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Migration and velocity analysis
by velocity continuation

Sergey Fomel1

ABSTRACT

Residual and cascaded migration can be described as a continuous process of velocity
continuation in the post-migration domain. This process moves reflection events on the
migrated seismic sections according to changes in the migration velocity. Understand-
ing the laws of velocity continuation is crucially important for a successful application
of migration velocity analysis. In this paper, I derive the kinematic laws for the case of
prestack residual migration from simple trigonometric principles. The kinematic laws
lead to dynamic theory via the method of characteristics. The main theoretical result is
a decomposition of prestack velocity continuation into three different components cor-
responding to residual normal moveout, residual dip moveout, and residual zero-offset
migration. The contribution and properties of each of the three components are analyzed
separately.

INTRODUCTION

The conventional approach to the seismic migration theory (Claerbout, 1985; Berkhout, 1985)
employs the downward continuation concept. According to this concept, migration extrapo-
lates upgoing reflected waves, recorded on the surface, to the place of their reflection to form
an image of subsurface structures. When post-stack migration is performed in the time do-
main, it possesses peculiar properties, which can lead to a different viewpoint on migration.
One of the most interesting properties is an ability to decompose the time migration procedure
into a cascade of two or more migrations with smaller migration velocities. This remarkable
property is described by Rothman, Levin, and Rocca (1985) asresidual migration. Larner
and Beasley (1987) have generalized the method of residual migration to one ofcascaded mi-
gration. Cascading finite-difference migrations overcomes the dip limitations of conventional
finite-difference algorithms (Larner and Beasley, 1987); cascading Stolt-typef-k migrations
expands their range of validity to the case of a vertically varying velocity (Beasley et al.,
1988). Further theoretical generalization sets the number of migrations in a cascade to infin-
ity, making each step in the velocity space infinitely small. This leads to the partial differential
equation in the time-midpoint-velocity space, discovered by Claerbout (1986). Claerbout’s
equation describes the process ofvelocity continuation,which fills the velocity space in the
same manner as a set of constant-velocity migrations. Slicing in the migration velocity space
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642 Fomel SEP–92

can serve as a method of velocity analysis for migration with nonconstant velocity (Fowler,
1988).

In this paper, I generalize the velocity continuation concept to the case of prestack mi-
gration, connecting it with the theory of prestack residual migration (Etgen, 1990). I provide
a simplified kinematic derivation of the velocity continuation equation, which is alternative
though closely related to the previously published derivations (Claerbout, 1986; Levin, 1986a;
Fomel, 1994). Though this derivation is purely kinematic, it leads to differential equations
with reasonable dynamic properties. In practice, one can accomplish dynamic velocity con-
tinuation by integral, finite-difference, or Fourier-domain methods.

Besides the idea of reviving SEP’s results from the epoch of “nonreproducible research,”
this paper is motivated by the challenge of velocity analysis for prestack 3-D depth migration.
Though prestack velocity continuation cannot provide a complete solution to this problem in
the areas of lateral velocity variation, it can serve as a useful transformation for simplifying
the kinematic features of prestack data and for preconditioning the velocity inversion.

KINEMATICS OF VELOCITY CONTINUATION

From the kinematic point of view, it is convenient to describe the reflector as a locally smooth
surfacez= z(x), wherez is the depth, andx is the point on the surface (x is a two-dimensional
vector in the 3-D problem). The image of the reflector obtained after a common-offset prestack
migration with a half-offseth and a constant velocityv is the surfacez = z(x;h,v). Appendix
A provides the derivations of the partial differential equation describing the image surface in
the depth-midpoint-offset-velocity space. The purpose of this section is to discuss the laws of
kinematic transformations implied by the velocity continuation equation. Later in this paper,
I obtain dynamic analogues of the kinematic relationships in order to describe continuation of
migrated sections in the velocity space.

The kinematic equation for prestack velocity continuation, derived in Appendix A, takes
the following form:

∂τ

∂v
= v τ

(
∂τ

∂x

)2

+
h2

v3τ

(
1−v4

(
∂τ

∂x

)2 (
∂τ

∂h

)2
)

. (1)

Hereτ denotes the one-way vertical traveltime
(
τ =

z
v

)
. The right-hand side of equation (1)

consists of three distinctive terms. Each has its own geophysical meaning. The first term
is the only one remaining when the offseth equals zero. It corresponds to the procedure
of zero-offset residual migration. Setting the reflector dip to zero eliminates the first and
third terms, leaving the second, dip-independent one. We can associate the second term with
the process ofresidual normal moveout. The third term is both dip- and offset- dependent.
The process that it describes isresidual dip moveout. It is convenient to analyze each of the
three processes separately, evaluating their contributions to the cumulative process of prestack
velocity continuation.
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Kinematics of Zero-Offset Velocity Continuation

The kinematic equation for zero-offset velocity continuation is

∂τ

∂v
= v τ

(
∂τ

∂x

)2

. (2)

The typical boundary problem associated with it is to find the traveltime surfaceτ (x) for a
constant velocityv, given the traveltime surfaceτ1(x1) at some other velocityv1. Both sur-
faces correspond to the reflector images obtained by time migrations with the specified ve-
locities. When the migration velocity approaches zero, post-stack time migration approaches
the identity operator. Therefore, the case ofv1 = 0 corresponds kinematically to the zero-
offset (post-stack) migration, and the case ofv = 0 corresponds to the zero-offset modeling
(demigration).

