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On Stolt stretch time migration

Louis Vaillant and Sergey Fomel1

ABSTRACT

We implement Stolt-stretch time migration with an analytical formulation for the optimal
stretch parameter and show how it improves the quality of imaging. By a cascadedf-k
migration approach with this algorithm, we manage to obtain time migration results on
real data comparable to Gazdag’s phase-shift method, with a high accuracy for steeply
deeping events at a computational cost dramatically lowered.

INTRODUCTION

Time migration remains a very fast imaging process compared to prestack depth migration
and therefore is still commonly used by seismic imaging contractors. Such an economical
technique reveals itself useful as a first approach to a problem or for producing accurate images
when the interval velocity varies only with depth. Among the many algorithms avaible for
post-stack time migration, Stolt’s is known as the fastest of all. It is derived from a wavefield
downward-continuation in constant velocity. This constant velocity assumption yields the
well-known shortcoming of Stolt’s algorithm. In his classic paper, Stolt (1978) proposed
as an approximation forv(z) media a stretching of the time axis that is commonly called
“Stolt-stretch” migration. In that context, the vertical heterogeneities of the velocity model are
represented by a single nondimensional parameterW, substituted for a complicated function
of several parameters. In the constant velocity case,W is equal to 1.0. In a medium where the
velocity is increasing with depth, its value is constrained to lie between 0.0 and 1.0.

In practice, a frustrating drawback of the technique is that there was no constructive way to
choose the parameterW. To overcome this heuristic guess, Fomel (1995) derived an explicit
formulation forW based on Malovichko’s formula for approximating traveltimes in vertically
inhomogeneous media (Malovichko, 1978; Sword, 1987; Castle, 1988; de Bazelaire, 1988).
In this paper, we implement Stolt-stretch time migration with this optimal choice forW and
discuss its accuracy.
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STOLT STRETCH THEORY REVIEW

Stolt time migration can be summarized as the following sequence of transformations:

p0(x,t0) → P0(kx,ω0) → P(kx,ω) → p(x,t) , (1)

where

P0(kx,ω0) = P(kx,ω(kx,ω0))

∣∣∣∣dω(kx,ω0)

dω0

∣∣∣∣ (2)

The functionω(k,ω0) is the dispersion relation and has the following expression in the constant
velocity case:

ω(k,ω0) = sign(ω0)
√

ω2
0 −v2k2

x (3)

The approximation suggested by Stolt (1978) for extending the method tov(z) media
involves a change of the time variable (Stolt-stretch):

s(t) =

√
2

v2
0

∫ t

0
τv2

rms(τ )dτ , (4)

wheres(t) is the stretched time variable,v0 is an arbitrarily chosen constant velocity, and
vrms(t) is the root mean square velocity along the vertical ray, defined by

vrms(t) =
1

t

∫ t

0
v2(τ )dτ . (5)

This change of variable yields a transformed wave-equation for the wavefield extrapolation,
in which Stolt replaces a slowly varying complicated function of several parameters (denoted
by W) by its average value. Making this approximation yields a new dispersion relation in the
transformed coordinate system:

ω̂(kx,ω̂0) =
(
1−

1
W

)
ω̂0 +

sign(ω̂0)
W

√
ω̂2

0 − Wv2
0k2

x (6)

This factorW contains all the information about the heterogeneities of the medium. How-
ever, it has to be determined a priori, that is, before migration. This empirical choice forW
was one of the drawbacks of the Stolt-stretch method. Fomel (1995) derived an analytical
formulation of the Stolt-stretch parameter, based on Malovichko’s formula for approximating
traveltimes in vertically inhomogeneous media (Malovichko, 1978):

t0 =

(
1−

1

S(t)

)
t +

1

S(t)

√
t2 + S(t)

(x − x0)2

v2
rms(t)

, (7)
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where the functionS(t) defines the so-called parameter of heterogeneity:

S(t) =
1

v4
rmst

∫ t

0
v4(t)dt (8)

Fomel proved that, for a given depth (or vertical traveltime), the optimal value ofW is

W(t) = 1−
v2

0s2(t)

v2
rms(t)t

2

(
v2(t)

v2
rms(t)

− S(t)
)

, (9)

wherevrms(t) is the root mean square velocity along the vertical ray, andt =
∫ z

0
dz
v(z) the vertical

traveltime. The value ofW used during Stolt migration is the average along the vertical profile
of theseW(t). In the case of an homogeneous constant-velocity model,W is equal to 1.0,
whereas it has to be less than 1.0 if the velocity increases monotonically with depth.

