
Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 301–??

300



Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 301–??

Helical preconditioning and splines in tension

Sergey Fomel1

ABSTRACT

Splines in tension are smooth interpolation surfaces whose behavior in unconstrained re-
gions is controlled by the tension parameter. I show that such surfaces can be efficiently
constructed with recursive filter preconditioning and introduce a family of corresponding
two-dimensional minimum-phase filters. The filters are created by spectral factorization
on a helix.

INTRODUCTION

The method of minimum curvature is an old and ever-popular approach for constructing
smooth surfaces from irregularly spaced data (Briggs, 1974). The surface of minimum cur-
vature corresponds to the minimum of the Laplacian power or, in an alternative formulation,
satisfies the biharmonic differential equation. Physically, it models the behavior of an elastic
plane. In the one-dimensional case, the minimum curvature method leads to the natural cubic
spline interpolation (de Boor, 1978). In the two-dimensional case, a surface can be interpo-
lated with biharmonic splines (Sandwell, 1987) or gridded with an iterative finite-difference
scheme (Swain, 1976). Claerbout (1999) suggests a straightforward least-squares optimization
approach employing an iterative conjugate-gradient algorithm.

In most of the practical cases, the minimum curvature method produces a visually pleasing
smooth surface. However, in cases of large changes in the surface gradient, the method can
create strong artificial oscillations in the unconstrained regions. Switching to lower-order
methods, such as minimizing the power of the gradient, solves the problem of extraneous
inflections, but also removes the smoothness constraint and leads to gradient discontinuities
(Fomel and Claerbout, 1995). A remedy, suggested by Schweikert (1966), is known assplines
in tension. Splines in tension are constructed by minimizing a modified quadratic form that
includes a tension term. Physically, the additional term corresponds to tension in elastic plates
(Timoshenko and Woinowsky-Krieger, 1968). Smith and Wessel (1990) developed a practical
algorithm of 2-D gridding with splines in tension and implemented it in the GMT software
package.2

Fomel et al. (1997) have recently shown that an iterative interpolation algorithm can be
greatly accelerated by preconditioning with recursive multidimensional filters defined on a

1email: sergey@sep.stanford.edu
2http://www.soest.hawaii.edu/gmt/
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helix (Claerbout, 1998a,b). To construct a minimum-phase filter suitable for recursive filtering,
one can apply an efficient spectral factorization method (Sava et al., 1998).

In this paper, I develop an application of helical preconditioning to gridding with splines
in tension. I introduce a family of 2-D minimum-phase filters for different degrees of ten-
sion. The filters are constructed by spectral factorization of the corresponding finite-difference
forms. In the case of zero tension (the original minimum-curvature formulation), we obtain
a minimum-phase version of the Laplacian filter. The case of infinite tension leads to spec-
tral factorization of the Laplacian and produces the knownhelical derivativefilter (Claerbout,
1999; Zhao, 1999).

The tension filters can be applied not only for interpolation but also for preconditioning in
any estimation problems with smooth models. Tomographic velocity estimation is an obvious
example of such an application (Woodward et al., 1998).

MATHEMATICAL THEORY OF SPLINES IN TENSION

The traditional minimum-curvature criterion implies seeking a two-dimensional surfacef (x, y)
in regionD, which corresponds to the minimum of the Laplacian power:∫∫

D

∇
2 f (x, y)dx dy, (1)

where∇
2 denotes the Laplacian operator:∇

2
=

∂2

∂x2 +
∂2

∂y2 .

Alternatively, we can seekf (x, y) as the solution of the biharmonic differential equation

(∇2)2 f (x, y) = 0 . (2)

Equation (2) corresponds to the normal system of equations in the least-square optimization
problem. Briggs (1974) derives it directly from (1) with the help of Gauss’s theorem.

Formula (1) approximates the strain energy of a thin elastic plate (Timoshenko and Woinowsky-
Krieger, 1968). Taking tension into account modifies both the energy formula (1) and the cor-
responding equation (2). Smith and Wessel (1990) suggest the following form of the modified
equation: [

(1− t)(∇2)2
− t(∇2)

]
f (x, y) = 0 , (3)

where the tension parametert ranges from 0 to 1. Zero tension leads to the biharmonic equa-
tion (2) and corresponds to the minimum curvature construction. The case oft = 1 corre-
sponds to infinite tension. Although infinite tension is physically impossible, the resulting
Laplace equation does have a physical interpretation of a steady-state temperature distribu-
tion. An important property of harmonic functions (solutions of the Laplace equation) is that
they cannot have local minima and maxima in the free regions. With respect to interpolation,
this means that, in the case oft = 1, the interpolation surface will be constrained to have its
local extrema only at the input locations.
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To interpolate an irregular set of data values,fk at points (xk, yk), we need to solve equa-
tion (3) under the constraint

f (xk, yk) = fk . (4)

