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Evaluating the Stolt stretch parameter

Sergey Fomel1

ABSTRACT

The Stolt migration extension to a varying velocity case (Stolt stretch) implies describing
a vertical heterogeneity by a constant parameter (W). This paper exploits the connection
between modified dispersion relations and traveltime approximations to derive an explicit
expression forW. The expression provides theoretically the highest possible accuracy
within the Stolt stretch framework. Applications considered include optimal partitioning
of the velocity distribution for the cascaded migrations and extension of the Stolt stretch
method to transversally isotropic models.

INTRODUCTION

Stolt migration is regarded as the fastest post-stack migration method of all the known algo-
rithms. A known price for that speed is the constant velocity assumption. The time-stretching
trick proposed in Stolt’s classic paper (1978) provides an approximate extension of the method
to a variable velocity case. Stolt stretch implicitly transforms reflection traveltime curves to
fit an approximate constant velocity pattern (Levin, 1983, 1985; Claerbout, 1985). In other
words, the wave equation with variable velocity is transformed by a particular stretch of the
time axis to an approximate differential equation with constant coefficients. The two constant
coefficients are an arbitrarily chosen frame velocity and a specific nondimensional parameter
(W in Stolt’s original notation). In the constant velocity caseW is equal to 1, and the trans-
formed equation coincides with the exact constant velocity wave equation. In variable velocity
media,W is generally assumed to lie between 0 and 1. As shown by Beasley et al. (1988),
the cascadedf–kmigration approach can move the value ofW for each migration in a cascade
closer to 1, thus increasing the accuracy of the Stolt stretch approximation.

The W factor was defined by Stolt (1978) as an approximate average of a complicated
function. Stolt’s definition cannot be used directly for computation because it includes a com-
bined dependence on both time and space coordinates. Therefore, in practice, the estimation
of this factor is always replaced by a heuristic guess. That’s why Levin (1983) called theW
parameter “infamous” (joking, of course), and Beasley et al. (1988) called it it “esoteric.”

This paper develops a method to evaluate the Stolt stretch parameter explicitly. The main
idea is to constrain the parameter by fitting the exact and approximated traveltime functions.
In the case of isotropic interpretation, theW parameter is connected to the “parameter of het-
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erogeneity” (Malovichko, 1978; Castle, 1988; de Bazelaire, 1988). In the case of anisotropic
(transversally isotropic) interpretation, it can be related to the “parameter of anellipticity”
(Muir and Dellinger, 1985; Dellinger et al., 1993).

STOLT STRETCH THEORY

In order to simplify the references, I will begin with the textbook definitions of the Stolt
migration method. The reader familiar with Stolt stretch theory can skip this section and go
on to a new piece of theory in the next one.

Post-stack seismic migration is theoretically a two-stage process consisting of wavefield
downward continuation in depthz based on the wave equation

∂2P

∂x2
+

∂2P

∂z2
=

1

v2(x,z)

∂2P

∂t2
(1)

and the imaging conditiont = 0 (here the velocityv is twice as small as the actual wave
velocity). Stolt time migration performs both stages in one step, applying the frequency-
domain operator

P̃0 (kx,ω0) = P̃v (kx,ωv (k,ω0))

∣∣∣∣dωv (k,ω0)

dω0

∣∣∣∣ , (2)

where

P̃v (kx,ωv) =

∫ ∫
Pv (x,tv)exp(i ωvtv − ikxx)dtv dx ,

P̃0 (kx,ω0) =

∫ ∫
P0 (x,t0)exp(i ω0t0 − ikxx)dtv dx ,

P0 (x,t0) stands for the initial zero-offset (stacked) seismic section defined on the surfacez= 0,
Pv (x,tv) is the time-migrated section, andtv is the vertical traveltime

tv =

∫ z

0

dz

v(x,z)
. (3)

The functionωv (k,ω0) in (2) corresponds to the dispersion relation of the wave equation (1)
and in the constant velocity case has the explicit expression

ωv (k,ω0) = sign(ω0)
√

ω2
0 −v2k2 . (4)

The choice of the sign in (4) is essential to distinguish between upgoing and downgoing waves.
It is the upgoing part of the wave field that is used in migration.

