, though not physically
possible, yields extremely accurate traveltime solutions that are close to what we get for typical
elastic media.

The eikonal equation includes first-order derivatives of traveltime with respect to position.
In order to transform this eikonal equation from the depth to the time coordinate, we need to
replacex with x̃. Using the chain rule,∂t

∂x in the eikonal equation 4 is given by

∂t

∂x
=

∂t

∂ x̃
+

∂t

∂τ
σ , (5)

whereσ , extracted from equation (3), is written as

σ (x,z) =
∂τ

∂x
=

∫ z

0

∂

∂x

(
1

vv(x,ζ )

)
dζ . (6)

Likewise, the partial derivative inz in the eikonal equation is

∂t

∂z
=

2

vv

∂t

∂τ
. (7)

Therefore, the transformation from (x, z) to (x̃, τ ) is governed by the following Jacobian
matrix in 2-D media:

J =

(
1 σ

0 2
vv

)
(8)

Substituting equations (5) and (7) into the eikonal equation (4) yields the equation

v2 (1+2η)

(
∂t

∂ x̃
+

∂t

∂τ
σ

)2

−4

(
∂t

∂τ

)2
(

1−2v2η

(
∂t

∂ x̃
+

∂t

∂τ
σ

)2
)

= 1, (9)
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which is indirectly independent of the vertical velocity. However, according to equation (6),σ

still depends on the verticalP-wave velocity. Rewriting equation (6) in terms of the two-way
vertical time (see Appendix A) gives us

σ (x̃,τ ) =
−1

vv(x̃,τ )

∫ τ

0

∂vv(x̃, τ̃ )

∂ x̃
dτ̃ , (10)

wherex̃ corresponds to the new coordinates (x̃, τ ). In the case ofvv(x,z) = α(z)v(x,z), which
is a special case of lateral inhomogeneity, referred to here aslaterally factorized, equation (6)
takes the form

σ (x,τ ) =

∫ τ

0

∂

∂x

(
1

v

)
vdτ̃ , (11)

which is clearly independent of the verticalP-wave velocity. Also, equation (10) becomes

σ (x̃,τ ) =
−1

v(x̃,τ )

∫ τ

0

∂v(x̃, τ̃ )

∂ x̃
dτ̃ . (12)

The eikonal equation can be used to compute seismic traveltimes in laterally factorized inho-
mogeneous media without the need to estimate the verticalP-wave velocity. The departure of
the medium from this special condition of laterally factorized media will cause errors in trav-
eltime calculation. We can estimate these errors by evaluating how muchσ varies between
equations (6) and (11). Specifically, ifvv(x,z) = α(x,z)v(x,z) then

1σ (x,τ ) =

∫ τ

0

∂

∂x

(
1

α

)
dτ̃ . (13)

If the ratio of the vertical to NMO velocity,α, does not change laterally,1σ is equal to zero,
and thus no errors will occur in traveltime calculation. The departure ofσ from zero affects
only thex axis component of the wavefront; according to equations (5) and (7) it is only∂t

∂x
that depends onσ . The vertical component of the traveltime remains accurate no matter how
muchα varies laterally. Also, because the eikonal equation is independent ofσ for vertically
traveling waves (∂t

∂τ
=0), such waves are error-free. The majority of the errors caused by lateral

α variation occurs around 45-degree wave propagation.

In terms of VTI parameters, the NMO velocity is given by (Thomsen, 1986)

v(x,z) = vv(x,z)
√

1+2δ(x,z).

Therefore,

α(x,z) =
1

√
1+2δ(x,z)

,

and

dα

dx
= −

1

(1+2δ(x,z))
3
2

dδ

dx
≈ −

dδ

dx
.
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Then

1σ = −2
∫ τ

0

dδ

dx
dτ̃ .

We can see that the absolute error, resulting from the integral formulation, clearly increases
with time.

In addition, when we use the new coordinate system (x,τ ), the transport equation becomes
independent of the vertical velocity under the same condition of laterally factorized media
(see Appendix B). Bellow, and for simplicity, we will replacex̃ with x to denote the lateral
coordinate in the new coordinate system.

