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Spectral factorization revisited

Paul Sava and Sergey Fomel1

ABSTRACT

In this paper, we review some of the iterative methods for the square root, showing that
all these methods belong to the same family, for which we find a general formula. We
then explain how those iterative methods for real numbers can be extended to spectral
factorization of auto-correlations. The iteration based on the Newton-Raphson method is
optimal from the convergence stand point, though it is not optimal as far as stability is
concerned. Finally, we show that other members of the iteration family are more stable,
though slightly more expensive and slower to converge.

INTRODUCTION

Spectral factorization has been recently revived by the advent of the helical coordinate system.
Several methods are reported in the literature, ranging from Fourier domain methods, such
as Kolmogoroff’s (Claerbout, 1992; Kolmogoroff, 1939), to iterative methods, such as the
Wilson-Burg method (Claerbout, 1999; Wilson, 1969; Sava et al., 1998).

In this paper, after reviewing the general theory of root estimation by iterative methods,
we derive a general square root relationship applicable to both real numbers and to auto-
correlation functions. We introduce a new spectral factorization relation and show its relation
to the Wilson-Burg method.

THE SQUARE ROOT OF REAL NUMBERS

This section briefly reviews some well known square root iterative algorithms, and derives the
Newton-Raphson and Secant methods. It also shows that Muir’s iteration for the square root
(Claerbout, 1995) belongs to the same family of iterative methods, if we make an appropriate
choice of the generating function.
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Root-finding recursions

Given a function f (x) and an approximation for one of its rootsxn, we can find a better
approximation for the root by linearizing the function aroundxn

f (x) ≈ f (xn)+ (xn+1 − xn) f ′(xn)

and by settingf (x) to be zero forx = xn+1. We find that

xn+1 = xn −
f (xn)

f ′(xn)
(1)

1. Newton-Raphson’s method for the square root

A common choice of the functionf is f (x) = x2
−s. This function has the advantage

that it is easily differentiable, withf ′(x) = 2x. The recursion relation thus becomes

xn+1 = xn −
x2

n −s

2xn
=

xn

2
+

s

2xn

or

xn+1 =
1

2

(
xn +

s

xn

)
or, after rearrangement,

xn+1 =
s+ x2

n

2xn
(2)

The recursion (2) converges to±
√

s depending on the sign of the starting guessx0 6= 0.

2. Secant method for the square root

A variation of the Newton-Raphson method is to use a finite approximation of the
derivative instead of the differential form. In this case, the approximate value of the
derivative at stepn is

f ′(xn) =
f (xn)− f (xn−1)

xn − xn−1

For the same choice of the functionf , f (x) = x2
−s, we obtain

xn+1 = xn −
x2

n −s

xn + xn−1
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and

xn+1 =
s+ xnxn−1

xn + xn−1
(3)

In this case, recursion (3) also converges to±
√

s depending on the sign of the starting
guessesx0 andx1.

3. Muir’s method for the square root

Another possible iterative relation for the square root is Francis Muir’s, described by
Jon Claerbout (1995):

xn+1 =
s+ xn

xn +1
(4)

This relation belongs to the same family of iterative schemes as Newton and Secant, if
we make the following special choice of the functionf (x) in (1):

f (x) = |x +
√

s|

√
s−1

2
√

s |x −
√

s|

√
s+1

2
√

s (5)

Figure 1 is a graphical representation of the function f(x).

Figure 1: The graph of the function
defined in Equation (1) used to gen-
erate Muir’s iteration for the square
root (solid line). The dashed lines are
the plot of the two factors in the equa-
tion . specfac-muf[CR]

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

x

f(
x)

4. A general formula for the square root

From the analysis of equations (2), (3), and (4), we can derive the following general
form for the square root iteration:

xn+1 =
s+ xnγ

xn +γ
(6)
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Table 1: Recursions for the square root

γ Recursion

Muir 1 xn+1 =
s+xn
xn+1

Secant xn−1 xn+1 =
s+xnxn−1
xn+xn−1

Newton xn xn+1 =
s+x2

n
2xn

Ideal
√

s xn+1 =
s+xn

√
s

xn+
√

s

whereγ can be either a fixed parameter, or the value of the iteration at the preceding
step, as shown in Table 1. The parameterγ is the estimate of the square root at the
given step (Newton), the estimate of the square root at the preceding step (Secant), or a
constant value (Muir). Ideally, this value should be as close as possible to

√
s.

The convergence rate

We can now analyze which of the particular choices ofγ is more appropriate as far as the
convergence rate is concerned.

If we consider the general form of the square root iteration

xn+1 =
s+ xnγ

xn +γ

we can estimate the convergence rate by the difference between the actual estimation at step
(n+1) and the analytical value

√
s. For the general case, we obtain

xn+1 −
√

s =
s+γ xn − xn

√
s−γ

√
s

xn +γ

or

xn+1 −
√

s =
(xn −

√
s)(γ −

√
s)

xn +γ
(7)

The possible selections forγ from Table 1 clearly show that the recursions described in the
preceding subsection generally have a linear convergence rate (that is, the error at stepn+1 is
proportional to the error at stepn), but can converge quadratically for an appropriate selection
of the parameterγ , as shown in Table 2. Furthermore, the convergence is faster whenγ is
closer to

√
s.