For the case of a varying velocity Stolt (1978) suggested the following change of the time
variable (referred to in the literature asStolt stretch):

s(t) =

(
2

v2
0

∫ t

0
ηdτ

)1/2

, (5)



SEP–84 Stolt stretch 327

wherev0 is an arbitrarily chosen constant velocity, andη is a function defined by the parametric
expressions

η(ζ ) =

∫ ζ

0
v(x,z)dz , τ (ζ ) =

∫ ζ

0

dz

v(x,z)
. (6)

With the stretch (5), seismic time migration can be related to the transformed wave equation

∂2P

∂x2
+ W

∂2P

∂ ẑ2
+2

(1− W)

v0

∂2P

∂ ẑ∂ t̂
=

(2− W)

v2
0

∂2P

∂ t̂2
. (7)

Hereẑ and t̂ are the transformed depth and time coordinates that possess the following prop-
erty: if ẑ = 0, t̂ = s(t0), and if t̂ = 0, ẑ = v0s(tv). W is a varying coefficient defined as

W = a2
+2b(1−a2) , (8)

where

b =
η(z)

η(ζ )
, a =

s(τ )v0v(x,z)

η(ζ )
, τ =

∫ ζ

0

dz

v(x,z)
= t +

∫ z

0

dz

v(x,z)
.

Stolt’s idea was to replace the slowly varying parameterW with its average value. Thus equa-
tion (7) is approximated by an equation with constant coefficients, which has the dispersion
relation

ω̂v (k,ω̂0) =

(
1−

1

W

)
ω̂0 +

sign(ω̂0)

W

√
ω̂2

0 − Wv2
0k2 . (9)

Stolt’s approximate method for migration in heterogeneous media consists of the following
steps:

1. stretching the time variable according to (5),

2. interpolating the stretched time to a regular grid,

3. double Fourier transform,

4. f–k time migration by operator (2) with the dispersion relation (9),

5. inverse Fourier transform,

6. inverse stretching (shrinking) the vertical time variable on the migrated section.

The value ofW must be chosen prior to migration. According to Stolt’s original definition
(8), the depth variablez gradually changes in the migration process from zero toζ , causing
the coefficientb in (8) to change monotonically from 0 to 1. If the velocityv monotonically
increases with depth, thenη′′(z) =

∂v
∂z ≥ 0, and the average value ofb is

b̄ =
1

ζη(ζ )

∫ ζ

0
η(z)dz≤

1

ζη(ζ )

∫ ζ

0
η(ζ )

z

ζ
dz=

1

2
. (10)
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As follows from (8) and (10), in the case of monotonically increasing velocity, the average
value ofW has to be less than 1 (W equals 1 in a constant velocity case). Analogously, in
the case of a monotonically decreasing velocity,W is always greater than 1. In practice,W is
included in migration routines as a user-defined parameter, and its value is usually chosen to
be somewhere in the range of 1/2 to 1.

In this paper I will describe a straightforward way to determine the most appropriate value
of W for a given velocity distribution.

A useful tool for that purpose is Stewart Levin’s formula for the traveltime curve. Levin
(1985) applied the stationary phase technique to the dispersion relation (9) to obtain an ex-
plicit formula for the summation curve of the integral migration operator analogous to the
Stolt stretch migration. The formula evaluates the summation path in the stretched coordinate
system, as follows:

s(t0) =

(
1−

1

W

)
s(tv)+

1

W

√
s2 (tv)+ W

(x − x0)2

v2
0

. (11)

Herex0 is the midpoint location on a zero-offset seismic section, andx is the space coordinate
on the migrated section. Formula (11) shows that, with the stretch of the time coordinate,
the summation curve has the shape of a hyperbola with the apex at{x,s(tv)} and the center
(the intersection of the asymptotes) at