The appropriate mathematical method of solving the kinematic problem posed above is
the method of characteristics (Courant, 1962). The characteristics of equation (2) are the
trajectories followed by individual points of the reflector image in the velocity continuation
process, which I have calledvelocity rays(Fomel, 1994). Velocity rays are defined by the
system of ordinary differential equations derived from (2) according to the classic rules of
mathematical physics:

dx

dv
= −2v τ τx ,

dτ

dv
= −τv , (3)

dτx

dv
= v τ3

x ,
dτv
dv

= (τ +v τv) τ
2
x . (4)

An additional constraint for the quantitiesτx andτv follows from equation (2), rewritten in the
form

τv = v τ τ2
x . (5)

One can easily solve the system of equations (3) and (4) by the classic mathematical methods
for the ordinary differential equations. The general solution of the system takes the parametric
form

x(v) = A−Cv2 , τ2(v) = B−C2v2 , (6)

τx(v) =
C
τ (v) , τv(v) =

C2v

τ (v)
, (7)

whereA, B, andC are constant along each individual velocity ray. These three constants are
determined from the boundary conditions as

A = x1 +v2
1 τ1

∂τ1

∂x1
= x0 , (8)

B = τ2
1

(
1+v2

(
∂τ1

∂x1

)2
)

= τ2
0 , (9)



644 Fomel SEP–92

C = τ1
∂τ1

∂x1
= τ0

∂τ0

∂x0
, (10)

whereτ0 andx0 correspond to the zero velocity (unmigrated section). Equations (8), (9), and
(10) have a clear geometric meaning illustrated in Figure 1. Noting the simple relationship
between the midpoint derivative of the vertical traveltime and the local dip angleα (appendix
A),

∂τ

∂x
=

tanα

v
, (11)

we can see that equations (8) and (9) are precisely equivalent to the evident geometric rela-
tionships

x +v τ tanα = x0 ,
τ

cosα
= τ0 . (12)

Equation (10) states that the points on a velocity ray correspond to a single reflection point,
constrained by the values ofτ , v, andα. As follows from equations (6), the projection of a
velocity ray to the time-midpoint plane has the parabolic shapex(τ ) = A+ (τ2

− B)/C, which
has been noticed by Chun and Jacewitz (1981). On the depth-midpoint plane, the velocity
rays have the circular shapez2(x) = (A− x) B/C − (A− x)2, described by Liptow and Hubral
(1995) as “Thales circles.”

Figure 1: Zero-offset reflection in a
constant velocity medium (a scheme).
velcon1-vlczor [NR]
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For an example of kinematic continuation by velocity rays, let us consider the case of a
point diffractor. If the diffractor location in the subsurface is the pointxd,zd, then the reflection
traveltime at zero offset is defined from Pythagoras’s theorem as the hyperbolic curve

τ0(x0) =

√
z2

d + (x0 − xd)2

vd
, (13)

wherev is half of the actual velocity. Applying formulas (6), we can deduce that the velocity
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rays in this case have the following mathematical expressions:

x(v) = xd
v2

v2
d

+ x0

(
1−

v2

v2
d

)
, (14)

τ2(v) = τ2
d +

(x0 − xd)2

v2
d

(
1−

v2

v2
d

)
, (15)

whereτd =
zd
vd

. Eliminatingx0 from the system of equations (14) and (15) leads to the expres-
sion for the velocity continuation “wavefront”:

τ (x) =

√
τ2

d +
(x − xd)2

v2
d −v2

. (16)

For the case of a point diffractor, the wavefront corresponds precisely to the summation path of
the residual migration operator (Rothman et al., 1985). It has a hyperbolic shape whenvd > v

(undermigration) and an elliptic shape whenvd < v (overmigration). The wavefront collapses
to a point when the velocityv coincides with the actual effective velocityvd. At zero velocity,
v= 0, the wavefront takes the familiar form of the post-stack migration hyperbolic summation
path. The form of the velocity rays and wavefronts is illustrated in the left plot of Figure 2.
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Figure 2: Kinematic velocity continuation in the post-stack migration domain. Solid lines
denote wavefronts: reflector images for different migration velocities; dashed lines denote
velocity rays. Left: the case of a point diffractor. Right: the case of a dipping plane reflector.
velcon1-vlcvrs [CR]

Another important example is the case of a dipping plane reflector. For simplicity, let
us put the origin of the midpoint coordinatex at the point of the plane intersection with the
surface of observations. In this case, the plane reflector has the simple expression

zp(x) = x tanα , (17)

whereα is the dip angle. The zero-offset reflection traveltime is the plane with a changed
angle. It can be expressed as

τ0(x0) = p x0 , (18)
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wherep =
sinα
vp

, andvp is the half of the actual velocity. Applying formulas (6) leads to the
following parametric expression for the velocity rays:

x(v) = x0 (1− p2v2) , (19)

τ (v) = p x0

√
1− p2v2 . (20)

Eliminatingx0 from the system of equations (19) and (20) shows that the velocity continuation
wavefronts are planes with a modified angle:

τ (x) =
p x√

1− p2v2
. (21)

The right plot of Figure 2 shows the geometry of the kinematic velocity continuation for the
case of a plane reflector.

Kinematics of Residual NMO

The residual NMO differential equation is the second term in (1):

∂τ

∂v
=

h2

v3τ
. (22)

Equation (22) is independent from the midpointx. This fact indicates the one-dimensional
nature of normal moveout. The general solution of equation (22) is obtained by simple inte-
gration. It takes the form

τ2(v) = C −
h2

v2
= τ2

1 +h2
(

1

v2
1

−
1

v2

)
, (23)

whereC is an arbitrary velocity-independent constant, and I have chosen the constantsτ1 and
v1 so thatτ (v1) = τ1.

For the case of a point diffractor, solution (23) easily combines with the zero-offset so-
lution (16). The result is a simplified version of the prestack residual migration summation
path:

τ (x) =

√√√√τ2
d +

(x − xd)2

v2
d −v2

+h2

(
1

v2
d

−
1

v2

)
. (24)

Summation paths of the form (24) for a set of diffractors with different depths are plotted in
Figures 3 and 4. The parameters chosen in these plots allow a direct comparison with Etgen’s
Figures 2.4 and 2.5 (Etgen, 1990), based on the exact solution and reproduced in Figures 9
and 10. The comparison shows that the approximate solution (24) captures the main features
of the prestack residual migration operator, except for the residual DMO cusps appearing in
the exact solution when the diffractor depth is smaller than the offset.

