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Stacking operators:
Adjoint versus asymptotic inverse

Sergey Fomel1

ABSTRACT

The paper addresses the theory of stacking operators used in seismic data processing.
I compare the notion of asymptotically inverse operators with the notion of adjoint op-
erators. These two classes of operators share the same kinematic properties, but their
amplitudes (weighting functions) are defined differently. I introduce the notion of the
asymptotic pseudo-unitaryoperator, which possesses both the property of being adjoint
and the property of being asymptotically inverse. The weighting function of the asymp-
totic pseudo-unitary stacking operator is completely defined by its kinematics. I exemplify
the general theory by considering such stacking operators as Kirchhoff datuming, migra-
tion, offset continuation, DMO, and velocity transform.

INTRODUCTION

Integral (stacking) operators play a very important role in seismic data processing. The
most common applications are common midpoint stacking, Kirchhoff-type migration, and
dip moveout. Other examples include (listed in random order) Kirchhoff-type datuming,
back-projection tomography, slant stack, velocity transform, offset continuation, and azimuth
moveout (AMO). The role of the integral methods increases with the development of prestack
three-dimensional processing because they appear flexible toward irregularities in the data
geometry.

Often an integral operator represents the forward modeling problem, and we need to invert
it to solve for the model. In this paper, I consider two different approaches to inversion.
The first is least-square inversion, which requires constructing the adjoint counterpart of the
modeling operator. The second approach is asymptotic inversion, which aims to reconstruct
the high-frequency (discontinuous) parts of the model. I compare the two approaches and
introduce the notion of what I call theasymptotic pseudo-unitary operatorto tie them together.

The first part of this paper contains a formal definition of a stacking operator and reviews
the theory of asymptotic inversion, following the fundamental results of Beylkin (1985) and
Goldin (1988; 1990). According to this theory, the high-frequency asymptotic inverse of a
stacking operator is also a stacking operator with a different summation path and weighting.
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28 Fomel SEP–92

To connect this theory with the theory of adjoint operators, I prove that the adjoint of a stacking
operator can also be included in the class of stacking operators. The stacking (“pull”) adjoint
has the same summation path as the asymptotic inverse but a different weighting function.
These two results combine together to form the theory of asymptotic pseudo-unitary integral
operators. I apply this theory to define a general preconditioning operator for least-square
inversion.

Finally, I consider such examples of commonly used stacking operators as wave-equation
datuming, migration, velocity transform, and offset continuation.

THEORETICAL DEFINITION OF A STACKING OPERATOR

In practice, integration of discrete data is performed by stacking, which requires special cau-
tion in the case of spatial aliasing (Claerbout, 1992). In theory, it is convenient to represent a
stacking operator in the form of a continuous integral:

S(t , y) = A [M(z,x)] =

∫
w(x; t , y) M(θ (x; t , y),x)dx . (1)

FunctionM(z,x) is the input of the operator,S(t , y) is the output,θ represents the summation
path, andw stands for the weighting function. The range of integration (the operator aperture)
may also depend ont andy. Allowing x to be a two-dimensional variable, we can use defi-
nition (1) to represent an operator applied to three-dimensional data. Throughout this paper, I
assume thatt andz belong to a one-dimensional space, and thatx andy have the same number
of dimensions.

The goal of inversion is to reconstruct some functionM̂(z,x) for a givenS(t , y), so thatM̂
is in a particular sense close toM in equation (1).

ASYMPTOTIC INVERSION: RECONSTRUCTING THE DISCONTINUITIES

Mathematical analysis of the inverse problem for operator (1) shows that only in rare cases
can we obtain a theoretically exact inversion. A well-known example is the Radon trans-
form, which has acquired a lot of different aliases in geophysical literature: slant stack, tau-p
transform, plane wave decomposition, and controlled directional reception (CDR) transform
(Gardner and Lu, 1991). In this case,

θ (x; t , y) = t + x y , (2)

w(x; t , y) = 1 . (3)

Radon obtained a result similar to the theoretical inversion of operator (1) with the summa-
tion path (2) and the weighting function (3) in 1917, but this result was not widely known until
the development of computer tomography. According to Radon (1917), the inverse operator



SEP–92 Stacking operators 29

has the form

M(z,x) = A−1[S(t , y)] = |D|
m

∫
ŵ S(θ̂ (y;z,x), y)dy , (4)

where

θ̂ (y;z,x) = z− x y , (5)

ŵ =
1

(2π )m , (6)

|D| is a one-dimensional convolution operator with the spectrum|ω| (the rho filter), andm
is the dimensionality ofx andy (usually 1 or 2). In Russian geophysical literature, a similar
result for the inversion of the CDR transform was published by Nakhamkin (1969).

Extension of Radon’s result to the general form of integral operator (1) (generalized Radon
transform) is possible through asymptotic analysis of the inverse problem. In the general
case, it was shown (Beylkin, 1985; Goldin, 1988) that asymptotic inversion can reconstruct
discontinuous parts of the model. These are the parts responsible for the asymptotic behavior
of the model at high frequencies. Since the discontinuities are associated with wavefronts and
reflection events at seismic sections, there is a certain correspondence between asymptotic
inversion and such standard goals of seismic data processing as kinematic equivalence and
amplitude preservation.

