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Applications of plane-wave destructor filters

Sergey Fomel1

ABSTRACT

On several synthetic and real-data examples, I show that finite-difference plane-wave de-
structor filters can be a valuable alternative to prediction-error filters in applications such
as data interpolation, fault detection, and noise attenuation.

INTRODUCTION

Plane-wave destructor filters, introduced inProcessing Versus Inversion(Claerbout, 1992a),
serve the purpose of characterizing seismic images by a superposition of local plane waves.
They are constructed as finite-difference stencils for the plane-wave differential equation. In
many cases, a local plane-wave model is a very convenient representation of seismic data. Un-
fortunately, early experiences with applying plane-wave destructors for interpolating spatially
aliased data showed their poor performance in comparison with that of industry-standardF-X
prediction-error filters (Spitz, 1991).

For each given frequency, anF-X prediction-error filter (PEF) can be thought of as aZ-
transform polynomial. The roots of the polynomial correspond precisely to predicted plane
waves (Canales, 1984). Therefore,F-X PEFs simply represent a spectral (frequency-domain)
approach to plane-wave destruction. This powerful and efficient approach is, however, not the-
oretically adequate, when the plane wave slopes or the boundary conditions vary both spatially
and temporally.

MultidimensionalT-X prediction-error filters (Claerbout, 1992a, 1999) share the same
purpose of predicting local plane waves. They work well with spatially aliased data and allow
for both temporal and spatial variability of the slopes. In practice, however,T-X filters appear
as very mysterious creatures, because their construction involves many non-intuitive parame-
ters. The user needs to choose such parameters as the number of filter coefficients, the gap and
the exact shape of the filter, the size, number, and shape of local patches for filter estimation,
the number of iterations and the amount of regularization. Recently developed techniques for
handling non-stationary PEFs (Crawley et al., 1998, 1999; Clapp et al., 1999; Crawley, 1999),
demonstrated an excellent performance in a variety of applications (Brown et al., 1999; Clapp
and Brown, 2000; Crawley, 2000), but the large number of adjustable parameters still requires
a significant human interaction and remains the down side of the method.

Clapp et al. (1997) have recently revived the original plane-wave destructors for precondi-
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tioning tomographic problems with predefined dip field (Clapp et al., 1998; Clapp and Biondi,
1998, 2000). The filters were namedsteering filtersbecause of their ability to steer the solution
in the direction of the local dips.

In this paper, I revisit Claerbout’s original technique of finite-difference plane-wave de-
struction. First, I develop an approach for increasing the accuracy and dip bandwidth of the
method. Applying the improved filter design to several data interpolation and noise attenua-
tion problems, I discover that the finite-difference filters often perform as well as or even better
thanT-X PEFs. At the same time, the number of adjustable parameters is kept at minimum,
and the only estimated quantity has a clear physical meaning of the local plane-wave slope.

The encouraging results of this paper suggest further experiments with plane-wave de-
structors. One can apply similar approaches to wave fields, characterized by more complicated
differential equations, such as the offset continuation equation (Fomel, 2000c).

HIGH-ORDER PLANE-WAVE DESTRUCTORS

The mathematical basis of the plane-wave destructor filters is the local plane differential equa-
tion

∂ P

∂x
+s

∂ P

∂t
= 0 , (1)

whereP(t ,x) is the wave field, ands is the local slope, which may also depend ont andx. In
the case of a constant slope, equation (1) has the simple general solution

P(t ,x) = f (t −sx) , (2)

where f (t) is an arbitrary waveform. Equation (2) is nothing more than a mathematical de-
scription of a plane wave.