Neglecting the residual DMO term in residual migration is approximately equivalent in
accuracy to neglecting the DMO step in conventional processing. Indeed, as follows from the
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Figure 3: Summation paths of the
simplified prestack residual migra-
tion for a series of depth diffractors.
Residual slownessv/vd is 1.2; off-
set h is 1 km. This figure is to be
compared with Etgen’s Figure 2.4.
velcon1-vlcve1[CR]
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Figure 4: Summation paths of the
simplified prestack residual migra-
tion for a series of depth diffractors.
Residual slownessv/vd is 0.8; off-
set h is 1 km. This figure is to be
compared with Etgen’s Figure 2.5.
velcon1-vlcve2[CR]
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geometric analogue of equation (1) derived in Appendix A, dropping the residual DMO term
corresponds to the condition

tan2α tan2γ � 1 , (25)

whereα is the dip angle, andγ is the reflection angle. As shown by Yilmaz and Claerbout
(1980), the conventional processing sequence without the DMO step corresponds to the sepa-
rable approximation of the double-square-root equation (A-4):√

1−v2

(
∂t

∂s

)2

+

√
1−v2

(
∂t

∂r

)2

≈ 2

√
1−v2

(
∂t

∂x

)2

+2

√
1−v2

(
∂t

∂h

)2

−2 . (26)

In geometric terms, approximation (26) transforms to

cosα cosγ ≈

√
1−sin2α cos2γ +

√
1−sin2γ cos2α−1 . (27)

Estimating the accuracy of the separable approximation by the first term of the Taylor series
for smallα andγ yields the estimate of34 tan2α tan2γ (Yilmaz and Claerbout, 1980), which
agrees qualitatively with (25). Though approximation (24) fails in situations where the dip
moveout correction is necessary, it is significantly more accurate than the 15-degree approxi-
mation of the double-square-root equation, implied in the migration velocity analysis method
of Yilmaz and Chambers (1984) and MacKay and Abma (1992). The 15-degree approxima-
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tion √
1−v2

(
∂t

∂s

)2

+

√
1−v2

(
∂t

∂r

)2

≈ 2−
v2

2

((
∂t

∂s

)2

+

(
∂t

∂s

)2
)

(28)

corresponds geometrically to the equation

2 cosα cosγ ≈
3+cos2α cos2γ

2
. (29)

Its estimated accuracy is18 tan2α+
1
8 tan2γ . Unlike the separable approximation, which is

accurate separately for zero offset and zero dip, the 15-degree approximation fails at zero
offset in the case of a steep dip and at zero dip in the case of a large offset.

Kinematics of Residual DMO

The partial differential equation for kinematic residual DMO is the third term in (1):

∂τ

∂v
= −

h2v

τ

(
∂τ

∂x

)2 (
∂τ

∂h

)2

. (30)

It is more convenient to consider the residual dip-moveout process coupled with residual nor-
mal moveout. Etgen (1990) describes this procedure as the cascade of inverse DMO with
the initial velocityv0, residual NMO, and DMO with the updated velocityv1. The kinematic
equation for residual NMO+DMO is the sum of the two terms in (1):

∂τ

∂v
=

h2

v3τ

(
1−v4

(
∂τ

∂x

)2 (
∂τ

∂h

)2
)

. (31)

If the boundary data for equation (31) are on a common-offset gather, it is appropriate to
rewrite this equation purely in terms of the midpoint derivative∂τ

∂x , eliminating the offset-
derivative term∂τ

∂h . The resultant expression, derived in Appendix A, has the form

v3 ∂τ

∂v
=

2h2√
τ2 +4h2 Q

(
v, ∂τ
∂x

)
+ τ

, (32)

where

Q(v,τx) =
τ2

x(
1+v2τ2

x

)2 . (33)

The direct solution of equation (32) is nontrivial. A simpler way to obtain this solution is to
decompose residual NMO+DMO into three steps and to evaluate their contributions separately.
Let the initial data be the zero-offset reflection eventτ0(x0). The first step of the residual
NMO+DMO is the inverse DMO operator. One can evaluate the effect of this operator by
means of the offset continuation concept (Fomel, 1995). According to this concept, each point
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of the input traveltime curveτ0(x0) travels with the change of the offset from zero toh along
a special trajectory, which I call atime ray. Time rays are parabolic curves of the form

x (τ ) = x0 +
τ2

− τ2
0 (x0)

τ0 (x0) τ ′

0 (x0)
, (34)

with the final points constrained by the equation

h2
= τ2 τ2

− τ2
0 (x0)(

τ0 (x0) τ ′

0 (x0)
)2 . (35)

The second step of the cumulative residual NMO+DMO process is the residual normal move-
out. According to equation (23), residual NMO is a one-trace operation transforming the
traveltimeτ to τ1 as follows:

τ2
1 = τ2

+h2s , (36)

where

s =
1

v2
0

−
1

v2
1

. (37)

The third step is dip moveout corresponding to the new velocityv1. DMO is the offset contin-
uation fromh to zero offset along the redefined time rays (Fomel, 1995)

x2 (τ2) = x +
h X

τ2
1 H

(
τ2

1 − τ2
2

)
, (38)

whereH =
∂τ1
∂h , andX =

∂τ1
∂x . The end points of the time rays (38) are defined by the equation

τ2
2 = −τ2

1
τ1 H

h X2
. (39)

The partial derivatives of the common-offset traveltimes are constrained by the offset contin-
uation kinematic equation

h (H2
−Y2) = τ1 H , (40)

which is equivalent to equation (A-12) in Appendix A. Additionally, as follows from equations
(36) and the ray invariant equations from (Fomel, 1995),

τ1 X = τ
∂τ

∂x
=
τ2τ ′

0 (x0)

τ0 (x0)
. (41)

Substituting (34), (35), (36), (40), and (41) into equations (38) and (39) and performing the al-
gebraic simplifications, we arrive at the parametric expressions for velocity rays of the residual
NMO+DMO process: 

x2(s) = x0 +
h2τ ′

0(x0)

T

(
1−

T2

T2
2 (s)

)
,

τ (s) =
τ2

1 (s)

T2(s)
,

(42)
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where the functionT
(
h,τ0(x0),τ ′