The main theorem of asymptotic inversion can be formulated as follows (Goldin, 1988).
Main (leading-order) discontinuities inM are reconstructed by an integral operator of the form

M̂(z,x) = Â[S(t , y)] = |D|
m

∫
ŵ(y;z,x) S(θ̂ (y;z,x), y) dy , (7)

where the summation patĥθ is obtained simply by solving the equation

z = θ (x; t , y) (8)

for t (if such an explicit solution is possible). The correctly chosen summation path recon-
structs the geometry of the discontinuities. To recover the amplitude, we must choose the
correct weighting function, which is constrained by the equation

wŵ =
1

(2π )m

√∣∣F F̂
∣∣ ∣∣∣∣∂θ̂

∂z

∣∣∣∣m , (9)

where

F =
∂θ

∂t

∂2θ

∂x ∂y
−

∂θ

∂y

∂2θ

∂x ∂t
, (10)

F̂ =
∂θ̂

∂z

∂2θ̂

∂x ∂y
−

∂θ̂

∂x

∂2θ̂

∂y∂z
. (11)

The solution assumes that differential formsF andF̂ exist and are bounded and non-vanishing.
In the multi-dimensional case (m ≥ 2), they are replaced by the determinants of the corre-
sponding matrices. To ensure the asymptotic inversion, equation (9) must be satisfied at least



30 Fomel SEP–92

in the vicinity of thestationary pointsof integral (1). Those are the points where the summa-
tion path of the form (8) is tangent to the traveltimes of the actual events on the transformed
model.

In the case of the Radon transform,
∣∣F F̂

∣∣ =

∣∣∣ ∂θ̂
∂z

∣∣∣ = 1, and the asymptotic inverse coincides

with the exact inversion.

PULL ADJOINTS

The least-square (generalized) inverse of operator (1) has the famous form

M̃(z,x) = Ã[S(t , y)] =
(
AT A

)−1
AT [S(t , y)] , (12)

where the adjoint operatorAT is defined by the dot-product test:

(S(t , y),A[M(z,x)]) ≡
(
AT [S(t , y)], M(z,x)

)
. (13)

With a specified definition of the dot-product, the generalized inverse minimizes the following
quantity, which is the squaredL2 norm of the residual:

(S(t , y)−A[M(z,x)], S(t , y)−A[M(z,x)]) . (14)

In the case of integral operators, a natural definition of the dot-product is the double integral

(S1(t , y),S2(t , y)) =

∫ ∫
S1(t , y) S2(t , y)dy dt , (15)

(M1(z,x), M2(z,x)) =

∫ ∫
M1(z,x) M2(z,x)dx dz. (16)

What is the adjoint of the integral operator (1) in this case? In the discrete world, where
stacking is represented by a row vector, the adjoint (transpose) of a summation matrix is a
column vector. In other words, the adjoint of collecting the input data along the stacking
curve trajectory and summing it into an individual output bin is dividing the output bin into a
number of portions sprayed along the specified trajectory. Claerbout (1995a) calls the stacking
operator a “pull” and its adjoint a “push”.

The relationship between forward and adjoint operators is different in the continuous
world. Let us substitute the definition of the stacking operator (1) into the dot product (13), as
follows:

(S(t , y),A[M(z,x)]) =

∫ ∫ ∫
w(x; t , y) M(θ (x; t , y),x) S(t , y)dx dy dt. (17)

Changing the integration variablet to z = θ (x; t , y), we can rewrite (17) in the form

(S(t , y),A[M(z,x)]) =

∫ ∫ ∫
w̃(y;z,x) M(z,x) S(θ̂ (y;z,x),x)dy dx dz, (18)
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whereθ̂ has the same meaning as in equation (7), and

w̃(y;z,x) = w(x; θ̂ (y;z,x), y)

∣∣∣∣∂θ̂

∂z

∣∣∣∣ . (19)

Comparing formulas (18) and (13), we conclude that the adjoint operatorAT is defined by the
equality

AT [S(t , y)] =

∫
w̃(y;z,x) S(θ̂ (y;z,x), y) dy . (20)

Thus we have proven that in the continuous world the adjoint of a stacking operator is another
stacking operator. The adjoint operator has the same summation path as the asymptotic inverse
(7), which guarantees the correct reconstruction of the kinematics of the input wavefield. The
amplitude (weighting function) of the adjoint operator is directly proportional to the forward
weighting according to equation (19). The coefficient of proportionality is the Jacobian of the
transformation of the variablesz andt .

Similar results have been published for particular cases of stacking operators: velocity
transform (Thorson, 1984; Jedlicka, 1989), Kirchhoff constant-velocity migration (Ji, 1994b),
and NMO (Crawley, 1995).