{
x,
(
1−

1
W

)
s(tv)

}
. In the case of homogeneous media,

W = 1, s(t) ≡ t , and (11) reduces to the well-known hyperbolic diffraction traveltime curve.
It is interesting to note that inverting formula (11) fors(tv) determines the impulse response
of the migration operator, which can be interpreted as the wavefront from a point source in the
{x, ẑ, t̂} domain of equation (7):

ẑ− ẑ0 =

(
1

Q
−1

)
R±

1

Q

√
R2 − Q (x − x0)2 , (12)

whereR = v0t̂ , andQ = 2− W. According to equation (12), wavefronts from a point source
in the stretched coordinates forW < 2 have an elliptic shape, with the center of the ellipse at

{x, ẑ0 +

(
1
Q −1

)
R} and the semi-axesax =

R
√

Q
andaz =

r
Q . The ellipses stretch differently

for W < 1 andW > 1 (Figure 1). In the upper part that corresponds to the upgoing waves,
they look nearly spherical, since the radius of the front curvature at the top apex equals the
distance from the source.

EVALUATING THE W PARAMETER AND STOLT STRETCH ACCURACY

Formula (11) belongs to the three-parameter class of traveltime approximations. The key result
of this paper uses a remarkable formal similarity between (11) and Malovichko’s approxima-
tion for the reflection traveltime curve in vertically inhomogeneous media (Malovichko, 1978;
Castle, 1988; de Bazelaire, 1988) defined by

t0 =

(
1−

1

S(tv)

)
tv +

1

S(tv)

√
t2
v + S(tv)

(x − x0)2

v2
rms(tv)

, (13)
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Figure 1: Wavefronts from a point
source in the stretched coordinate
system. Left: velocity decreases
with depth (W=1.5). Right: ve-
locity increases with depth (W=0.5).
stoltst-stofro [CR]
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wherevrms stands for the effective (root mean square) velocity along the vertical ray

v2
rms(tv) =

η(z)

tv
=

1

tv

∫ tv

0
v2dtv , (14)

andS is theparameter of heterogeneity:

S(tv) =
1

v4
rmstv

∫ tv

0
v4dtv . (15)

In terms of theSparameter, the variance of the squared velocity distribution along the vertical
ray is

σ 2
=

1

tv

∫ tv

0
v4dtv −v4

rms = v4
rms(S−1) . (16)

As follows from equality (16),S ≥ 1 for any type of velocity distribution (S equals 1 in a
constant velocity case). For most of the distributions occurring in practice,S ranges between
1 and 2.

Malovichko’s formula (13) is known as the most accurate three-parameter approximation
of the NMO curve in vertically inhomogeneous media. Since reflection from a horizontal
reflector in that class of media is kinematically equivalent to diffraction from a point, formula
(13) can be similarly regarded as an approximation of the summation path of the post-stack
Kirchhoff-type migration operator. In this case, it has the same meaning as formula (11). An
important difference between the two formulae is the fact that equation (13) is written in the
initial coordinate system and includes coefficients varying with depth, while equation (11)
applies the transformed coordinate system and constant coefficients. Using this fact, the rest
of this section compares the accuracy of the approximations and relates Stolt’sW factor to
Malovichko’s parameter of heterogeneity.

Equations (11) and (13) both approximate the traveltime curve in the neighborhood of the
vertical ray. Therefore, to compare their accuracy, it is appropriate to consider series expansion
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of the diffraction traveltime in the vicinity of the vertical ray2:

t0(l ) = t0|l=0 +
1

2

d2t0
dl2

∣∣∣∣
l=0

l 2
+

1

4!

d4t0
dl4

∣∣∣∣
l=0

l 4
+·· · , (17)

where l = x − x0. Expansion (17) contains only even powers ofl because of the obvious
symmetry oft0 as a function ofl .