An iterative solution of this problem can be greatly accelerated by preconditioning (Fomel,
1997; Fomel et al., 1997). IfA is the discrete filter representation of the differential operator
in equation (3), and we can find a minimum-phase filterD whose autocorrelation is equal to
A, then an appropriate preconditioning operator is a recursive inverse filtering with the filter
D. Formulating the problem in helical coordinates (Claerbout, 1998a,b) allows us to perform
both the spectral factorization ofA and inverse filtering withD.

FINITE DIFFERENCES AND SPECTRAL FACTORIZATION

In the one-dimensional case, a finite-difference representation of the squared Laplacian can
be defined as a centered 5-point filter with coefficients (1,−4,6,−4,1). On the same grid,
the Laplacian operator can be approximated to the same order of accuracy with the filter
(1/12,−4/3,5/2,−4/3,1/12). Combining the two filters in accordance with equation (3) and
performing a spectral factorization with one of the standard methods (Claerbout, 1976, 1992),
we can obtain a 3-point minimum-phase filter, suitable for inverse filtering. Figure 1 shows
a family of one-dimensional minimum-phase filters for different values of the parametert .
Figure 2 demonstrates the interpolation results obtained with these filters on a simple one-
dimensional synthetic. As expected, a small tension value (t = 0.01) produces a smooth inter-
polation, but creates artificial oscillations in the unconstrained regions around sharp changes
in the gradient. The value oft = 1 leads to linear interpolation with no extraneous inflections,
but with discontinuous derivatives. Intermediate values oft allow us to achieve a compromise:
a smooth surface with constrained oscillations.

Figure 1: One-dimensional
minimum-phase filters for differ-
ent values of the tension parameter
t . The filters range from the second
derivative for t = 0 to the first
derivative for t = 1. tension-otens
[ER]

To design the corresponding filters in two dimensions, I define the finite-difference repre-
sentation of operator (3) on a 5-by-5 stencil. The filters coefficients are chosen with the help
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Figure 2: Interpolating a simple one-dimensional synthetic with recursive filter precondition-
ing for different values of the tension parametert . The input data is shown on the top. The
interpolation results range from a natural cubic spline interpolation fort = 0 to linear interpo-
lation for t = 1. tension-int [ER,M]
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of the Taylor expansion to match the desired spectrum of the operator around the zero spatial
frequency. The matching conditions lead to the following set of coefficients for the squared
Laplacian:

-1/60 2/5 7/30 2/5 -1/60
2/5 -14/15 -44/15 -14/15 2/5
7/30 -44/15 57/5 -44/15 7/30
2/5 -14/15 -44/15 -14/15 2/5

-1/60 2/5 7/30 2/5 -1/60

= 1/60

-1 24 14 24 -1
24 -56 -176 -56 24
14 -176 684 -176 14
24 -56 -176 -56 24
-1 24 14 24 -1

Laplacian representation with the same order of accuracy has the coefficients

-1/360 2/45 0 2/45 -1/360
2/45 -14/45 -4/5 -14/45 2/45

0 -4/5 41/10 -4/5 0
2/45 -14/45 -4/5 -14/45 2/45

-1/360 2/45 0 2/45 -1/360

= 1/360

-1 16 0 16 -1
16 -112 -288 -112 16
0 -288 1476 -288 0
16 -112 -288 -112 16
-1 16 0 16 -1

For the sake of simplicity, I assumed an equal physical spacing inx andy directions. The coef-
ficients can be easily adjusted for anisotropic spacing. Figures 3 and 4 show the spectra of the
finite-difference representations of operator (3) for the different values of the tension parame-
ter. The finite-different spectra appear as fairly isotropic. They match the exact expressions at
small frequencies.
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Figure 3: Spectra of the finite-difference splines-in-tension schemes for different values of the
tension parameter (contour plots).tension-specc[CR]

Regarding the finite-difference operators as two-dimensional auto-correlations and apply-
ing the efficient Wilson-Burg method of spectral factorization (Claerbout, 1999; Sava et al.,
1998), I obtain two-dimensional minimum-phase filters suitable for inverse filtering. The ex-
act filters contain many coefficients, which rapidly decrease in magnitude at a distance from
the first coefficient. For reasons of efficiency, it is advisable to restrict the shape of the filter
so that it contains only the valuable coefficients. Keeping all the coefficients that are 1000
times smaller in magnitude than the leading coefficient creates a 53-point filter fort = 0 and
a 35-point filter fort = 1, with intermediate filter lengths for intermediate values oft . When
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Figure 4: Spectra of the finite-difference splines-in-tension schemes for different values of the
tension parameter (cross-section plots). Dashed lines show the exact spectra for continuous
operators.tension-specp[CR]

the ratio is changed to 200, we obtain 25- and 16-point filters, respectively. The restricted
filters don’t factor the autocorrelation exactly, but provide an effective approximation of the
exact factors. As outputs of the Wilson-Burg spectral factorization process, they obey the
minimum-phase condition.