0 (x0)
)

is defined by

T (h,τ ,τx) =
τ +

√
τ2 +4h2τ2

x

2
, (43)

T2(s) =

√
T
(
h,τ2

1 (s),τ ′

0 (x0) T
(
h,τ0(x0),τ ′

0 (x0)
))

, (44)

and

τ2
1 (s) = τ0 T +s h2 . (45)

The last step of the cascade of inverse DMO, residual NMO, and DMO is illustrated in
Figure 5. The three plots in the figure show the offset continuation to zero offset of the inverse
DMO impulse response shifted by the residual NMO operator. The middle plot corresponds
to zero NMO shift, for which the DMO step collapses the wavefront back to a point. Both
positive (top plot) and negative (bottom plot) NMO shifts result in the formation of the specific
triangular impulse response of the residual NMO+DMO operator. As noticed by Etgen (1990),
the size of the “triangle” operators dramatically decreases with the time increase. For large
times (pseudo-depths) of the initial impulses, the operator collapses to a point corresponding
to the pure NMO shift. This fact agrees with the conclusions of the preceding subsection about
the comparative importance of the residual DMO term. It is illustrated in Figure 6 with the
theoretical impulse response curves, and in Figure 7 with the result of an actual cascade of the
inverse DMO, residual NMO, and DMO operators.

Figure 8 illustrates the residual NMO+DMO velocity continuation for two particularly
interesting cases. The left plot shows the continuation for a point diffractor. One can see that
when the velocity error is large, focusing of the velocity rays forms a specific loop on the zero-
offset hyperbola. The right plot illustrates the case of a plane dipping reflector. The image of
the reflector shifts both vertically and laterally with the change in NMO velocity.

The full residual migration operator is the result of cascading residual zero-offset migration
and residual NMO+DMO. I illustrate the kinematics of this operator in Figures 9 and 10, which
are designed to match Etgen’s Figures 2.4 and 2.5 (Etgen, 1990). A comparison with Figures
3 and 4 shows that including the residual DMO term affects the images of shallow objects
(with the depth smaller than the offseth) and complicates the residual migration operator with
cusps.

FROM KINEMATICS TO DYNAMICS

The theory of characteristics (Courant, 1962) states that if a partial differential equation has
the form

n∑
i , j =1

3i j (ξ1, . . . ,ξn)
∂2P

∂ξi ∂ξj
+ F

(
ξ1, . . . ,ξn, P,

∂P

∂ξ1
, . . . ,

∂P

∂ξn

)
= 0 , (46)
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Figure 5: Kinematic residual
NMO+DMO operators constructed
by the cascade of inverse DMO,
residual NMO, and DMO. The
impulse response of inverse DMO
is shifted by the residual DMO
procedure. Offset continuation back
to zero offset forms the impulse
response of the residual NMO+DMO
operator. Solid lines denote travel-
time curves; dashed lines denote the
offset continuation trajectories (time
rays). Top plot:v1/v0 = 1.2. Middle
plot: v1/v0 = 1; the inverse DMO
impulse response collapses back to
the initial impulse. Bottom plot:
v1/v0 = 0.8. The half-offseth in all
three plots is 1 km.velcon1-vlcvoc
[CR]
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Figure 6: Theoretical kinematics of the residual NMO+DMO impulse responses for three
impulses. Left plot: the velocity ratiov1/v0 is 1.333. Right plot: the velocity ratiov1/v0 is
0.833. In both cases the half-offseth is 1 km. velcon1-vlcvcp[CR]

Figure 7: The result of residual NMO+DMO (cascading inverse DMO, residual NMO, and
DMO) for three impulses. Left plot: the velocity ratiov1/v0 is 1.333. Right plot: the velocity
ratiov1/v0 is 0.833. In both cases the half-offseth is 1 km. velcon1-vlccps[ER]
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Figure 8: Kinematic velocity continuation for residual NMO+DMO. Solid lines denote wave-
fronts: zero-offset traveltime curves; dashed lines denote velocity rays. Left plot: the case of
a point diffractor; the velocity ratiov1/v0 changes from 0.9 to 1.1. Right plot: the case of a
dipping plane reflector; the velocity ratiov1/v0 changes from 0.8 to 1.2. In both cases, the
half-offseth is 2 km. velcon1-vlcvrd [CR]

Figure 9: Summation paths of
prestack residual migration for a se-
ries of depth diffractors. Residual
slownessv/vd is 1.2; offseth is 1 km.
This figure reproduces Etgen’s Figure
2.4. velcon1-vlcve3[CR]
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Figure 10: Summation paths of
prestack residual migration for a se-
ries of depth diffractors. Residual
slownessv/vd is 0.8; offseth is 1 km.
This figure reproduces Etgen’s Figure
2.5. velcon1-vlcve4[CR]

-4 0 4
x (km)

4
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where F is some arbitrary function, and if the eigenvalues of the matrix3 are nonzero, and one
of them is different in sign from the others, then equation (46) describes a wave-type process,
and its kinematic counterpart is the characteristic equation

n∑
i , j =1

3i j (ξ1, . . . ,ξn)
∂ψ

∂ξi

∂ψ

∂ξj
= 0 (47)

with the characteristic surface

ψ(ξ1, . . . ,ξn) = 0 (48)

corresponding to the wavefront. In velocity continuation problems, it is appropriate to choose
the variableξ1 to denote the timet , ξ2 to denote the velocityv, and the rest of theξ -variables to
denote one or two lateral coordinatesx. Without loss of generality, we can set the characteristic
surface to be

ψ = t − τ (x;v) = 0 , (49)

and use the theory of characteristics to reconstruct the main (second-order) part of the dynamic
differential equation from the corresponding kinematic equations. As in the preceding section,
it is convenient to consider separately the three different components of the prestack velocity
continuation process.