RAYTRACING EQUATIONS

Using the method of characteristics, we can derive a system of ordinary differential equations
that define the ray trajectories. To do so, we need to transform equation (9) to the following
form:

F

(
x,τ ,

∂t

∂x
,
∂t

∂τ

)
= 0, (14)

or

F (x,τ , px, pτ ) = 0, (15)

wherepx =
∂t
∂x andpτ =

∂t
∂τ

. According to the classic rules of mathematical physics (Courant,
1966), the solutions of this kinematic equation can be obtained from the system of ordinary
differential equations

dx

ds
=

1

2

∂F

∂px
,

dτ

ds
=

1

2

∂F

∂pτ

,

dpx

ds
= −

1

2

∂F

∂x
,

dpτ

ds
= −

1

2

∂F

∂τ
, (16)

wheres is a running parameter along the rays, related to the traveltimet as follows:

dt

ds
=

1

2
pτ

∂F

∂pτ

+ px
∂F

∂px
,

with

dx

dt
=

dx

ds

/
dt

ds
,

dτ

dt
=

dτ

ds

/
dt

ds
,

dpx

dt
=

dpx

ds

/
dt

ds
,

dpτ

dt
=

dpτ

ds

/
dt

ds
. (17)

Using equation (9), we obtain

dx

ds
= av2 (1+2η

(
1−4 pτ

2)) , (18)
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dτ

ds
= 4 pτ −av2 (

−σ +2η
(
−σ +4 px pτ +8σ pτ

2)) , (19)

dpx

ds
= −a2v

(
1+2η

(
1−4 pτ

2)) vx

−av2 (a (1−4 pτ
2) ηx + pτ

(
1+2η−8η pτ

2) σx
)
, (20)

dpτ

ds
= −va2 (1+2η

(
1−4 pτ

2)) vτ

−v2a
(
a
(
1−4 pτ

2) ητ + pτ

(
1+2η−8η pτ

2) στ

)
, (21)

and

dt

ds
= 4 pτ

2
+a2v2 (1+2η

(
1−8 pτ

2)) ,
where

a = px +σ pτ ,

andvx =
∂v
∂x andvτ =

∂v
∂τ

, and the same holds forη andσ . To trace rays, we must first identify
the initial valuesx0, τ0, px0, andpτ0. The variablesx0 andτ0 describe the source position, and
px0 and pτ0 are extracted from the initial angle of propagation. Note that, from equation (9),

pτ0 = 1−
v2p2

x0

1−2ηv2p2
x0

,

becauseσ=0 at the source position (z=0).

The raytracing system of equations (18-21) describes the ray-theoretical aspect of wave
propagation in the (x − τ )-domain, and can be used as an alternative to the eikonal equation.
Numerical solutions of the raytracing equations, as opposed to the eikonal equation, provide
multi-arrival traveltimes and amplitudes. In the numerical examples, we use raytracing to
highlight some of the features of the (x − τ )-domain coordinate system.

THE X − T AU ACOUSTIC WAVE EQUATION

Following the approach of Alkhalifah (1997b), an acoustic wave equation is simply derived
from the eikonal equation using Fourier transformations. The addition ofσ results in a more
intriguing wave equation than the one derived by Alkhalifah. Instead of the symmetric form
of the familiar Laplacian in isotropic media, two sources of unsymmetry are introduced into
the new wave equation. One is caused by the unbalanced new coordinate system with one axis
given in time and the other in position. The second, caused by anisotropy, is similar to that
which Alkhalifah described.
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Usingkx = ω ∂t
∂x , andkτ = ω ∂t

∂τ
, wherekx is the horizontal component of the wavenumber

vector,kτ is the vertical-time-normalized component of the wavenumber vector, andω is the
angular frequency, we can transform equation (9) to

v2 (1+2η)

(
kx

ω
+

kτ

ω
σ

)2

−4

(
kτ

ω

)2
(

1−2v2η

(
kx

ω
+

kτ

ω
σ

)2
)

= 1. (22)