If the slopes does not depend on thet coordinate, we can transform equation (1) to the
frequency domain, where it takes the form of the ordinary differential equation

dP̂

dx
+ i ωs P̂ = 0 (3)

and has the general solution

P̂(x) = P̂(0)ei ωsx , (4)

whereP̂ is the Fourier transform ofP. The complex exponential term in equation (4) simply
represents a shift of at-trace according to the slopes and the trace separationx. In the
frequency domain, the operator for transforming the trace at positionx −1 to the neighboring
trace at positionx is a multiplication byei ωs. In other words, a plane wave can be perfectly
predicted by a two-term prediction-error filter in theF-X domain:

a0 P̂(x)+a1 P̂(x −1) = 0 , (5)
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wherea0 = 1 anda1 = −e−i ωs. The goal of predicting several plane waves can be accom-
plished by cascading several two-term filters. In fact, anyF-X prediction-error filter, repre-
sented in theZ-transform form as

A(Zx) = 1+a1Zx +a2Z2
x +·· ·+aN ZN

x , (6)

can be factored into a product of two-term filters:

A(Zx) =

(
1−

Zx

Z1

)(
1−

Zx

Z2

)
· · ·

(
1−

Zx

ZN

)
, (7)

whereZ1, Z2, . . . , ZN are the zeroes of polynomial (6). According to equation (5), the phase of
each zero corresponds to the slope of a local plane wave multiplied by the frequency. Zeroes
that are not on the unit circle carry an additional amplitude gain not included in equation (3).

In order to incorporate time-varying slopes, we need to return back to the time domain
and look for an appropriate analog of the phase-shift operator (4) and the plane-prediction
filter (5). An important property of plane-wave propagation across different traces is that the
total energy of the transmitted wave stays invariant throughout the process. This property is
assured in the frequency-domain solution (4) by the fact that the spectrum of the complex
exponentialei ωs is equal to one. In the time domain, we can reach an equivalent effect by
using an all-pass digital filter. In theZ-transform notation, convolution with an all-pass filter
takes the form

P̂x+1(Zt ) = P̂x(Zt )
B(Zt )

B(1/Zt )
, (8)

whereP̂x(Zt ) denotes theZ-transform of the corresponding trace, and the ratioB(Zt )/B(1/Zt )
is an all-pass digital filter, approximating the time-shift operator (5). In finite-difference terms,
equation (8) represents an implicit finite-difference scheme for solving equation (1) with the
initial conditions at a constantx. The coefficients of filterB(Zt ) can be determined, for
example, by fitting the filter frequency response at small frequencies to the response of the
phase-shift operator. The Taylor series technique (equating the coefficients of the Taylor se-
ries expansion around zero frequency) yields the expression

B3(Zt ) =
(1−s)(2−s)

12
Z−1

t +
(2+s)(2−s)

6
+

(1+s)(2+s)

12
Zt (9)

for a three-point centered filterB3(Zt ) and the expression

B5(Zt ) =
(1−s)(2−s)(3−s)(4−s)

1680
Z−2

t +
(4−s)(2−s)(3−s)(4+s)

420
Z−1

t +

(4−s)(3−s)(3+s)(4+s)

280
+

(4−s)(2+s)(3+s)(4+s)

420
Zt +

(1+s)(2+s)(3+s)(4+s)

1680
Z2

t (10)

for a five-point centered filterB5(Zt ). It is easy to generalize these expressions to longer filters.
Figure 1 shows the phase of the all-pass filtersB3(Zt )/B3(1/Zt ) andB5(Zt )/B5(1/Zt ) for two
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Figure 1: Phase of the implicit finite-difference shift operators in comparison with the exact
solution. Left plot corresponds tos = 0.5. Right plot;s = 0.8. pwd-phase[CR]

values of the slopes in comparison with the exact linear function of equation (4). As expected,
the phases fit the exact line at low frequencies, and the accuracy of the approximation increases
with the length of the filter.

In two dimensions, equation (8) transforms to the prediction equation analogous to (5)
with the 2-D prediction filter2

A(Zt , Zx) = 1− Zx
B(1/Zt )

B(Zt )
. (11)

In order to characterize several plane waves, we can cascade several filters of the form (11) in
a manner similar to equation (7). In all examples of this paper, I used a modified version of
the filter A(Zt , Zx), namely the filter

C(Zt , Zx) = A(Zt , Zx)B(Zt ) = B(Zt )− Zx B(1/Zt ) , (12)

which avoids the need for polynomial division. In case of the 3-point filter (9), the 2-D fil-
ter (12) has exactly six coefficients, with the secondt column being a reversed copy of the
first column. When filter (12) is used in interpolation problems, it can occasionally cause
undesired high-frequency oscillations in the solution, resulting from the near-Nyquist zeroes
of the polynomialB(Zt ). The oscillations are easily removed in practice with an appropriate
low-pass filtering.