Dynamics of Zero-Offset Velocity Continuation

In the case of zero-offset velocity continuation, the characteristic equation is reconstructed
from equation (2) to have the form

∂ψ

∂v

∂ψ

∂t
+v t

(
∂ψ

∂x

)2

= 0 . (50)

According to formula (46), the corresponding dynamic equation is

∂2P

∂v ∂t
+v t

∂2P

∂x2
+ F

(
x,t ,v, P,

∂P

∂t
,
∂P

∂v
,
∂P

∂x

)
= 0 , (51)

where the function F remains to be defined. The simplest case ofF equal to zero corresponds
to Claerbout’s velocity continuation equation (Claerbout, 1986), derived in a different way.
Levin (1986a) provides the dispersion-relation derivation, conceptually analogous to applying
the method of characteristics.

In high-frequency asymptotics, the wavefieldP can be represented by the ray-theoretical
(WKBJ) approximation,

P(t ,x,v) ≈ A(x,v) f (t − τ (x,v)) , (52)
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whereA is the amplitude,f is the short (high-frequency) wavelet, and the functionτ satisfies
the kinematic equation (2). Substituting approximation (52) into the dynamic velocity con-
tinuation equation (51), collecting the leading-order terms, and neglecting theF function, we
arrive at the partial differential equation for amplitude transport:

∂A

∂v
= v τ

(
2
∂A

∂x

∂τ

∂x
+ A

∂2τ

∂x2

)
. (53)

The general solution of equation (53) follows from the theory of characteristics. It takes the
form

A(x,v) = A0(x0) exp

(∫ v

0
uτ (x,u)

∂2τ (x,u)

∂x2
du

)
, (54)

whereA0(x0) = A(x,0), and the integral corresponds to the curvilinear integration along the
corresponding velocity ray. In the case of a plane dipping reflector, the image of the reflector
remains plane in the velocity continuation process. Therefore, the second traveltime derivative
∂2τ (x,u)
∂x2 in (54) equals zero, and the exponential is equal to one. This means that the amplitude

of the image doesn’t change with the velocity along the velocity rays. This fact doesn’t agree
with the theory of conventional post-stack migration, which suggests downscaling the image
by the “cosine” factorτ0

τ
(Chun and Jacewitz, 1981; Levin, 1986b). The simplest way to

include the cosine factor in the velocity continuation equation is to set the functionF to be
1
t
∂P
∂v

. The resulting differential equation

∂2P

∂v ∂t
+v t

∂2P

∂x2
+

1

t

∂P

∂v
= 0 (55)

has the amplitude transport

A(x,v) =
τ0

τ
A0(x0) exp

(∫ v

0
uτ (x,u)

∂2τ (x,u)

∂x2
du

)
, (56)

corresponding to the differential equation

∂A

∂v
= v τ

(
2
∂A

∂x

∂τ

∂x
+ A

∂2τ

∂x2

)
− A

1

τ

∂τ

∂v
. (57)

Appendix B proves that the time-and-space solution of the dynamic velocity continuation
equation (55) coincides with the conventional Kirchhoff migration operator.

The finite-difference implementation of zero-offset velocity continuation resembles the
implementation of Claerbout’s 15-degree equation in a retarded coordinate system (Claerbout,
1976). This implementation is discussed in more detail in Appendix C.

Dynamics of Residual NMO

According to the theory of characteristics, described in the beginning of this section, the kine-
matic residual NMO equation (22) corresponds to the dynamic equation of the form

∂P

∂v
+

h2

v3 t

∂P

∂t
, (58)
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whose general solution is easily found to be

P(t ,x,v) = φ

(
t2

+
h2

v2

)
, (59)

whereφ is an arbitrary smooth function. The combination of dynamic equations (58) and
(55) leads to an approximate prestack velocity continuation with the residual DMO effect
neglected. To accomplish the combination, we can simply add the termh2

v3 t
∂2P
∂t2 to the left-

hand side of equation (55). This addition changes the kinematics of velocity continuation, but
doesn’t change the amplitude properties embedded in the transport equation (56).

Dynamics of Residual DMO

The case of residual DMO complicates building of a dynamic equation because of the essen-
tial nonlinearity of the kinematic equation (32). One possible way to linearize the problem
is to increase the order of the equation. In this case, the resultant dynamic equation would
include a term with the second-order derivative with respect to velocityv. Such an equation
describes two different modes of wave propagation and requires additional initial conditions
to separate them. Another possible way to linearize equation (32) is to approximate it at small
dip angles. For example, one can obtain a recursively accurate approximation by a continu-
ous fraction expansion of the square root in equation (32), analogously to Muir’s method in
conventional finite-difference migration (Claerbout, 1985). In this case, the dynamic equation
would contain only the first-order derivative with respect to the velocity and high-order deriva-
tives with respect to other parameters. The third, and probably the most attractive, method is
to change the domain of consideration. For example, we could switch from the common-offset
domain to the domain of common offset dip. This method implies a transformation similar
to slant stacking of common-midpoint gathers in the post-migration domain in order to obtain
the local offset dip information. Equation (32) transforms, with the help of the results from
Appendix A, to the form

v3 ∂τ

∂v
=

τ sin2γ

cos2α−sin2γ
, (60)

with

cos2α =

(
1+v2

(
∂τ

∂x

)2
)−1

, (61)

and

sin2α = v2
(
∂τ

∂h

)2
(

1+v2
(
∂τ

∂h

)2
)−1

. (62)

For a constant offset dip tanγ = v ∂τ
∂h , the dynamic analogue of equation (60) is the third-order

partial differential equation

v cot2γ
∂3P

∂t2∂v
−v3 ∂3P

∂x2∂v
+ t

∂3P

∂t2∂v
+v2 t

∂3P

∂x2∂t
= 0 . (63)
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Equation (63) doesn’t strictly comply with the theory of second-order linear differential equa-
tions. Its properties and practical applicability require further research.