Multiplying both sides of equation (22) with the wavefield in the Fourier domain,F(kx,kτ ,ω),
as well as using inverse Fourier transform onkτ , kx andω (kτ → −i d

dτ
, kx → −i ∂

∂x , and
ω → i ∂

∂t ), we obtain the acoustic wave equation in this new vertical-velocity-independent
coordinate system,

∂4F

∂t4
= −8

∂4F

∂x2∂τ2
v2η +

∂4F

∂x2∂t2
v2 (1+2η)−16

∂4F

∂x∂τ3
v2ησ +2

∂4F

∂t2∂x∂τ
v2 (1+2η) σ

− 8
∂4F

∂τ4
v2ησ 2

+
∂4F

∂t2∂τ2

(
4+v2 (1+2η) σ 2) . (23)

This equation is a fourth-order partial differential equation. Unlike, the acoustic wave equation
for VTI media of Alkhalifah (1997b), equation (23) has odd-order derivatives caused by the
unsymmetry of the coordinate system. Settingσ = 0 [v(z)=0], we obtain a similar equation,
with ∂z replaced byvv∂τ as follows:

∂4F

∂t4
= −8

∂4F

∂x2∂τ2
v2η+

∂4F

∂x2∂t2
v2 (1+2η)+4

∂4F

∂t2∂τ2
. (24)

Settingη = 0 in equation (23) yields the acoustic equation for elliptically anisotropic media:

∂2

∂t2

(
∂2F

∂t2
−v2

(
∂2F

∂x2
+2

∂2F

∂x∂τ
σ

)
−

∂2F

∂τ2

(
4+v2σ 2))

= 0. (25)

SubstitutingP =
∂2F
∂t2 , we obtain the second-order wave equation for elliptically anisotropic

media:

∂2P

∂t2
= v2

(
∂2P

∂x2
+2

∂2P

∂x∂τ
σ

)
+

∂2P

∂τ2

(
4+v2σ 2) . (26)

Rewriting equation (23) in terms ofP(x, y,z,t) rather thanF(x, y,z,t), wherever possible,
yields

∂2P

∂t2
= −8

∂4F

∂x2∂τ2
v2η+

∂2P

∂x2
v2 (1+2η)−16

∂4F

∂x∂τ3
v2ησ +2

∂2P

∂x∂τ
v2 (1+2η) σ

−8
∂4F

∂τ4
v2ησ 2

+
∂2P

∂τ2

(
4+v2 (1+2η) σ 2) , (27)

where

F(x, y,z,t) =

∫ t

0
dt′
∫ t ′

0
P(x, y,z,τ )dτ .

Because of its second-order nature in time, equation (27) is simpler to use in a numerical
implementation than equation (23). The acoustic wave equation in (x − τ )-domain is clearly
independent of the vertical velocity whenσ is given by equation 12 andα is laterally invariant.
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NUMERICAL EXAMPLES

Using the ray-tracing system of equations derived earlier, we can compute traveltimes numer-
ically. Unlike numerical solutions of the eikonal equation, raytracing provides multi-arrival
traveltimes and amplitudes. We want to confirm numerically the following two aspects of
implementing raytracing in the new coordinate system:

• The traveltime solution when transformed to depth agrees with results from conven-
tional depth-domain raytracing.

• The traveltime solution in the (x − τ )-domain is independent of the verticalP-wave
velocity for media that are factorized laterally [α(z)].

Figure 1 shows sixteen rays originating from a source on the surface at positionx = 0
through the same depth velocity model ofvv(x,z) = 1.5+ 0.225z+ 0.15x, v(x,z) = 2.0+

0.3z+0.2x, andη(x,z) = 0.1+0.05z+0.05x using conventional raytracing in the depth do-
main (black curves), and the new raytracing in the (x − τ )-domain (gray curve). We achieved
the (x − τ )-domain ray tracing results by mapping the depth velocity model to time using
equation (3), and then mapping the ray solutions back to depth using equation (A-2). The
sixteen rays have ray parameters ranging from zero to the maximum value of 1/Vh (Vh is the
horizontal velocity), with a fixed ray-parameter spacing of 1/(15Vh). The rays terminate at the
same time of 8 s, and the wavefronts (given by the dashed curves) are plotted at about 1.6-s
intervals. The wavefronts that correspond to the different raytracings are virtually coincident,
a result that agrees with our analytical findings.