We therefore conclude that Newton’s iteration has the potential to achieve the fastest con-
vergence rate. Ideally, however, we could use a fixedγ which is a good approximation to
the square root. The convergence would then be slightly faster than for the Newton-Raphson
method, as shown in Figure 2.
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Figure 2: Convergence plots for dif-
ferent recursive algorithms, shown in
Table 1. specfac-sqroot[CR]

1 2 3 4 5 6 7 8 9 10
5

6

7

8

9

10

11

12

13

14

15
muir  
secant
newton
ideal 

Table 2: Convergence rate

γ Convergence

Muir 1 linear

Secant xn−1 quasi-quadratic

Newton xn quadratic

SPECTRAL FACTORIZATION

We can now extend the equations derived for real numbers to polynomials of Z, withZ = ei ωt ,
and obtain spectral factorization algorithms similar to the Wilson-Burg method (Sava et al.,
1998), as follows:

Xn+1 =
S+ XnḠ

X̄n + Ḡ
(8)

If L represents the limit of the series in (8),

L L̄ + LḠ = S+ LḠ

and so

L L̄ = S

Therefore,L represents the causal or anticausal part of the given spectrumS= XX̄.

Table 3 summarizes the spectral factorization relationships equivalent to those established
for real numbers in Table 1.

The convergence properties are similar to those derived for real numbers. As shown above,
the Newton-Raphson method should have the fastest convergence.
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Table 3: Spectral factorization

General Xn+1 =
S+XnḠ
X̄n+Ḡ

Muir Xn+1 =
S+Xn
X̄n+1

Secant Xn+1 =
S+Xn X̄n−1
X̄n+X̄n−1

Newton Xn+1 =
S+Xn X̄n

2X̄n

Ideal Xn+1 =
S+Xn

√
S

X̄n+
√

S

A COMPARISON WITH THE WILSON-BURG METHOD

For reasons of symmetry, we can take Newton’s relation from Table 3

Xn+1 =
S+ Xn X̄n

2X̄n

and convert it to

Xn+1

2Xn
=

S+ Xn X̄n

(2Xn)(2X̄n)
.

We can then consider a symmetrical relation where on the left side we insert the anticausal
part of the spectrum, and obtain

X̄n+1

2X̄n
=

S+ Xn X̄n

(2Xn)(2X̄n)
.

Finally, we can sum the preceding two equations and get

Xn+1

2Xn
+

X̄n+1

2X̄n
=

2S+ Xn X̄n + X̄nXn

(2Xn)(2X̄n)
(9)

which can easily be shown to be equivalent to the Wilson-Burg relation

Xn+1

Xn
+

X̄n+1

X̄n
= 1+

S

Xn X̄n
(10)

In an analogous way, we can take the general relation from Table 3

Xn+1 =
S+ XnḠ

X̄n + Ḡ

and convert it to

Xn+1

Xn + G
=

S+ XnḠ

(Xn + G)(X̄n + Ḡ)
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We can then consider a symmetrical relation where on the left side we insert the anticausal
part of the spectrum, and obtain

X̄n+1

X̄n + Ḡ
=

S+ X̄nG

(Xn + G)(X̄n + Ḡ)

Finally, we can sum the preceding two equations and get

Xn+1

Xn + G
+

X̄n+1

X̄n + Ḡ
=

2S+ XnḠ+ X̄nG

(Xn + G)(X̄n + Ḡ)
(11)

Equation (11) represents our general formula for spectral factorization. If we consider the
particular case whenG is Xn, we obtain equation (10), which we have shown to be equivalent
to the Wilson-Burg formula.

From the computational standpoint, our equation is more expensive than the Wilson-Burg
because it requires two more convolutions on the numerator of the right-hand side. However,
our equation offers more flexibility in the convergence rate. If we try to achieve a quick
convergence, we can takeG to beXn and get the Wilson-Burg equation. On the other hand, if
we worry about the stability, especially when some of the roots of the auto-correlation function
are close to the unit circle, and we fear losing the minimum-phase property of the factors, we
can takeG to be some damping function, more tolerant of numerical errors.

Moreover, by using the Equation (11), we can achieve fast convergence in cases when the
auto-correlations we are factorizing have a very similar form, for example, in nonstationary
filtering. In such cases, the solution at the preceding step can be used as theG function in the
new factorization. SinceG is already very close to the solution, the convergence is likely to
occur quite fast.

CONCLUSIONS

The general iterative formula for the square root that we derived can be extended to the factor-
ization of the auto-correlation functions. The Wilson-Burg algorithm is a special case of our
more general formula. Using such a general formula provides flexibility in choosing between
fast convergence and stability. We can achieve fast convergence when factorizing auto-spectra
that have a very similar form. This improvement in convergence rate can have a useful appli-
cation, for instance, in nonstationary preconditioning.
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