To exemplify the application of a “pull” adjoint to inversion, let us consider the case of the
Radon transform from the preceding section. Forming the productAT A for this case leads to
the double integral

H (z,x) = (AT A)[M(z,x)] =

=

∫ ∫
ŵ(y;z,x)w

(
ξ ; θ̂ (y;z,x), y

)
M

(
θ
(
ξ ; θ̂ (y;z,x), y

)
,ξ

)
dξ dy =

=

∫ ∫
M (z+ y (ξ − x)) dξ dy . (21)

Applying Fourier transform with respect toz, we can rewrite equation (21) in the frequency
domain as

Ȟ (ω,x) =

∫
M̌(ω,ξ )

∫
ei ω y (ξ−x) dy dξ , (22)

where

Ȟ (ω,x) =

∫
H (z,x)e−i ωzdz , (23)

M̌(ω,x) =

∫
M(z,x)e−i ωzdz . (24)

The inner integral in equation (22) reduces to them-dimensional delta function:

Ȟ (ω,x) = (2π )m
∫

M̌(ω,ξ )δ
(
ωm (ξ − x)

)
dξ . (25)



32 Fomel SEP–92

As follows from the properties of delta function,

Ȟ (ω,x) =
(2π )m

|ω|m

∫
M̌(ω,ξ )δ(ξ − x)dξ =

(2π )m

|ω|m
M̌(ω,x) . (26)

Inverting (26) forM , we conclude that

(AT A)−1
=

|D|
m

(2π )m
. (27)

Substituting equation (27) into (12) produces the result precisely equivalent to Radon’s inver-
sion (4).

The SEPlib canonical library contains various examples of stacking operators coupled with
their adjoint counterparts. In practice, discrete “push” adjoints provide the machine-precise
accuracy of the discrete dot-product test. The “pull” adjoints defined in this section cannot
compete in precision because of round-off errors. However, their practical use can be justified
for the purpose of a “smoother” output. Claerbout (1995a) and Crawley (1995) discuss this
possibility in more detail.

The notion of the adjoint operator completely depends on the arbitrarily chosen definition
of the dot product and norm in the model and data spaces. A simple way to change those
definitions is to find some positive weightsWM (z,x) in the model space andWS(t , y) in the
data space that define the dot products as follows:

(S1(t , y),S2(t , y)) =

∫ ∫
WS(t , y) S1(t , y) S2(t , y)dy dt , (28)

(M1(z,x), M2(z,x)) =

∫ ∫
WM (z,x) M1(z,x) M2(z,x)dx dz. (29)

ASYMPTOTIC PSEUDO-UNITARY OPERATOR

According to the theory of asymptotic inversion, briefly reviewed in the first part of this paper,
the weighting function of the asymptotically inverse operator isinverselyproportional to the
weighting of the forward operator. On the other hand, the weighting in the “pull” adjoint is
directly proportional to the forward weighting. This difference allows us to define a hybrid
type of operator, which possesses both the property of being adjoint and the property of being
asymptotic inverse. It is appropriate to call a pair of operators defined in this wayasymptotic
pseudo-unitary. The definition of asymptotic pseudo-unitary operators follows directly from
the combination of definitions (7) and (20). Splitting the derivative operator|D| in (7) into the
product of two operators, we can write the forward operator as

S(t , y) = A [M(z,x)] =

∫
w(+)(x; t , y) |D|

m/2 M(θ (x; t , y),x)dx (30)

and its asymptotic pseudo-unitary adjoint as

M̃(z,x) = Ã[S(t , y)] = |D|
m/2

∫
w(−)(y;z,x) S(θ̂ (y;z,x), y) dy . (31)
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According to equation (9),

w(+) w(−)
=

1

(2π )m

√∣∣F F̂
∣∣ ∣∣∣∣∂θ̂

∂z

∣∣∣∣m . (32)

According to equation (19),

w(−)
= w(+)

∣∣∣∣∂θ̂

∂z

∣∣∣∣ . (33)

Combining equations (32) and (33) uniquely determines both weighting functions, as follows:

w(+)
=

1

(2π )m/2

∣∣F F̂
∣∣1/4

∣∣∣∣∂θ̂

∂z

∣∣∣∣(m−2)/4

, (34)

w(−)
=

1

(2π )m/2

∣∣F F̂
∣∣1/4

∣∣∣∣∂θ̂

∂z

∣∣∣∣(m+2)/4

. (35)

Equations (34) and (35) complete the definition of asymptotic pseudo-unitary operators.

The notion of pseudo-unitary operators is directly applicable in the situations where we
can arbitrarily construct both forward and inverse operators. One example of such a situation
is the velocity transform considered in the next section of this paper. In the more common
case, the forward operator is strictly defined by the physics of a problem. In this case, we can
include asymptotic inversion in the iterative least-square inversion by means ofprecondition-
ing. The linear preconditioning operator should transform the forward stacking-type operator
to the form (30) with the weighting function (34). Theoretically, this form of precondition-
ing leads to the fastest convergence of the iterative least-square inversion with respect to the
high-frequency parts of the model.

EXAMPLES

In this section, I consider several particular examples of stacking operators used in seismic
data processing and derive their asymptotic pseudo-unitary versions.