In Figure 2, we check for another aspect of the theory, that is, the independence of raytrac-
ing from the vertical velocity for laterally factorized VTI media. Again, sixteen rays were ray
traced through a VTI model withv(x,z) = 2+0.2x km/s, andη(x,z) = 0.1+0.05z+0.05x.
The raytracing was done in the (x − τ )-domain coordinates, and, as a result, the rays and cor-
responding wavefronts appear in the (x−τ )-domain. The vertical velocity varies considerably
between the two sets of curves (black and gray), and yet the two curves coincide exactly. That
is because in both modelsα, which is the ratio of the vertical to NMOP-wave velocity, does
not vary laterally— a condition for the independence of raytracing from vertical velocity in
the (x −τ )-domain. Therefore, under this condition, raytracing is dependent on onlyv andη.

However, whenα varies laterally, raytracing does depend on the vertical velocity. The
amount of its dependence is controlled by the size of the lateral variation inα. Figure 3 shows
rays penetrating in the same model as Figure 2, but with the gray curves corresponding to a
laterally varyingα that satisfies

α(x,z) =
(1.5+0.1x)(1+0.5z)

2+0.2x
.

On the other hand, for the black curves,α = 0.75. For the laterally varyingα model, at
x = 0 andz = 5 km, α=2.625, while atx = 5 andz = 5 km, α=2.333. This big difference
corresponds to a large variation in the ratio of the vertical to NMOP-wave velocity, a lot more
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Figure 1: Raypaths (solid curves) and corresponding wavefronts (dashed curves) for an inho-
mogeneous VTI model withv(x,z) = 2.0+0.3z+0.2x km/s,vv(x,z) = 1.5+0.225z+0.15x
km/s, andη(x,z) = 0.1+0.05z+0.05x. The black curves are obtained through conventional
raytracing in the depth domain, and the gray curves are obtained using the equivalent (x − τ )-
domain raytracing, where the results are ultimately converted to depth. In this case, the curves
nearly overlap; they are only barely distinguishable, which agrees with the theoretical results.
The small difference is numerical noise resulting from the different schemes used to solve the
ordinary differential equations (Runge-Kutta versus Euler schemes).vtiproc-plotallvxd [NR]
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Figure 2: Raypaths and corresponding wavefronts in the (x − τ )-domain for an inhomoge-
neous VTI model withv(x,z) = 2+0.2x km/s, andη(x,z) = 0.1+0.05z+0.05x. The black
curves correspond tovv(x,z) = 1.5+0.15x km/s (α = 0.75), and the gray curves correspond
to vv(x,z) = 1.5+ 0.15x + 0.75z+ 0.075xz km/s (α(z) = 0.75+ 0.375z). In both cases,α is
laterally invariant, and as a result the two curves overlap.vtiproc-plotallvxt [NR]
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than would be expected in practice. Yet the differences in traveltimes between the two models
is moderate. This fact implies that, despite the apparent influence of vertical velocity on
raytracing in the (x −τ )-domain coordinates, whenα varies laterally, such influence is overall
small. Considering thatδ, the parameter that relates the vertical and NMO velocity, ranges
typically between -0.1 and 0.43, Figure 4 shows a more practicalα variation, in which the
curves given by the two models are extremely close. The slightness of the variation suggests
that for practical applications of the (x − τ )-domain coordinate processing, we can simply
ignore the vertical velocity, and rely on the NMO velocity andη.

A LENS EXAMPLE

The presence of a lens anomaly in a velocity model results in a variety of ray paths, the most
interesting of which is a development of a triplication in the wavefront. This multi-arrival
traveltime phenomenon typically occurs when a negative velocity anomaly is present. The
intriguing issue is that triplication can also occur when we have positiveη anomalies.