CONCLUSIONS

I have derived kinematic and dynamic equations for residual time migration in the form of a
continuous velocity continuation process. This derivation explicitly decomposes prestack ve-
locity continuation into three parts corresponding to zero-offset continuation, residual NMO,
and residual DMO. These three parts can be treated separately both for simplicity of theo-
retical analysis and for practical purposes. It is important to note that in the case of a three-
dimensional migration, all three components of velocity continuation have different dimen-
sionality. Zero-offset continuation is fully 3-D. It can be split into two 2-D continuations
in the in- and cross-line directions. Residual DMO is a two-dimensional common-azimuth
process. Residual NMO is a 1-D single-trace procedure.

The dynamic properties of zero-offset velocity continuation are precisely equivalent to the
dynamic properties of conventional post-stack migration methods such as Kirchhoff migration.
Moreover, the Kirchhoff migration operator coincides with the integral solution of the velocity
continuation differential equation for continuation from the zero velocity plane.

This rigorous theory of velocity continuation can give us new insights into the methods
of prestack migration velocity analysis. However, its practical applicability faces several im-
portant problems. One of them concerns the comparative value of the residual DMO term.
Another problem is the choice of the implementation method for velocity continuation. Both
these problems require further research efforts.
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APPENDIX A

DERIVING THE KINEMATIC EQUATIONS

The main goal of this appendix is to derive the partial differential equation describing the
image surface in a depth-midpoint-offset-velocity space.

The derivation starts with observing a simple geometry of reflection in a constant-velocity
medium, shown in Figure A-1. The well-known equations for the apparent slowness

∂t

∂s
=

sinα1

v
, (A-1)

∂t

∂r
=

sinα2

v
(A-2)

relate the first-order traveltime derivatives for the reflected waves to the emergency angles of
the incident and reflected rays. Heres stands for the source location at the surface,r is the
receiver location,t is the reflection traveltime,v is the constant velocity, andα1 andα2 are the
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Figure A-1: Reflection rays in a con-
stant velocity medium (a scheme).
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angles shown in Figure A-1. Considering the traveltime derivative with respect to the depth of
the observation surfacez, we can see that the contributions of the two branches of the reflected
ray, added together, form the equation

−
∂t

∂z
=

cosα1

v
+

cosα2

v
. (A-3)

It is worth mentioning that the elimination of angles from equations (A-1), (A-2), and (A-3)
leads to the famousdouble-square-root equation,

−v
∂t

∂z
=

√
1−v2

(
∂t

∂s

)2

+

√
1−v2

(
∂t

∂r

)2

, (A-4)

published in the Russian literature by Belonosova and Alekseev (1967) and commonly used
in the form of a pseudo-differential dispersion relation (Clayton, 1978; Claerbout, 1985) for
prestack migration (Yilmaz, 1979; Popovici, 1995). Considered locally, equation (A-4) is
independent of the constant velocity assumption and enables prestack downward continuation
of reflected waves in heterogeneous media.

Introducing midpoint coordinatex =
s+r

2 and half-offseth =
r −s

2 , we can apply the chain
rule and elementary trigonometric equalities to formulas (A-1) and (A-2) and transform these
formulas to

∂t

∂x
=
∂t

∂s
+
∂t

∂r
=

2sinα cosγ

v
, (A-5)

∂t

∂h
=
∂t

∂r
−
∂t

∂s
=

2cosα sinγ

v
, (A-6)

whereα =
α1+α2

2 is the dip angle, andγ =
α2−α1

2 is the reflection angle (Clayton, 1978; Claer-
bout, 1985). Equation (A-3) transforms analogously to

−
∂t

∂z
=

2cosα cosγ

v
. (A-7)
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This form of equation (A-3) is used to describe the stretching factor of the waveform distortion
in depth migration (Tygel et al., 1994).

Dividing (A-5) and (A-6) by (A-7), we obtain

∂z

∂x
= − tanα , (A-8)

∂z

∂h
= − tanγ . (A-9)

Substituting formulas (A-8) and (A-9) into equation (A-7) yields yet another form of the
double-square-root equation:

−
∂t

∂z
=

2

v

√
1+

(
∂z

∂x

)2
√

1+

(
∂z

∂h

)2

, (A-10)

which is analogous to the dispersion relationship of Stolt prestack migration (Stolt, 1978).

The law of sines in the triangle formed by the incident and reflected ray leads to the explicit
relationship between the traveltime and the offset:

v t = 2h
cosα1 +cosα2

sin(α2 −α1)
= 2h

cosα

sinγ
. (A-11)

The combination of formulas (A-11), (A-5), and (A-6) forms the basic kinematic equation of
the offset continuation theory (Fomel, 1995):

∂t

∂h

(
t2

+
4h2

v2

)
= h t

(
4

v2
+

(
∂t

∂h

)2

−

(
∂t

∂x

)2
)

. (A-12)

Differentiating (A-11) with respect to the velocityv yields

−v2 ∂t

∂v
= 2h

cosα

sinγ
. (A-13)

Finally, dividing (A-13) by (A-7), we get

v
∂z

∂v
=

h

cosγ sinγ
. (A-14)

Equation (A-14) can be written in a variety of ways with the help of an explicit geometric
relationship between the half-offseth and the depthz,

h = z
sinγ cosγ

cos2α−sin2γ
, (A-15)

which follows directly from the trigonometry of the triangle in Figure A-1 (Fomel, 1995).
For example, equation (A-14) can be transformed to the form obtained recently by Liu and
Bleistein (1995):

v
∂z

∂v
=

z

cos2α−sin2γ
=

z

cosα1 cosα2
. (A-16)
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In order to separate different factors contributing to the velocity continuation process, we can
transform this equation to the form

v
∂z

∂v
=

z

cos2α
+

h2

z

(
1− tan2α tan2γ

)
=

= z

(
1+

(
∂z

∂x

)2
)

+
h2

z

(
1−

(
∂z

∂x

)2 (
∂z

∂h

)2
)

. (A-17)

Rewritten in terms of the vertical traveltime, it further transforms to equation (1) in the main
text. Yet another form of the kinematic velocity continuation equation follows from eliminat-
ing the reflection angleγ from equations (A-14) and (A-15). The resultant expression takes
the following form:

v
∂z

∂v
=

2(z2
+h2)√

z2 +h2sin22α+ z cos2α
=

z

cos2α
+

2h2√
z2 +h2sin22α+ z

. (A-18)

APPENDIX B

INTEGRAL VELOCITY CONTINUATION AND KIRCHHOFF MIGRATION

The goal of this appendix is to prove the equivalence between the result of the zero-offset ve-
locity continuation from zero velocity and the conventional post-stack migration. After solving
the velocity continuation problem in the frequency domain, I transform the solution back to
the time-and-space domain and compare it with the famous Kirchhoff migration operator.