Datuming

Let x denote a point on the surface at which the propagating wavefield is recorded. Lety
denote a point on another surface, to which the wavefield is propagating. Then the summation
path of the stacking operator for the forward wavefield continuation is

θ (x; t , y) = t − T(x, y) , (36)

wheret is the time recorded at they-surface, andT(x, y) is the traveltime along the ray con-
nectingx andy. The backward propagation reverses the sign in (36), as follows:

θ̂ (y;z,x) = z+ T(x, y) . (37)
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Substituting the summation path formulas (36) and (37) into the general weighting function
formulas (34) and (35), we immediately obtain

w(+)
= w(−)

=
1

(2π )m/2

∣∣∣∣ ∂2T

∂x ∂y

∣∣∣∣1/2

. (38)

Gritsenko’s formula (Gritsenko, 1984; Goldin, 1986) states that the second mixed traveltime
derivative ∂2T

∂x ∂y is connected with the geometric spreadingR along thex-y ray by the equality

R(x, y) =

√
cosα(x) cosα(y)

v(x)

∣∣∣∣ ∂2T

∂x ∂y

∣∣∣∣−1/2

, (39)

wherev(x) is the velocity at the pointx, andα(x) andα(y) are the angles formed by the ray
with thex andy surfaces, respectively. In a constant-velocity medium,

R(x, y) = vm−1 T(x, y)m/2 . (40)

Gritsenko’s formula (39) allows us to rewrite equation (38) in the form (Goldin, 1988)

w(+)(x; t , y) =
1

(2π )m/2

√
cosα(x) cosα(y)

v(x) R(x, y)
, (41)

w(−)(y;z,x) =
1

(2π )m/2

√
cosα(x) cosα(y)

v(y) R(y,x)
. (42)

The weighting functions commonly used in Kirchhoff datuming (Berryhill, 1979; Wiggins,
1984; Goldin, 1985) are defined as

w(x; t , y) =
1

(2π )m/2

cosα(x)

v(x) R(x, y)
, (43)

ŵ(y;z,x) =
1

(2π )m/2

cosα(y)

v(y) R(y,x)
. (44)

These two operators appear to be asymptotically inverse according to formula (9). They coin-
cide with the asymptotic pseudo-unitary operators if the velocityv is constant (v(x) = v(y)),
and the two datum surfaces are parallel (α(x) = α(y)).

Migration

As recognized recently by Tygel et al. (1994),true-amplitudemigration (Goldin, 1992; Schle-
icher et al., 1993) is the asymptotic inversion of seismic modeling represented by the Kirchhoff
high-frequency approximation. The Kirchhoff approximation for a reflected wave (Haddon
and Buchen, 1981; Bleistein, 1984) belongs to the class of stacking-type operators (1) with
the summation path

θ (x; t , y) = t − T (s(y),x)− T (x,r (y)) , (45)
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the weighting function

w(x; t , y) =
1

(2π )m/2

C (s(y),x,r (y))

R(s(y),x) R(x,r (y))
, (46)

and the additional time filter
(

∂
∂z

)m/2
. Herex denotes a point at the reflector surface,s is the

source location, andr is the receiver location at the observation surface. The parametery
corresponds to the configuration of observation. That is,s(y) = s, r (y) = y for the common-
shot configuration,s(y) = r (y) = y for the zero-offset configuration, ands(y) = y−h , r (y) =

y+ h for the common-offset configuration (whereh is the half-offset). The functionsT and
R have the same meaning as in the datuming example, representing the one-way traveltime
and the one-way geometric spreading, respectively. The functionC(s,x,r ) is known as the
obliquity factor. Its definition is

C(s,x,r ) =
1

2

(
cosαs(x)

vs(x)
+

cosαr (x)

vr (x)

)
, (47)

where the anglesαs(x) andαr (x) are formed by the incident and reflected waves with the
normal to the reflector at the pointx, andvs(x) andvr (x) are the corresponding velocities
in the vicinity of this point. In this paper, I leave the case of converted (e.g., P-SV) waves
outside the scope of consideration and assume thatvs(x) equalsvr (x) (e.g., in P-P reflection).
In this case, it is important to notice that at the stationary point of the Kirchhoff integral,
αs(x) = αr (x) = α(x) (the law of reflection), and therefore

C(s,x,r ) =
cosα(x)

v(x)
. (48)

The stationary point of the Kirchhoff integral is the point where the stacking curve (45) is
tangent to the actual reflection traveltime curve. When our goal is asymptotic inversion, it is
appropriate to use equation (48) in place of (47) to construct the inverse operator. The weighted
function (46) can include other factors affecting the leading-order (WKBJ) ray amplitude,
such as the source signature, caustics counter (the KMAH-index), and transmission coefficient
for the interfaces (̌Cerveňy et al., 1977; Chapman and Drummond, 1982). In the following
analysis, I neglect these factors for simplicity.