Figure 5 shows rays and corresponding wavefronts that were obtained using conventional
raytracing in the depth domain (black curves), and using the equivalent raytracing in the (x −

τ )-domain (gray curves) through a VTI model withη=0.1. The velocity model is shown in
the background with a negative velocity anomaly that has a peak of -1.0 km/s. The result
is a noticeable triplication that develops soon after the rays pass the anomaly. Despite the
triplication, the results of raytracing in the two domains (depth and time) are similar.

Figure 6 also shows raypaths through an anomaly. The anomaly now is inη, and it is
positive. Therefore, the background is anη model, withη=0 everywhere other than in the
anomaly. Again, the black curves correspond to solutions of raytracing in the depth domain,
while the gray curves correspond to raytracing in the (x − τ )-domain. Triplication, smaller
than that associated with the velocity perturbation, occurs in the wavefront. Velocity-wise this
medium is homogeneous; it isη that is causing the severe bending of the rays! The rays with
larger propagation angles from the vertical are the most influenced by theη anomaly.

FINITE-DIFFERENCE SOLUTIONS OF THE X − T AU WAVE EQUATION

In a general inhomogeneous medium, finite difference is the most practical method for solving
the wave equation. Despite its enormous computational cost, finite-difference schemes provide
a comprehensive solution of the wave equation, which includes an accurate representation of
amplitude.

In this example, we use the second-order acoustic wave equation for VTI media in (x−τ )-

3this is a wide range; some studies haveδ at a narrower range
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Figure 3: Raypaths and corresponding wavefronts in the (x − τ )-domain for an inhomoge-
neous VTI model withv(x,z) = 2+0.2x km/s, andη(x,z) = 0.1+0.05z+0.05x. The black
curves correspond tovv(x,z) = 1.5+0.15x km/s (α = 0.75), and the gray curves correspond
to vv(x,z) = 1.5+0.1x+0.75z+0.05xzkm/s (α(x,z) =

(1.5+0.1x)(1+0.5z)
2+0.2x ). While for the black

curvesα is laterally invariant, for the gray curvesα varies laterally, and as a result, the black
and gray curves no longer coincide.vtiproc-plotallvxterr [NR]
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Figure 4: Raypaths and corresponding wavefronts in the (x − τ )-domain for an inhomo-
geneous VTI model withv(x,z) = 2+ 0.2x km/s, andη(x,z) = 0.1+ 0.05z+ 0.05x. The
black curves correspond tovv(x,z) = 1.5+ 0.15x km/s (α = 0.75), and the gray curves cor-
respond tovv(x,z) = 1.5+ 0.13x + 0.75z+ 0.065xz km/s (α(x,z) =

(1.5+0.13x)(1+0.5z)
2+0.2x ). De-

spite the fact that for the gray curvesα varies laterally, the two curves are extremely close.
vtiproc-plotallvxterr2 [NR]
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Figure 5: Raypaths (solid curves) and corresponding wavefronts (dashed curves) for an inho-
mogeneous VTI model, withη = 0.1. The rays are superimposed on the velocity model, given
in km/s, of a negative velocity anomaly. The black curves are obtained through conventional
raytracing in the depth domain, and the gray curves are obtained using the equivalent (x − τ )-
domain raytracing, where the results are later converted to depth. The curves nearly overlap
even in the presence of triplication.vtiproc-plotvlensf [NR]
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Figure 6: Raypaths and wavefronts for an inhomogeneous VTI model, withv = 3.5 km/s.
The rays are superimposed on theη distribution, which includes a positiveη anomaly. The
black curves are obtained through conventional raytracing in the depth domain, and the gray
curves are obtained using the equivalent (x − τ )-domain raytracing, where the results are later
converted to depth. The curves nearly overlap even in the presence ofη-induced triplication.
vtiproc-plotetalensf[NR]
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domain, given by equation (27) and therefore need to solve simultaneously

∂2P

∂t2
= −8

∂4F

∂x2∂τ2
v2η+

∂2P

∂x2
v2 (1+2η)−16

∂4F

∂x∂τ3
v2ησ +2

∂2P

∂x∂τ
v2 (1+2η) σ

−8
∂4F

∂τ4
v2ησ 2

+
∂2P

∂τ2

(
4+v2 (1+2η) σ 2)