In the next section, I address the problem of estimating the local slopes with the filters of
form (12). Estimating the slope is a necessary step for applying the finite-difference plane-
wave filters on real data.

2The helix transform (Claerbout, 1998) would map this 2-D filter to an equivalent 1-D filter by imposing
the equalityZx = ZNt

t , whereNt is the length of thet axis or, equivalently, the diameter of the corresponding
helix (Rickett and Guitton, 2000). This transformation is not essential for the further discussion.
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SLOPE ESTIMATION

Let us denote byC(s) the operator of convolving the data with the 2-D filterC(Zt , Zx) of
equation (12) assuming the local slopes. In order to determine the slope, we can define the
least-squares goal

C(s)d ≈ 0 , (13)

whered is the known data, and the approximate equality implies that the solution is found
by minimizing the power of the left-hand side. Equations (9) and (10) show that the slopes
enters in the filter coefficients in an essentially non-linear way. However, one can still apply
the linear iterative optimization methods by an analytical linearization of equation (13). The
linearization implies solving the linear system

C′(s0)1sd+C(s0)d ≈ 0 (14)

for the slope increment1s. Heres0 is the initial slope estimate, andC′(s) is a convolution
with the filter, obtained by differentiating the filter coefficients ofC(s) with respect tos. After
system (13) is solved, the initial slopes0 is updated by adding1s to it, and one can solve the
linear problem again. Depending on the starting solution, the method may require several non-
linear iterations to achieve an acceptable convergence. The described linearization approach
is similar in idea to tomographic velocity estimation.

In the case of time- and space-varying slopes, system (14) may lead to undesirably rough
slope estimates. Moreover, the solution will be undefined in the regions of unknown or con-
stant data. Both these problems are solved by adding a regularization (styling) goal to sys-
tem (14). The additional goal takes the form

εD1s≈ 0 , (15)

whereD is an appropriate roughening operator, andε is a scaling coefficient. For simplicity, I
choseD to be the gradient operator. More efficient and sophisticated helical preconditioning
techniques are available (Fomel et al., 1997; Fomel, 2000a).

In theory, estimating two different slopess1 ands2 from the available data is only marginally
more complicated. The convolution operator becomes a cascade ofC(s1) andC(s2), and the
linearization yields

C′(s1)C(s2)1s1d+C(s1)C′(s2)1s2d+C(s1)C(s2)d ≈ 0 . (16)

The regularization condition should now be applied to both1s1 and1s2:

εD1s1 ≈ 0 ; (17)

εD1s2 ≈ 0 . (18)

The solution will obviously depend on the initial values ofs1 ands2, which should not be
equal to each other. System (16) is generally under-determined, because it contains twice as
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many estimated parameters as equations, but an appropriate choice of the starting solution and
the additional regularization conditions allow us to arrive at a practical solution.

The application examples of the next section demonstrate that when the system of equa-
tions (14-15) or (16-18) are optimized in the least-squares sense in a cycle of several lin-
earization iterations, it leads to smooth and reliable slope estimates. The regularization condi-
tions (15) and (17-18) assure a smooth extrapolation of the slope to the regions of unknown or
constant data.

APPLICATION EXAMPLES

In this section, I examine the performance of the finite-difference plane-destruction filters on
several test applications.

Fault detection

The use of prediction-error filters in the problem of detecting local discontinuities was sug-
gested by Claerbout (1992b, 1993, 1999) and further refined by Schwab et al. (1996a,b) and
Schwab (1998). Bednar (1997) used simple plane-destructor filters in a similar setting to com-
pute coherency attributes.