The modelM implied by the Kirchhoff modeling integral is the wavefield with the wavelet
shape of the incident wave and the amplitude proportional to the reflector coefficient along the
reflector surface. The goal of true-amplitude migration is to recoverM from the observed
seismic data. In order to obtain the image of the reflectors, the reconstructed model is evalu-
ated at the timez equal to zero. The Kirchhoff modeling integral requires explicit definition of
the reflector surface. However, its inverse doesn’t require explicit specification of the reflector
location. For each point of the subsurface, one can find the normal to the hypothetical reflector
by bisecting the angle between thes− x andx − r rays. Born scattering approximation pro-
vides a different physical model for the reflected waves. According to this approximation, the
recorded waves are viewed as scattered on smooth local inhomogeneities rather than reflected
from sharp reflector surfaces. The inversion of Born modeling (Miller et al., 1987; Bleistein,
1987) closely corresponds with the result of Kirchhoff integral inversion. For an unknown re-
flector and the correct macro-velocity model, the asymptotic inversion reconstructs the signal
located at the reflector surface with the amplitude proportional to the reflector coefficient.
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As follows from the form of the summation path (45), the integral migration operator must
have the summation path

θ̂ (y;z,x) = z+ T (s(y),x)+ T (x,r (y)) (49)

to reconstruct the geometry of the reflector at the migrated section. According to (7), the

asymptotic reconstruction of the wavelet requires, in addition, the derivative filter
(
−

∂
∂t

)m/2
.

The asymptotic reconstruction of the amplitude defines the true-amplitude weighting function
in accordance with (9), as follows:

ŵ(y;z,x) =
v(x) R(s(y),x) R(x,r (y))

(2π )m/2 cosα(x)

∣∣∣∣∂2T (s(y),x)

∂x ∂y
+

∂2T (x,r (y))

∂x ∂y

∣∣∣∣ . (50)

In the case of common-shot migration, we can simplify equation (50) with the help of
Gritsenko’s formula (39) to the form

ŵCS(r ;z,x) =
1

(2π )m/2

cosα(r )

v(x)

R(s,x)

R(x,r )
=

1

(2π )m/2

cosα(r )

v(r )

R(s,x)

R(r ,x)
, (51)

where the angleα(r ) is measured between the reflected ray and the normal to the observation
surface at the reflector pointr . Formula (51) coincides with the analogous result of Keho
and Beydoun (1988), derived directly from Claerbout’s imaging principle (Claerbout, 1970).
An alternative derivation is given by Goldin (1987). Docherty (1991) points out a remark-
able correspondence between this formula and the classic results of Born scattering inversion
(Bleistein, 1987).

In the case of zero-offset migration, Gritsenko’s formula simplifies the true-amplitude mi-
gration weighting function (50) to the form

ŵZ O(y;z,x) =
2m

(2π )m/2

cosα(y)

v(y)
. (52)

In a constant-velocity medium, one can accomplish the true-amplitude zero-offset migration
by premultiplying the recorded zero-offset seismic section by the factor

(
v
2

)m−1 (
t
2

)m/2
[which

corresponds at the stationary point to the geometric spreadingR(x, y)] and downward contin-
uation according to formula (44) with the effective velocityv/2 (Goldin, 1987; Hubral et al.,
1991). This conclusion is in agreement with the analogous result of Born inversion (Bleistein
et al., 1985), though derived from a different viewpoint.

In the case of common-offset migration in a general variable-velocity medium, the weight-
ing function (50) cannot be simplified to a different form, and all its components need to be
calculated explicitly by dynamic ray tracing (Červeňy and de Castro, 1993). In the constant-
velocity case, we can differentiate the explicit expression for the summation path

θ̂ (y;z,x) = z+
ρs(x, y)+ρr (x, y)

v
, (53)

whereρs andρr are the lengths of the incident and reflected rays:

ρs(y,x) =

√
x2

3 + (x1 − y1 +h1)2 + (x2 − y2 +h2)2 , (54)

ρr (y,x) =

√
x2

3 + (x1 − y1 −h1)2 + (x2 − y2 −h2)2 . (55)
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For simplicity, the vertical component of the midpointy3 is set here to zero. Evaluating the
second derivative term in formula (50) for the common-offset geometry leads, after some
heavy algebra, to the expression∣∣∣∣∂2T (s(y),x)

∂x ∂y
+

∂2T (x,r (y))

∂x ∂y

∣∣∣∣ =
x3 (ρ2

s +ρ2
r )

v (ρsρr )2

(
ρs +ρr

vρsρr

)m−1

cosα(x) . (56)

Substituting (56) into the general formula (50) yields the weighting function for the common-
offset true-amplitude constant-velocity migration:

ŵC O(y;z,x) =
1

(2π )m/2

x3 (ρs +ρr )m−1 (ρ2
s +ρ2

r )

v (ρsρr )m/2+1
. (57)

Formula (57) is similar to the result obtained by Sullivan and Cohen (1987). In the case of zero
offseth = 0, (57) reduces to formula (52). Note that the value ofm = 1 in (57) corresponds to
the two-dimensional (cylindric) waves recorded on the seismic line. A special case, valuable
in practice, is the 2.5-D inversion, when the waves are assumed to be spherical, while the
recording is on a line, and the medium has cylindric symmetry. In this case, the modeling
weighting function (46) transforms to (Deregowski and Brown, 1983; Bleistein, 1986)

w(x; t , y) =
1

(2π )1/2

√
vC (s(y),x,r (y))
√

ρsρr (ρs +ρr )
, (58)

and the time filter is
(

∂
∂z

)1/2
. Combining this result with formula (56) form = 1, we obtain

the weighting function for the 2.5-D common-offset migration in a constant velocity medium
(Sullivan and Cohen, 1987):

ŵC O;2.5D(y;z,x) =
1

(2π )1/2

x3
√

ρs +ρr (ρ2
s +ρ2

r )
√

v (ρsρr )3/2
. (59)

The corresponding time filter for 2.5-D migration is
(
−

∂
∂t

)1/2
.