The special choice of parameterstv, vrms, and S allows Malovichko’s formula (13) to
provide correct values for the first three terms of expansion (17):

t0|l=0 = tv ; (18)

d2t0
dl2

∣∣∣∣
l=0

=
1

tvv2
rms(tv)

; (19)

d4t0
dl4

∣∣∣∣
l=0

= −
3S(tv)

t3
vv4

rms(tv)
. (20)

Considering Levin’s formula (11) as an implicit definition of the functiont0 (tv), we can itera-
tively differentiate it following the rules of calculus:

ds

dl

∣∣∣∣
l=0

= s′ (t0)
dt0
dl

∣∣∣∣
l=0

= 0 ;

d2s

dl2

∣∣∣∣
l=0

=

(
s′ (t0)

d2t0
dl2

+s′′ (t0)

(
dt0
dl

)2
)∣∣∣∣∣

l=0

= s′ (tv)
d2t0
dl2

∣∣∣∣
l=0

=
1

v2
0 s(tv)

; (21)

d3s

dl3

∣∣∣∣
l=0

=

(
3s′′ (t0)

dt0
dl

d2t0
dl2

+s′ (t0)
d3t0
dl3

+s′′′ (t0)

(
dt0
dl

)3
)∣∣∣∣∣

l=0

= 0

d4s

dl4

∣∣∣∣
l=0

=

(
6s′′′ (t0)

(
dt0
dl

)2 d2t0
dl2

+3s′′ (t0)

(
d2t0
dl2

)2

+4s′′ (t0)
dt0
dl

d3t0
dl3

+

+s′ (t0)
d4t0
dl4

+sI V (t0)

(
dt0
dl

)4
)∣∣∣∣∣

l=0

=

=

(
s′′ (tv)

(
d2t0
dl2

)2

+s′ (tv)
d4t0
dl4

)∣∣∣∣∣
l=0

= −
3W

v4
0 s3 (t0)

. (22)

Substituting the definition of Stolt stretch transform (5) into (21) produces an equality similar
to (19), which means that approximation (11) is theoretically accurate in depth-varying veloc-
ity media up to the second term in (17). It is this remarkable property that proves the validity

2Though a power series of the type (17) is not the best possible representation of the traveltime curve, it
is quite suitable for comparing different approximations in the vicinity of the vertical ray. In the post-stack
migration problem, those approximations imply that the reflector dips have zero mean value. If we assumed
that the mean dip value on a particular seismic section were different from zero, we could apply expansions
different from expansion (17). That curious option is beyond the scope of this paper.
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of the Stolt stretch method (Levin, 1983; Claerbout, 1985). Formula (11) will be accurate up
to the third term if the value of the fourth-order traveltime derivative in (22) coincides with
(20). Substituting equation (20) into (22) transforms the latter to the form

1− W

v2
0 s2 (tv)

=
v2 (tv)− S(tv) v2

rms(tv)

v4
rms(tv) t2

v

. (23)

It is now easy to derive from equation (23) the desired explicit expression for the Stolt stretch
parameterW, as follows:

W = 1−
v2

0 s2 (tv)

v2
rms(tv) t2

v

(
v2 (tv)

v2
rms(tv)

− S(tv)

)
. (24)

Expression (24) is derived so as to provide the best possible value ofW for a given depth
(vertical timetv). To get a constant value for a range of depths one should take an average
of the right hand side of (24) in that range. The error associated with Stolt stretch can be
approximately estimated from (17) as the difference between the fourth-order terms:

δ =
l 4

8

W (tv)− W

tvs2 (tv)v2
rms(tv)v2

0

, (25)

whereW (tv) is the right-hand side of (24), andW is the constant value ofW chosen for Stolt
migration. To estimate the best possible accuracy that the Stolt stretch method can achieve, we
must take into account the sixth-order term in (17) related to the sixth-order derivative of the
traveltime curve. For the true traveltime curve, the expression for the sixth-order derivative in
the vicinity of the vertical ray is known from the literature (Bolshyh, 1956; Taner and Koehler,
1969) to be

d6t0
dl6

∣∣∣∣
l=0

=
45

t5
v v6

rms

(
2S2 (tv)−

1

tvv6
rms(tv)