We can sum up the application of Stolt-stretch algorithm with the optimal parameterW by
the following sequence of steps:

1. Stretch the time axis and determine
the value ofW along the vertical profile
2. Interpolate stretched time to a regular grid
3. 2-D FFT
4. Apply Stolt migration with the dispersion relation (6)
5. 2-D inverse FFT
6. Unstretch the time axis

APPLICATION

Following the study by Larner et al. (1989), we selected a dataset that includes steep dips
in order to test the accuracy of our algorithms. The data is courtesy of Elf Aquitaine, was
recorded in the North Sea, and shows a salt dome (Figure 3). Figure 1 shows (a) the data after
NMO-stack and (b) after poststack Stolt migration, using a constant velocity of 2000 m/s.
We notice that Stolt’s method obviously yields undermigrated events on both sides of the salt
body. Using a higher velocity to focus them better would have created overmigration artifacts
at shallow reflectors. Stolt-stretch migrated section (c) usingW = 0.5 should be compared
with figure 2a.

Using the Stolt-stretch method with the optimal choice forW derived from equation (9)
yields a better focusing of events at all depths (Figure 2a), compared to other values ofW
(Figures 1b and 1c, respectively forW equals 1.0 and 0.5). Thev(z) model used for migration
is shown in Figure 4a and was obtained by averaging laterally the reference velocity model.

The reference method of migration for our study is the phase-shift approach proposed by
Gazgag (1978). It is known to be perfectly accurate for all dips up to 90◦ in a v(z) velocity
field. A comparison between the phase-shift migration result (Figure 2b) and the section
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Figure 1: (a) Section of the North Sea data, after NMO-stack. (b) Section migrated using
Stolt’s method withv0=2000 m/s. (c) Section migrated using Stolt-stretch with an arbitrary
valueW = 0.5 for the paramater of heterogeneity.stoltex-data-stolt-ststr[ER]
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Figure 2: (a) Section migrated with the Stolt-stretch method using the optimal value (≈ 0.67)
for the parameterW. (b) Section migrated with the phase-shift method. (c) Section migrated
using the cascaded Stolt-stretch approach (6 velocities).stoltex-data-ststr-pshift-casc[ER]
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Figure 3: 2-D smooth reference velocity modelstoltex-vel-model[ER]

migrated with the Stolt-stretch approach shows almost no difference for flat events. However,
a more detailed analysis reveals significant errors for steep events inside and around the salt
body. The approximation made by stretching the time axis breaks for recovering steep events.

A way to overcome the difficulties encountered by Stolt’s migration is to divide the whole
process into a cascade, as suggested by Beasley et al. (1988). The theory of cascaded
migration proves thatf-k migration algorithms with av(t) velocity model like Stolt-stretch
can be performed sequentially as a cascade ofn migrations with smaller interval velocities
vi (t) , i = 1,. . . ,n, such asv2(t) =

∑
i =1,n v2

i (t). At a given vertical traveltimet , all the suc-
cessive velocity models have to be constant, except the last one (Larner and Beasley, 1987).
Typically, the first stage is done with a constant velocity model and can be computed using
Stolt’s algorithm, which is then accurate for all dips. Figure 4 illustrates such a cascade of
velocity models in our particular case, with 3 and 6 stages.

As a consequence of this decomposition, each intermediate velocity model shows not only
a smaller velocity but also less vertical heterogeneity. In other words, the Stolt-stretch parame-
ter W estimated for each stage tends to be closer to 1.0, thus reducing the migration errors due
to the approximation. Figure 2c shows the migration result using a 6-stage cascaded scheme.
All the successive values ofW were greater than 0.8. There are almost no differences with the
phase-shift result (Figure 2b).