The weighting function of the asymptotic pseudo-unitary migration is found analogously
to (38) as

w(+)
= w(−)

=
1

(2π )m/2

∣∣∣∣∂2T (s(y),x)

∂x ∂y
+

∂2T (x,r (y))

∂x ∂y

∣∣∣∣1/2

. (60)

Unlike true-amplitude migration, this type of migration operator doesn’t change the dimen-
sionality of the input. For common-shot migration, pseudo-unitary weighting coincides with
the weighting of datuming and corresponds to the downward continuation of the receivers. In
the zero-offset case, it reduces to downward pseudo-unitary continuation with a velocity of
v/2. In the common-offset case, the pseudo-unitary weighting is defined from (60) and (56)
as follows:

w
(−)
C O(y;z,x) =

1

(2π v)m/2

√
x3 cosα (ρs +ρr )

m−1
2

√
ρ2

s +ρ2
r

(ρsρr )
m+1

2

, (61)

where

cosα =

(
(x − y)2

+ρsρr −h2

2ρsρr

)1/2

. (62)
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Post-Stack Time Migration

An interesting example of a stacking operator is the hyperbola summation used for time mi-
gration in the post-stack domain. In this case, the summation path is defined as

θ̂ (y;z,x) =

√
z2 +

(x − y)2

v2
, (63)

wherez denotes the vertical traveltime,x and y are the horizontal coordinates on the mi-
grated and unmigrated sections respectively, andv stands for the effectively constant root-
mean-square velocity (Claerbout, 1995b). The summation path for the reverse transformation
(demigration) is found from solving equation (63) forz. It has the well-known elliptic form

θ (x; t , y) =

√
t2 −

(x − y)2

v2
. (64)

The Jacobian of transformingz to t is ∣∣∣∣∂θ̂

∂z

∣∣∣∣ =
z

t
. (65)

If the migration weighting function is defined by conventional downward continuation (Schnei-
der, 1978), it takes the following form, which is equivalent to equation (44):

ŵ(y;z,x) =
1

(2π )m/2

cosα(y)

v R(y,x)
=

1

(2π )m/2

cosα

vm tm/2
. (66)

The simple trigonometry of the reflected ray suggests that the cosine factor in formula (66) is
equal to the simple ratio between the vertical traveltimez and the zero-offset reflected travel-
time t :

cosα =
z

t
. (67)

The equivalence of the Jacobian (65) and the cosine factor (67) has important interpretations in
the theory of Stolt frequency-domain migration (Stolt, 1978; Chun and Jacewitz, 1981; Levin,
1986). According to equation (19), the weighting function of the adjoint operator is the ratio
of (66) and (65):

w̃(x; t , y) =
1

(2π )m/2

1

vm tm/2
. (68)

We can see that the cosine factorz/t disappears from the adjoint weighting. This is completely
analogous to the known effect of “dropping the Jacobian” in Stolt migration (Harlan, 1983;
Levin, 1994). The product of the weighting functions for the time migration and its asymptotic
inverse is defined according to formula (9) as

wŵ =
1

(2π )m

√∣∣F F̂
∣∣ ∣∣∣∣∂θ̂

∂z

∣∣∣∣m =
1

(v2 t)m
. (69)
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Thus, the asymptotic inverse of the conventional time migration has the weighting function
determined from equations (9) and (66) as

w(x; t , y) =
1

(2π )m/2

t/z

vm tm/2
. (70)

The weighting functions of the asymptotic pseudo-unitary operators are obtained from formu-
las (34) and (35). They have the form

w(+)(x; t , y) =
1

(2π )m/2

√
t/z

vm tm/2
. (71)

w(−)(y;z,x) =
1

(2π )m/2

√
z/t

vm tm/2
. (72)

The square roots of the cosine factor appearing in formulas (71) and (72) correspond to the
analogous terms in the pseudo-unitary Stolt migration proposed by Harlan and Sword (1986).

Post-Stack Residual Migration

In an earlier article (Fomel, 1994), I found the integral solution of the boundary problem for
the velocity continuation partial differential equation (Claerbout, 1986)

∂2P

∂v ∂z
+v t

∂2P

∂x2
= 0 (73)

with the boundary conditionsP|v=v0
= P0 and P|z→∞ = 0. The solution has the form of the

stacking operator (1), with the modelM replaced byP0, the summation path

θ̂ (y;z,x) =

√
z2 +

(x − y)2

v2 −v2
0

, (74)

the weighting function

w(−)(y;z,x) =
1

(2π )m/2

1

vm tm/2
, (75)

which is coincident with (68), and the correction filter
(
sign(v0 −v) d

dt

)m/2
. Comparing equa-

tions (74) and (63), we can see that this solution is equivalent kinematically to residual mi-

gration with the velocityvr =

√
v2 −v2

0 (Rothman et al., 1985). The reverse operator is the
solution of equation (73) with the boundary condition onv and has the reciprocal form of the
summation path

θ (x; t , y) =

√
t2 +

(x − y)2

v2
0 −v2

=

√
t2 −

(x − y)2

v2 −v2
0

, (76)
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the weighting function

w(+)(x; t , y) =
1

(2π )m/2

1

vm zm/2
, (77)

and the correction filter
(
sign(v −v0) d

d z

)m/2
. The derivative filters are connected by the simple

asymptotic relationship(
±

d

d z

)m/2

=

(
±

d

d t

)m/2 (
dt

dz

)m/2

=

(
±

d

d t

)m/2 (z

t

)m/2
, (78)

which transforms the reversed velocity continuation operator to the familiar form (31) with
the weighting function equal to (75). According to formula (69), these two operators are seen
to be asymptotically inverse.