∫ tv

0
v6dtv

)
. (26)

First, let us estimate the error of Malovichko’s approximation (13). Differentiating (13) six
times and setting the offsetl to zero yields

d6t0
dl6

∣∣∣∣
l=0

=
45S2 (tv)

t5
v v6

rms
. (27)

The estimated error is proportional to the difference between (27) and (26):

δM =
l 6

6!

[
45

t5
v v6

rms

(
1

tvv6
rms(tv)

∫ tv

0
v6dtv − S2 (tv)

)]
. (28)

It is interesting to note that replacing the parameter of heterogeneityS by its definition (15)
changes the expression in the round brackets to the following form:

1

tv v6
rms

∫ tv

0
v6dtv − S2

=
1

t2
v v6

rms

(∫ tv

0
v2dtv

∫ tv

0
v6dtv −

(∫ tv

0
v4dtv

)2
)

. (29)
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According to the Schwarz inequality from calculus ( also known as the Cauchy–Bunyakov-
ski inequality), the value of expression (29) can never be less than zero; henceδM ≥ 0 for
any velocity distribution. This conclusion indicates that Malovichko’s approximation tends to
increase the traveltime at large offsets beyond its true value.

Differentiating (22) twice and eliminating terms that vanish atl = 0 produces

d6s

dl6

∣∣∣∣
l=0

=

(
15s′′′ (tv)

(
d2t0
dl2

)3

+15s′′ (tv)
d2t0
dl2

d4t0
dl4

+s′ (tv)
d6t0
dl6

)∣∣∣∣∣
l=0

=

=
45W2

s(tv)5 v6
0

. (30)

Evaluating the sixth-order traveltime derivative from (30) and subtracting (26), we get a some-
what lengthy but explicit expression for the error associated with Stolt stretch approximation
in the case of the best possible choice ofW:

δL = δM+

+
l 6

6!

[
45(1− W)

t3
v v4

rms(tv) s2 (tv) v2
0

(
v2 (tv)

v2
rms(tv)

−
t2
v v2

rms(tv)

s2 (tv) v2
0

)
−

30v (tv) v′ (tv)

t4
v v8

rms(tv)

]
. (31)

ISOTROPIC HETEROGENEITY VERSUS ANELLIPTIC ANISOTROPY

A controversial issue associated with the topic of this paper is whether the non-hyperbolicity
of the traveltime curves is caused mainly by heterogeneity or by anisotropy. To find a con-
nection between the two different descriptions of media, we can consider an alternative three-
parameter traveltime approximation (the anelliptic anisotropic moveout formula), proposed by
Muir and Dellinger (1985) :

t0 =

t4
v + ( f +1)t2

v
(x−x0)2

v2
rms

+ f 2 (x−x0)4

v4
rms

t2
v + f (x−x0)2

v2
rms

. (32)

Here f is theparameter of anellipticity. Differentiating (32) four times, settingl = x − x0 to
zero, and equating the result with (20) results in the following formal relationship betweenf
and Malovichko’s parameter of heterogeneity:

S= 1+4 f −4 f 2 . (33)

Equation (33) clearly demonstrates the uncertainty between the anisotropic and heterogeneous
isotropic interpretations. Both of them can explain the cause of the nonhyperbolicity of trav-
eltime curves. An important difference is that the parameter of heterogeneity is uniquely
determined by the velocity distribution according to (15), while thef parameter is assumed
to be an independent functional. The definition (15), applied in combination with (24), is suit-
able for calculating the Stolt stretch factor in an isotropic model for a given velocity function.
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If the correction parameter is measured experimentally by a non-hyperbolic velocity analysis
in the form of either equation (13) or equation (32), it accumulates both heterogeneous and
anisotropic factors and can be used for an explicit determination ofW in (24) independently of
the preferred explanation. In the case of the anisotropic moveout velocity analysis, we merely
need to substitute the connection formula (33) into (24) to findW. An alternative approach
to Stolt-type migration in transversally isotropic media was proposed recently by Ecker and
Muir (1993). However, Stolt stretch migration is superior to that method in its ability to cope
with varying rms velocities.