Zero-offset migration based on velocity continuation is the solution of the boundary prob-
lem for equation (55) with the boundary condition

P|v=0 = P0 , (B-1)

whereP0(t0,x0) is the zero-offset seismic section, andP(t ,x,v) is the continued wavefield. In
order to find the solution of the boundary problem composed of (55) and (B-1), it is convenient
to apply the function transformationR(t ,x,v) = t P(t ,x,v), the time coordinate transformation
σ = t2/2, and, finally, the double Fourier transform over the squared time coordinateσ and
the spatial coordinatex:

R̂(v) =

∫ ∫
P(t ,x,v) exp(i�σ − ikx) t2dt dx . (B-2)

With the change of domain, equation (55) transforms to the ordinary differential equation

d R̂

dv
= i

k2

�
v R̂ , (B-3)
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and the boundary condition (B-1) transforms to the initial value condition

R̂(0) = R̂0 , (B-4)

where

R̂0 =

∫ ∫
P0(t0,x0) exp(i�σ0 − ikx0) t2

0 dt0dx0 , (B-5)

andσ0 = t2
0/2. The unique solution of the initial value (Cauchy) problem (B-3) - (B-4) is

easily found to be

R̂(v) = R̂0 exp

(
i

k2

2�
v2
)

. (B-6)

We can see that, in the transformed domain, velocity continuation is a unitary phase-shift
operator. An immediate consequence of this remarkable fact is the cascaded migration decom-
position of post-stack migration (Larner and Beasley, 1987):

exp

(
i

k2

2�
(v2

1 +·· ·+v2
n)

)
= exp

(
i

k2

2�
v2

1

)
· · · exp

(
i

k2

2�
v2

n

)
. (B-7)

Analogously, three-dimensional post-stack migration is decomposed into the two-pass proce-
dure (Jakubowicz and Levin, 1983):

exp

(
i

k2
1 +k2

2

2�
v2
)

= exp

(
i

k2
1

2�
v2
)

exp

(
i

k2
2

2�
v2
)

. (B-8)

The inverse double Fourier transform of both sides of equality (B-6) yields the integral
(convolution) operator

P(t ,x,v) =

∫ ∫
P0(t0,x0) K (t0,x0; t ,x,v)dt0dx0 , (B-9)

with the kernelK defined by

K =
t2
0/t

(2π )m+1

∫ ∫
exp

(
i

k2

2�
v2

+ ik (x − x0)−
i�

2
(t2

− t2
0)

)
dk d� , (B-10)

wherem is the number of dimensions inx andk (m equals 1 or 2). The inner integral on
the wavenumber axisk in formula (B-10) is a known table integral (Gradshtein and Ryzhik,
1994). Evaluating this integral simplifies equation (B-10) to the form

K =
t2
0/t

(2π )m/2+1vm

∫
(i�)m/2 exp

[
i�

2

(
t2
0 − t2

−
(x − x0)2

v2

)]
d� . (B-11)

The term (i�)m/2 is the spectrum of the anti-causal derivative operatord
dσ of the orderm/2.

Noting the equivalence(
∂

∂σ

)m/2

=

(
1

t

∂

∂t

)m/2

=

(
1

t

)m/2 (
∂

∂t

)m/2

, (B-12)
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which is exact in the 3-D case (m= 2) and asymptotically correct in the 2-D case (m= 1), and
applying the convolution theorem, we can transform operator (B-9) to the form

P(t ,x,v) =
1

(2π )m/2

∫
cosα

(vρ)m/2

(
−
∂

∂t0

)m/2

P0

(ρ
v

,x0

)
dx0 , (B-13)

whereρ =

√
v2 t2 + (x − x0)2, and cosα = t0/t . Operator (B-13) coincides with the Kirchhoff

operator of the conventional post-stack time migration (Schneider, 1978).

APPENDIX C

FINITE-DIFFERENCING POST-STACK VELOCITY CONTINUATION

The differential equation (55), with the first-order derivative term neglected, has the mathe-
matical form almost similar to the 15-degree wave extrapolation equation. Its finite-difference
implementation, first described by Claerbout (1986) and Li (1986), is analogous to that of the
15-degree equation (Claerbout, 1976), except for the variant coefficients. We can write the
implicit unconditionally stable finite-difference scheme for the velocity continuation equation
in the form

(I +ai +1
j +1T)Pi +1

j +1 − (I −ai +1
j T)Pi +1

j − (I −ai
j +1T)Pi

j +1 + (I +ai
j T)Pi

j = 0 , (C-1)

where indexi corresponds to the time dimension, indexj corresponds to the velocity dimen-
sion, P is a vector along the midpoint direction,I is the identity matrix,T represents the
second-derivative operator in midpoint, and the coefficienta has the expression

ai
j = vj ti

1v1t

(1x)2
. (C-2)

In the two-dimensional case, equation (C-1) reduces to a tridiagonal system of linear equa-
tions, which can be easily inverted. The direction of stable propagation is either forward in
velocity and backward in time or backward in velocity and forward in time as shown in Figure
C-1.