To obtain the velocity continuation operator completely equivalent to residual migration
with the weighting function (66), we can divide the continued wavefield by the timet , which
is equivalent to transforming equation (73) to the form

∂2P

∂v ∂t
+v t

∂2P

∂x2
+

1

t

∂ P

∂v
= 0 . (79)

The reverse continuation in this case has the weighting function (70).

Analogously, one can obtain the pseudo-unitary residual migration with the weighting
functions (71) and (72) by dividing the wavefield by

√
t . This leads to the equation

∂2P

∂v ∂t
+v t

∂2P

∂x2
+

1

2t

∂ P

∂v
= 0 . (80)

It is apparent that the operators of forward and reverse continuation with equation (73) be-
come adjoint to each other if the definition of the dot product is changed according to formulas
(28) and (29) with the model weightWM (z) = z and the data weightWS(t) = t . Analogously,
the solutions of equation (79) are adjoint ifWM (z) =

1
z andWS(t) =

1
t . This is a simple exam-

ple of how the arbitrarily chosen definition of the dot product can affect the basic properties of
the inverted operators.

Velocity Transform

Velocity transform is another form of hyperbolic stacking with the summation path

θ̂ (h; t0,s) =

√
t2
0 +s2h2 , (81)

whereh corresponds to the offset,s is the stacking slowness, andt0 is the estimated zero-
offset traveltime. Hyperbolic stacking is routinely applied for scanning velocity analysis in
common-midpoint stacking. Velocity transform inversion has proved to be a powerful tool for
data interpolation and amplitude-preserving multiple supression (Thorson, 1984; Ji, 1994a;
Lumley et al., 1994).
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Solving equation (81) fort0, we find that the asymptotic inverse and adjoint operators have
the elliptic summation path

θ (s; t ,h) =

√
t2 −s2h2 . (82)

The weighting functions of the asymptotic pseudo-unitary velocity transform are found using
formulas (34) and (35) to have the form

w(+)
=

1

(2π )1/2

∣∣F F̂
∣∣1/4

∣∣∣∣ ∂θ̂

∂t0

∣∣∣∣−1/4

=
1

√
π

√
s h

√
t/t0

√
t

. (83)

w(−)
=

1

(2π )1/2

∣∣F F̂
∣∣1/4

∣∣∣∣ ∂θ̂

∂t0

∣∣∣∣3/4

=
1

√
π

√
s h

√
t0/t

√
t

. (84)

The factor
√

s h for pseudo-unitary velocity transform weighting has been discovered empiri-
cally by Claerbout (1987; 1995b).

Offset Continuation and DMO

Offset continuation is the operator that transforms seismic reflection data from one offset to
another (Bolondi et al., 1982; Salvador and Savelli, 1982). If the data are continued from half-
offseth1 to a larger offseth2, the summation path of the post-NMO integral offset continuation
has the following form (Biondi and Chemingui, 1994; Fomel, 1995b; Stovas and Fomel, 1996):

θ (x; t , y) =
t

h2

√
U + V

2
, (85)

whereU = h2
1 +h2

2 − (x − y)2, V =

√
U2 −4h2

1h2
2, andx andy are the midpoint coordinates

before and after the continuation. The summation path of the reverse continuation is found
from inverting (85) to be

θ̂ (y;z,x) = z h2

√
2

U + V
=

z

h1

√
U − V

2
. (86)

The Jacobian of the time coordinate transformation in this case is simply∣∣∣∣∂θ̂

∂z

∣∣∣∣ =
t

z
. (87)

Differentiating summation paths (85) and (86), we can define the product of the weighting
functions according to formula (9), as follows:

wŵ =
1

2π

√∣∣F F̂
∣∣ ∣∣∣∣∂θ̂

∂z

∣∣∣∣ =
t

2π

(
h2

2 −h2
1

)2
− (x − y)4

V3
. (88)
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The weighting functions of the amplitude-preserving offset continuation have the form2

w(x; t , y) =

√
z

2π

h2
2 −h2

1 − (x − y)2

V3/2
, (89)

ŵ(y;z,x) =
t/

√
z

√
2π

h2
2 −h2

1 + (x − y)2

V3/2
. (90)

It easy to verify that they satisfy relationship (88); therefore, they appear to be asymptotically
inverse to each other.