+ f , (28)

and

P =
∂2F

∂t2
,

where f (x,τ ) is the forcing function. We use a second-order finite-difference approximation
for P-derivatives in equation (28) and a fourth-order approximation forF-derivatives. The so-
lution for elliptically anisotropic media is obtained by settingη=0. Since Alkhalifah (1997b)
discusses in detail finite-difference application to a fourth-order equation closely resembling
this one, no detailed discussion is included here. Figure 7 shows a velocity model in depth (on
the top), and its equivalent mapping in time (bottom). Figure 8 shows the wavefield at 0.65 s
resulting a source igniting at time 0 s, that corresponds to the isotropic velocity model in Fig-
ure 7. The wavefield is computed using finite-difference approximations of equation (26). The
velocity model given in the (x − τ )-domain is the input velocity model in the finite-difference
application. This same velocity model is used to map the wavefield solution back to depth.
The solid curves in Figure 8 show the solution of the conventional eikonal solver (Vidale,
1990) implemented in the depth domain, and these curves nicely envelope the wavefield solu-
tion. Therefore, computing the wavefield in the (x − τ )-domain and in the conventional depth
domain are equivalent, regardless of the lateral inhomogeneity. However, the (x − τ )-domain
implementation becomes independent of verticalP-wave velocity whendα

dx = 0. Is is also im-
portant to note that the apparent frequency of the time section is velocity independent, while
waves in the depth section have wavelengths very much dependent on velocity.

CONCLUSIONS

We derived an eikonal equation that describes the kinematics of wave propagation in the time-
domain. This eikonal equation provides exact traveltimes for a general inhomogeneous VTI,
or isotropic, media. One of its main features is its independence from the verticalP-wave
velocity in VTI media, assuming that the ratio of the vertical-to-NMO velocity in VTI media
is laterally homogeneous, or in other words, that the anisotropy parameterδ does not change
laterally. Even ifδ varies laterally, the impact of the variation on traveltimes is generally
small. As a result, for practical purposes, traveltime calculation in this new (x − τ )-domain is
dependent on two parameters in VTI media, and one in elliptically anisotropic media. Using
the eikonal equation, we derive an acoustic wave equation that describes wave propagation in
the (x − τ ) domain. The existence of this wave equation implies that the amplitudes are also
accurately calculated in the (x − τ )-domain. In summary, this paper establishes the basis for a
full inhomogeneous time-processing scheme in VTI media that is dependent on onlyv andη,
and independent of the verticalP-wave velocity.
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Figure 7: Velocity models in the conventional depth domain (top), and in the (x − τ )-domain
(bottom). The velocity model includes a negative velocity anomaly perturbed from a back-
ground medium withv(x) = 2000+0.4x m/s. vtiproc-velwave[NR]



Alkhalifah et al. 437

0

0.2

0.4

0.6

0.8V
er

tic
al

 ti
m

e 
(s

)
0 1000 2000 3000

Distance (m)

0

1000

D
ep

th
 (

m
)

0 1000 2000 3000
Distance (m)

0

1000

D
ep

th
 (

m
)

0 1000 2000 3000
Distance (m)

0

1000

D
ep

th
 (

m
)

0 1000 2000 3000
Distance (m)

Figure 8: Top: The wavefield in the (x − τ )-domain at 0.65 s resulting from a source at
distance 2000 m andτ=0 for the isotropic velocity model shown in Figure 7. Bottom: the
same wavefield solution after mapping back to depth using the same velocity model. The black
curve is the solution of the eikonal equation for the velocity model in Figure 7 implemented
using the conventional depth-domain eikonal solver.vtiproc-wavepr [NR]
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APPENDIX A

THE STRETCH FACTOR IN TIME

In this appendix, we deriveσ , given by equation 6, in the (x − τ )-domain. Using such an
equation can avoid the process of mappingσ from depth to time and back. The vertical two-
way traveltime,τ , is written as

τ (x,z) =

∫ z

0

2

vv(x,ζ )
dζ , (A-1)

wherez corresponds to depth. Similarly,

z(x̃,τ ) =
1

2

∫ τ

0
vv(x̃,t)dt, (A-2)

wherex̃ corresponds to the new coordinate system.