DISCUSSION

Even if the parameterW estimated from equation (9) is optimal in the sense that it minimizes
migration errors for the Stolt-stretch method, no single choice ofW yields acceptable results
for all times and all dips (Beasley et al., 1988): some events are undermigrated, others overmi-
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Figure 4: (a) Interval velocity modelv(t) estimated from the 2-D reference model. (b) Decom-
position in a cascade of 3 models, such asv2

= v2
1 +v2

2 +v2
3. (c) Decomposition in a cascade

of 6 models, such asv2
= v2

1 +v2
2 +v2

3 +v2
4 +v2

5 +v2
6 stoltex-velocities[ER]

grated. Instead, the use of cascaded Stolt-stretch migration allows a reduction of the apparent
dip perceived in each stage, since the migration velocity used is reduced to a fraction of the
original model. A 20-stage cascade of migration with an algorithm accurate for dips up to 15◦

can yield accurate results for events dipping up to 65◦ (Larner and Beasley, 1987).

Figure 5 shows a close-up of the salt body region for all migration algorithms. The meth-
ods have a different accuracy with respect to steep dips. We notice a gradual improvement
of the result from Stolt-stretch to phase-shift as we increase the number of velocities in the
cascaded Stolt-stretch scheme. In theory, the migration errors in the cascaded approach can
be made as small as desired by increasing the number of stages. At the limit, it corresponds to
the velocity continuation concept (Fomel, 1996).

In our case, six stages were enough to obtain a result comparable to phase-shift. In their
comparative study on time migration algorithms, Larner et al. (1989) have shown that four-
stage cascadedf-k migration is accurate for dips up to 85◦, which is almost comparable to
phase-shift, accurate for all dips. It is worth noting the computational cost difference between
the two: on our example, phase-shift migration is about 80 times more expensive than Stolt-
stretch!

Another way to look at the problem is to compare the impulse responses of the different
algorithms (Figure 6), generated using the same velocity model as before (Figure 4a). There is
a kinematic difference in the impulse response of Stolt-stretch compared to phase-shift. While
Gazdag’s phase-shift honor ray bending in anyv(z) model, Stolt-stretch is not that accurate.
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Both methods address non-hyperbolic moveout, but Stolt’s stretching function is only designed
to make the fitting curve look like an hyperbola close to the apex (Levin, 1983), and therefore
induces residual migration errors. As seen in Figure 2a, Stolt-stretch result displays residual
hyperbolic migration artifacts that are due to this fundamental kinematic difference. Cascading
Stolt-stretch makes the impulse response of the migration converge towards the one of phase-
shift.

Figure 5: Zoom in the salt body area where steep dips are located. (a) Migration with the
Stolt-stretch method. (b) Migration with the phase-shift method. (c) and (d) Migrations with
the cascaded Stolt-stretch approach, using, respectively, 3 and 6 velocities.stoltex-dip-zoom
[ER]

Now that we are familiar with the role ofW in the algorithm, a word should be said about
v0, which is the second arbitrary parameter of the method. As introduced in equation (4),
v0 controls the length of the stretch. In theory, the migration result does not depend on the
selected value, since the time stretch is undone after Stolt migration. However, in practice,
high values ofv0 can yield an image with interpolation artifacts. In contrast, low values ofv0

yield a significantly stretched time axis, thus the inverse operation may lose information unless
the data has been padded with enough zeroes. The cascaded scheme is particularly sensitive to
such problems. As a tradeoff between values that are too high or too small, we used the mean
of the velocity model extrema forv0.
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Another technical aspect, the division by the Jacobian in equation (2), usually induces
high amplitude artifacts for waves close to being evanescent, unless a threshold is introduced.
Similarly, evanescent waves need to be scaled down to prevent migration artifacts. We used a
simple linear weighting.

Figure 6: Impulses responses of the different operators. (a) Stolt-stretch. (b) Phase-shift. (c)
and (d) Cascaded Stolt-stretch, with 3 and 6 velocities, respectively.stoltex-imp-mig [ER]

CONCLUSION

We show that with an optimal choice for the Stolt-stretch parameter derived analytically and
with a cascadedf-k migration approach, we manage to obtain time migration results compara-
ble to Gazdag’s phase-shift approach. Moreover, the method is considerably more computer-
efficient and remains accurate for steeply deeping events.
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