The weighting functions of the asymptotic pseudo-unitary offset continuation are defined
from formulas (34) and (35), as follows:

w(+)
=

1

(2π )1/2

∣∣F F̂
∣∣1/4

∣∣∣∣ ∂θ̂

∂t0

∣∣∣∣−1/4

=

√
z

2π

((
h2

2 −h2
1

)2
− (x − y)4

)1/2

V3/2
, (91)

w(−)
=

1

(2π )1/2

∣∣F F̂
∣∣1/4

∣∣∣∣ ∂θ̂

∂t0

∣∣∣∣3/4

=
t/

√
z

√
2π

((
h2

2 −h2
1

)2
− (x − y)4

)1/2

V3/2
. (92)

The most important case of offset continuation is the continuation to zero offset. This
type of continuation is known asdip moveout (DMO). Setting the initial offseth1 equal to
zero in the general offset continuation formulas, we deduce that the inverse and forward DMO
operators have the summation paths

θ (x; t , y) =
t

h2

√
h2

2 − (x − y)2 , (93)

θ̂ (y;z,x) =
z h2√

h2
2 − (x − y)2

. (94)

The weighting functions of the amplitude-preserving inverse and forward DMO are

w(x; t , y) =

√
z

2π

1

h2
, (95)

ŵ(y;z,x) =
t/

√
z

√
2π

h2
(
h2

2 + (x − y)2
)(

h2
2 − (x − y)2

)2 , (96)

and the weighting functions of the asymptotic pseudo-unitary DMO are

w(+)
=

√
z

2π

√
h2

2 + (x − y)2

h2
2 − (x − y)2

, (97)

w(−)
=

t/
√

z
√

2π

√
h2

2 + (x − y)2

h2
2 − (x − y)2

. (98)

2The derivation of formulas (89) and (90) is beyond the scope of this paper. I plan to include this derivation
in one of the next SEP reports as a continuation of the “Amplitude preserving offset continuation in theory”
series (Fomel, 1995a,b).
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Formulas similar to (95) and (96) have been published by Fomel (1995b) and Stovas and Fomel
(1996). Formula (96) differs from the similar result of Black et al. (1993) by a simple time
multiplication factor. This difference corresponds to the difference in definition of the am-
plitude preservation criterion. Formula (96) agrees asymptotically with the frequency-domain
Born DMO operators (Bleistein, 1990; Bleistein and Cohen, 1995). Likewise, the stacking op-
erator with the weighting function (95) corresponds to Ronen’s inverse DMO (Ronen, 1987),
as I discussed in an earlier report (Fomel, 1995b). Its adjoint, which has the weighting function

w̃(x; t , y) =
t/

√
z

2π

1

h2
, (99)

corresponds to Hale’s DMO (Hale, 1984).

NUMERIC TEST

For a simple numeric test I choose the stacking DMO operator. The problem is formulated
as an iterative least-square inversion of inverse DMO. The input data set is a synthetic three-
dimensional common-azimuth common-offset gather containing a reflection response from a
point diffractor (Figure 4) The data cube has 64 by 64 traces with the midpoint spacing 20 m.
The half-offset is 500 m. Figure 1 compares convergence of the conjugate-gradient inversion
with two different types of a DMO operator: adjoint (Hale’s) DMO with the weighting func-
tion defined by formula (99) and asymptotic pseudounitary DMO with formula (98). Both
operators include antialiasing with the method described by Fomel and Biondi (1995). The
impulse responses of inverse DMO are plotted in Figure 2. The impulse responses of DMO
are plotted in Figure 3. The asymptotic pseudounitary DMO has a noticeably higher ampli-
tudes than the adjoint DMO. We can see that the convergence of the pseudonutary operator
is better at the first 5 iterations, though the difference is negligible after 7-th iteration (Figure
1.) The zero-offset data cube obtained after the inversion with 10 conjugate-gradient iterations
is shown in Figure 5. Despite some boundary artifacts, caused by the data truncation in the
in-line direction, the main kinematic and dynamic features of the solution are correct, and the
model of the input data (Figure 6) is accurate. The residual error after 10 iterations is shown
in Figure 7. It possesses less than 1% energy of the original signal. To reduce data aliasing
artifacts in DMO/inversion, it is desirable to use data with more than one offset (Ronen, 1987;
Ronen et al., 1991) and/or add some model constraints in the inversion (Ronen et al., 1995).

CONCLUSIONS

The mathematical theory of stacking operators leads to the fundamental concept of asymptotic
inversion. When the integral continuation operators are constructed by the asymptotic Green-
function solution of the partial differential equation, they often appear to be asymptotically
inverse to the reverse continuation.

The concept of the adjoint operator is fundamental for the practical least-square inversion.
From a practical point of view, every linear operator, including the operators of stacking type,
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Figure 1: Comparison of conver-
gence of the iterative inversion with
different DMO operators. The rel-
ative squared residual error is plot-
ted against the number of iteration.
stack-adjcon[ER]

can be represented with a matrix, and the adjoint operator corresponds to the matrix transpo-
sition.

This paper fills the gap between the concept of asymptotically inverse operators and the
concept of adjoint operators by introducing the notion of asymptotic pseudo-unitary stacking
operators. To what extent this notion is useful for practical least-square inversion largely
depends on the particular form of the inverted operator. Practical applications may require
specialized numeric tests.
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