Figure 5 shows the two-dimensional filters for different values oft and illustrates inverse
recursive filtering, which is the essence of the helix method (Claerbout, 1999, 1998a,b). The
case oft = 1 leads to the filter known ashelix derivative(Claerbout, 1999; Zhao, 1999). The
filter values are spread mostly on two columns. The other boundary case oft = 0 leads to a
three-column filter, which serves as the minimum-phase version of the Laplacian. As expected
from the theory, the inverse impulse response of this filter is noticeably smoother and wider
than the inverse response of the helix derivative. Filters corresponding to intermediate values
of t exhibit intermediate properties. Theoretically, the inverse impulse response of the filter
corresponds to the Green function of equation (3). The theoretical Green function for the case
of t = 1 is

G =
1

2π
lnr , (5)

wherer is the distance from the impulse:r =

√
(x − xk)2

+ (y− yk). In the case oft = 0, the
Green function is smoother at the origin:

G =
1

8π
r 2 lnr . (6)

The theoretical Green function expression for an arbitrary value oft is not known, but we can
assume that its smoothness lies between the two boundary conditions.

In the next section, I illustrate an application of helical inverse filtering to a two-dimensional
interpolation problem.
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Figure 5: Inverse filtering with the tension filters. The left plots show the inputs composed of
filters and spikes. Inverse filtering turns filters into impulses and turns spikes into inverse filter
responses (middle plots). Adjoint filtering creates smooth isotropic shapes (right plots). The
tension parameter takes values 0, 0.3, 0.7, and 1 (from top to bottom).tension-splin[ER,M]



308 Fomel

INTERPOLATION EXAMPLE

I chose the familiar Galilee dataset (Fomel and Claerbout, 1995; Claerbout, 1999) for a sim-
ple interpolation illustration. The data was collected on a bottom sounding survey of the Sea
of Galilee in Israel (Ben-Avraham et al., 1990). The data contain a number of noisy, erro-
neous and inconsistent measurements, which present a challenge for the traditional estimation
methods. Addressing this challenge completely goes beyond the scope of this paper.

Figure 6 shows the data after a nearest-neighbor binning to a regular grid. The data was
then passed to an interpolation program to fill the empty bins. The results (for different values
of t) are shown in Figures 7 and 8. Interpolation with the minimum-phase Laplacian (t = 0)
creates a relatively smooth interpolation surface but plants artificial little mountains around the
edge of the sea. This effect is caused by large gradient changes and is similar to the sidelobe
effect in the one-dimensional example (Figure 2). It is clearly seen in the cross-section plots in
Figure 8. Interpolation with the helix derivative (t = 1) is free from the sidelobe artifacts, but
it also produces an undesirable non-smooth behavior in the middle part of the image. As in the
one-dimensional example, intermediate tension allows us to achieve a compromise: smooth
interpolation in the middle and constrained behavior at the sides of the sea bottom.

Figure 6: The Sea of Galilee dataset
after a nearest-neighbor binning. The
binned data is used as an input for the
missing data interpolation program.
tension-mesh[ER]
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Figure 7: The Sea of Galilee dataset after missing data interpolation with helical precondi-
tioning. Different plots correspond to different values of the tension parameter. An east-west
derivative filter was applied to illuminate the surface.tension-gal[ER,M]
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Figure 8: Cross-sections of the Sea of Galilee dataset after missing data interpolation with
helical preconditioning. Different plots correspond to different values of the tension parameter.
tension-cross[ER]
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CONCLUSIONS

Splines in tension represent an approach to constrained interpolation of smooth surfaces. The
constraint is embedded in a user-specified tension parameter. The two boundary values of
tension correspond to cubic and linear interpolation.

By applying the method of spectral factorization on a helix, I have been able to define a
family of two-dimensional minimum-phase filters, which correspond to the spline interpola-
tion problem with different values of tension. These filters contribute to our collection of use-
ful helical filters. They can be used for preconditioning interpolation problems with smooth
surfaces and, in general, for preconditioning geophysical estimation problems with smooth
models.
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