EXAMPLES

A simple analytic example of isotropic heterogeneity is the case of a constant velocity gradient.
In this case the velocity distribution can be described by the linear functionv (z) = v (0) (1+

αz). Stolt stretch transform is found from (5) as

s(t) =

(
e2αv(0) t

−1−2αv (0) t

2α2v2
0

)1/2

. (34)

Let κ be the logarithm of the velocity changev(z)/v(0). Then an explicit expression forW
factor follows from (24):

W =
2κ

e2κ −1
=

v2 (0)

v2
rms(κ)

. (35)

For κ → 0 (a small depth or a small velocity gradient),W ≈ 1− κ. For κ → ∞ (a large
positive change of velocity)W monotonically approaches zero. Formula (35) can be a useful
rule of thumb for a rough estimation ofW.

Numerical example of the Stolt stretch parameter computation is illustrated in Figures 2
and 3. The left side of Figure 2 shows a smoothed interval velocity curve from the Gulf of
Mexico. The corresponding optimal values of theW factor as a function of vertical time (in the
isotropic model) are shown on the right. Though the velocity function is smooth, substantial
changes inW occur, making its mean value for the timestv ≤ 6 sec equal to 0.631.

The theory of cascaded migrations (Larner and Beasley, 1987; Beasley et al., 1988) proves
that Stolt-typef-k migration for a nonuniform velocityv (tv) can be performed as a cascaded
process consisting of migrations with the smaller velocitiesvi (tv) , i = 1,2,. . . ,n, such that
v2

1 + v2
2 + ·· · + v2

n = v2 . As shown by Larner and Beasley (1987), it is important to parti-
tion the velocity so that for each particulartv all the velocities in the cascade, except maybe
the last one, are constant. The advantage of the cascadedf–k migration method is based on
the fact that each small velocityvi describes a more homogeneous medium than the initial
v (tv) function. Therefore, theW factor for each migration in a cascade is closer to 1, and
the Stolt stretch approximation is more accurate. This fact is illustrated in Figure 3, which
shows an optimal partitioning of the velocity and the corresponding values of theW factor.
In accordance with the empirical conclusions of Beasley et al. (1988), a cascade of only four
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migrations was sufficient to increase the value ofW to more than 0.8. With a further increase
of the number of cascaded migrations, the method becomes as accurate with respect to ver-
tical velocity variations as phase-shift migration. Theoretically, this limit corresponds to the
velocity continuation concept (Fomel, 1994). Note that the theory of cascadedf–k migration
is strictly valid for isotropic models. The anisotropic interpretation does not support it, since
the intrinsic anisotropy factor is not supposed to change with the velocity partitioning.

Figure 2: Smoothed interval velocity distribution from the Gulf of Mexico (left) and the cor-
respondingW factor as a function of vertical time (right). The mean value ofW is 0.631.
stoltst-stovwt [ER]

CONCLUSIONS

The main result of this paper is an analytic explicit expression (24) that allows us to choose
the most appropriate value for the Stolt stretch factor. Possible applications include the opti-
mal design of interval velocities partitioning for the method of cascadedf–k migrations and
extension of the Stolt stretch method to a transversally isotropic model.

Nowadays the topic of this paper seems to be out of fashion. When everyone is interested
in prestack depth migration in the time-space domain, it is difficult to attract any attention to
post-stack time migration in the frequency domain. Nevertheless, I believe the art of approxi-
mation demonstrated by Robert Stolt in his famous paper to be a good example to follow when
working on many different problems, which was the main reason for this research.
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