Figure C-1: Finite-difference scheme
for the velocity continuation equa-
tion. A stable propagation is either
forward in velocity and backward in
time (left plot) or backward in veloc-
ity and forward in time (right plot).
velcon1-vlcfds [NR]
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The following simple ratfor program implements the finite-difference velocity continua-
tion. It is slightly modified from Jon Claerbout’s original version and has a more straightfor-
ward loop structure than Zhiming Li’sCaso15 program.
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module velconx {
use diffxx2
use tridiag
real, dimension (nx), allocatable :: r, ld, rd, rhs
real, dimension (:,:), pointer, private :: pt
real :: v1, v2, t0, dt
real, private :: dv, a0
real, parameter, private :: b = 0.122996
integer :: nt, nx, nv, inv

#% _init (inv, v1,v2,t0, nt,nx,nv, dt,dx)
real, intent (in) :: dx
allocate (pt(nt,nx))
dv = (v1-v2)/nv; a0=(4.*dx*dx)/(dt*dv)
call rtris_init (nx)

#% _lop (p1 (nt,nx), p2 (nt,nx))
integer :: iv1, iv2, ivs, iv
integer :: it1, it2, its, it
real :: v, t, a, b1, b2, offd, diag
real, dimension (:), pointer :: l
if (adj) {

iv1=1; iv2=nv; ivs= 1
it1=nt; it2= 2; its=-1; pt = p2

} else {
iv1=nv; iv2= 1; ivs=-1
it1= 2; it2=nt; its= 1; pt = p1

}
do iv=iv1,iv2,ivs { v=sqrt(v2+(iv-0.5)*dv); rhs = 0.
do it=it1,it2,its { t=t0+dt*(it-1)

select case (inv) {
case (0)

t=sqrt(t)*v; a=a0/t ! Pseudounitary
case(1)

t=t*v; a=a0/v ! Claerbout’s
case default

a=a0/(t*v); t=v ! True-amplitude
}
b1=b*a+t; b2=b*a-t; offd=a-b2; diag=a-2*b2
l => pt(it,:); call diffxx(l,ld)
rhs = rhs + a*l + b1*ld
call tris(offd,b2,diag,b2,offd,rhs,r); call diffxx(r,rd)
rhs = a*r + b1*rd - a*l - b2*ld ; l = r

}}
if (adj)

p1 = p1 + pt
else

p2 = p2 + pt
#% _close

deallocate (pt)
call rtris_close ()

}

The parameteradj controls the direction of propagation. It is equal to zero for backward
propagation, which corresponds to the modeling (demigration) operator. The parameterinv

controls the amplitude behavior by introducing time-dependent divisors to equation (C-1).
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For inv=1 , the program implements Claerbout’s velocity continuation equation. Forinv=2 ,
it implements the modified equation (55). The value ofinv=0 corresponds to the intermediate
case. It leads to thepseudounitaryvelocity continuation, for which the reverse continuation is
the exact adjoint operator (Fomel, 1996). We can easily test different types of amplitude be-
havior with the dot-product test and its modifications. The parameterb is required for the “1/6
trick” introduced by Claerbout (1985) to increase the accuracy of the second-derivative oper-
atorT in (C-1). The second-order difference in subroutinediffxx implies simple zero-slope
boundary conditions on the midpoint coordinate. The call tortris solves the triadiagonal
system.

In order to test the performance of the finite-difference velocity continuation method, I use
a simple synthetic model fromBasic Earth Imaging (Claerbout, 1995). The “reflectivity”
model is shown in Figure C-2. It contains several features challenging the migration perfor-
mance: dipping beds, unconformity, syncline, anticline, and fault.

Figure C-2: Synthetic model for
testing finite-difference migra-
tion by velocity continuation.
velcon1-vlcmod[ER]

The following series of figures compares invertability of different migration methods. In
all cases, constant-velocity modeling (demigration) by the adjoint operator was followed by
migration with the correct velocityv=1500 m/sec. Figures C-3, C-4, C-5, C-6 show the re-
sults of modeling and migration with fast (nearest-neighbor) Kirchhoff, antialiased Kirchhoff
(Fomel and Biondi, 1995), phase-shift (Gazdag), and Stolt methods respectively. These fig-
ures should be compared with Figure C-7, showing the analogous result of the finite-difference
velocity continuation. The comparison reveals a remarkable invertability of velocity contin-
uation, which reconstructs accurately the main features and frequency content of the model.
Since the forward operators were different for different migrations, this comparison did not test
the migration properties themselves. For such a test, I compare the results of the phase-shift
and velocity-continuation migrations after Stolt modeling. The result of velocity continuation,
shown in Figure C-8 is at least as accurate as that of the phase-shift method.

We can conclude that finite-difference velocity continuation is an attractive migration
method. It possesses remarkable invertability properties, which might be useful in some appli-
cations. According to Li (1986), the computational speed of this method compares favorably
with that of Stolt migration. The advantage is apparent for cascaded migration or migration
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Figure C-3: Result of modeling and migration with the fast Kirchhoff method. Left plot
shows the reconstructed model. Right plot compares the average amplitude spectrum of the
true model with that of the reconstructed image.velcon1-vlckir [ER]

Figure C-4: Result of modeling and migration with the antialiased Kirchhoff method. Left
plot shows the reconstructed model. Right plot compares the average amplitude spectrum of
the true model with that of the reconstructed image.velcon1-vlckaa[ER]
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Figure C-5: Result of modeling and migration with the phase-shift method. Left plot shows
the reconstructed model. Right plot compares the average amplitude spectrum of the true
model with that of the reconstructed image.velcon1-vlcpha[ER]

Figure C-6: Result of modeling and migration with Stolt method. Left plot shows the recon-
structed model. Right plot compares the average amplitude spectrum of the true model with
that of the reconstructed image.velcon1-vlcsto[ER]
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Figure C-7: Result of modeling and migration with the finite-difference velocity continuation.
Left plot shows the reconstructed model. Right plot compares the average amplitude spectrum
of the true model with that of the reconstructed image.velcon1-vlcvel [ER]

with multiple velocity models. In these cases, the cost of Stolt migration increases in direct
proportion with the number of velocity models, while the cost of velocity continuation stays
the same.
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Figure C-8: Top plot: modeling with Stolt method, migration with the phase-shift method.
Bottom plot: modeling with Stolt method, migration with the finite-difference velocity contin-
uation. Left plots show the reconstructed models. Right plots compare the average amplitude
spectrum of the true model with that of the reconstructed image.velcon1-vlcspv[ER]