Using the chain rule,

∂t

∂ x̃
=

∂t

∂x
+

∂t

∂z
β, (A-3)
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whereβ extracted from equation (A-2) is given by

β(x̃,τ ) =
∂z

∂ x̃
=

1

2

∫ τ

0

∂vv(x̃,t)

∂ x̃
dt, (A-4)

the partial derivative inτ is

∂t

∂τ
=

vv

2

∂t

∂z
. (A-5)

Therefore, the transformation from (x̃, τ ) to (x, z) is governed by the following Jacobian
matrix in 2-D:

Jc =

(
1 β

0 vv

2

)
. (A-6)

The inverse ofJc is

J−1
c =

(
1 −2β

vv

0 2
vv

)
, (A-7)

which should equal the Jacobian matrix for the transformation from (x, z) to (x̃, τ ), given by

J =

(
1 σ

0 2
vv

)
. (A-8)

As a result,

σ (x̃,τ ) =
−2β

vv

=
−1

vv(x̃,τ )

∫ τ

0

∂vv(x̃,t)

∂ x̃
dt,

which is a convenient equation, since we want to keep all fields, including velocity, inx̃ − τ

coordinates.

APPENDIX B

THE AMPLITUDE TRANSPORT EQUATION

To obtain the transport equation for this new (x − τ )-domain coordinate system, we use a
ray-theoretical model of the image,

F(x,τ ,t) = A(x,τ ) f [t − t̃(x,τ )],

as a trial solution to the wave equation (23). This procedure yields the eikonal equation as well
as the transport equation that describes amplitude behavior,A(x, y,z), of wave propagation.
Substituting the trial solution into the partial differential equation (23) and considering only
the terms with the highest asymptotic order (those containing the fourth-order derivative of
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F) yields the eikonal equation (9). The next asymptotic order (third-order in derivatives ofF)
gives us a linear partial differential equation of the amplitude transport, as follows:

2v2 Ax
(
t̃x +σ t̃τ

) (
1+2η−8η t̃2

τ

)
+ A

(
v2 (1 + 2η) σ 2

−8v2η
(
t̃2
x +6σ t̃x t̃τ +6σ 2 t̃2

τ

)
t̃ττ

)
+

2 Aτ

(
−8v2η t̃2

x t̃τ +v2σ t̃x
(
1+2η−24η t̃2

τ

)
+ t̃τ

(
4+v2 (1+2η) σ 2

−16v2ησ 2 t̃2
τ

))
+

4A+ Av2(2 (σ +2ησ −8η t̃τ
(
2 t̃x +3σ t̃τ

))
t̃xτ +

(
1+2η−8η t̃2

τ

)
t̃xx
)
= 0. (B-1)

Settingη = 0, yields the corresponding transport equation for elliptically anisotropic me-
dia,

2v2 Ax
(
t̃x +σ t̃τ

)
+2 Aτ

(
v2σ t̃x +

(
4+v2σ 2) t̃τ

)
+

A
(
v2 (t̃xx +2σ t̃xτ

)
+
(
4+v2σ 2) t̃ττ

)
= 0. (B-2)

Both transport equations include first-and second-order derivatives of time with respect to po-
sition, calculated from the solution of the eikonal equation. Despite the apparent complexity
of the transport equations, they are linear, and contain only first-order derivates ofA. As ex-
pected, amplitudes depend on second-order derivatives of traveltime, or wavefront curvature.
The dynamic raytracing equations behave similarly. Also, we can see that equations (B-1)
and (B-2) include terms corresponding to cross derivates of traveltime (i.e.,∂2t

∂x∂τ
), which result

from the cross-dependent nature of the new coordinate system. Some of these terms are caused
by anisotropy (Alkhalifah, 1997b). Whenσ = 0 in equation (B-2) all such cross-derivate terms
drop out.