To test the performance of the improved plane-wave destructors, I chose several examples
from Claerbout (1992b). Figure 2 introduces the first example. The left plot of the figure
shows a synthetic model, which resembles sedimentary layers with a plane unconformity and
a curvilinear fault. The right plot shows the corresponding “texture” (Brown, 1999; Claerbout
and Brown, 1999), obtained by convolving a field of random numbers with the inverse plane-
wave destructor filters. The inverse filters were constructed with the B-spline regularization
technique (Fomel, 2000b), while the dip field was estimated by the linearization method of
the previous section. The dip field itself and the prediction residual [the left-hand side of
equation (13)] are shown in the left and right plots of Figure 3 respectively. We observe
that the texture plot does reflect the dip structure of the input data, which indicates that the
dip field was estimated correctly. The fault and unconformity are clearly visible both in the
dip estimate and in the residual plots. Anywhere outside the slope discontinuities and the
boundaries, the residual is close to zero. Therefore, it can be used directly as a fault detection
measure. Comparing the residual plot in Figure 3 with the analogous plot of Claerbout (1992b)
establishes a superior performance of the improved finite-difference destructors in comparison
with that of the localT − X prediction-error filters.

Figure 4 shows a simpler synthetic test. The model is composed of linear events with two
conflicting slopes. A regularized dip field estimation attempts to smooth the estimated dip in
the places where it is not constrained by the data (the left plot of Figure 5.) The corresponding
residual (the right plot of Figure 5) shows suppressed linear events and highlights the places
of their intersection.

The left plot in Figure 6 shows a real shot gather (a portion of Yilmaz and Cumro data
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Figure 2: Synthetic sedimentary model. Left plot: Input data. Right plot: Its texture.
pwd-txtr-sigmoid0[ER]

Figure 3: Synthetic sedimentary model. Left plot: Estimated dip field. Right plot: Prediction
residual. pwd-lomo2-sigmoid0[ER]
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Figure 4: Conflicting dips synthetic. Left plot: Input data. Right plot: Its texture.
pwd-txtr-conflict [ER]

Figure 5: Conflicting dips synthetic. Left plot: Estimated dip field. Right plot: Prediction
residual. pwd-lomo-conflict [ER]
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set 27). The initial dip in the dip estimation program was set to zero. Therefore, the texture
image (the right plot in Figure 6) contains zero-dipping plane waves in the places of no data.
Everywhere else the dip is accurately estimated from the data. The data contain a missing
trace at about 0.7 km offset and a slightly shifted (possibly mispositioned) trace at about
1.1 km offset. The mispositioned trace is clearly visible in the dip estimate (the left plot in
Figure 7), and the missing trace is emphasized in the residual image (the right plot in Figure 7).
Additionally, the residual image reveals the forward and back-scattered surface waves, hidden
under more energetic reflections in the input data.

Figure 6: Real shot gather. Left plot: Input data. Right plot: Its texture.pwd-txtr-yc27 [ER]

Figure 8 shows a stacked time section from the Gulf of Mexico and its corresponding
texture. The texture plot demonstrates that the estimated dip (the left plot of Figure 9) reflects
the dominant local dip in the data. After the plane waves with that dip are removed, many
hidden diffractions appear in the residual image (the right plot in Figure 9.) The enhanced
diffraction events can be used, for example, for estimating the medium velocity (Harlan et al.,
1984).

Overall, the examples of this subsection show that the finite-difference plane-wave de-
structors are a reliable tool for enhancement of discontinuities and conflicting slopes in seis-
mic images. The estimation step of the fault detection procedure produces an image of the
local dip field, which may have its own interpretational value. An extension to 3-D is possible,
as outlined by Claerbout (1993), Schwab (1998), Fomel (1999), and Clapp (2000a).



162 Fomel SEP–105

Figure 7: Real shot gather. Left plot: Estimated dip field. Right plot: Prediction residual.
pwd-lomo2-yc27[ER]

Figure 8: Time section from the Gulf of Mexico. Left plot: Input data. Right plot: Its texture.
pwd-txtr-dgulf [ER]
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Figure 9: Time section from the Gulf of Mexico. Left plot: Estimated dip field. Right plot:
Prediction residual.pwd-lomo-dgulf [ER]

Gap interpolation

Irregular gaps occur in the recorded data for many different reasons, and prediction-error filters
are known as a powerful method for interpolating them. Interpolating irregularly spaced data
also reduces to gap interpolation after binning.

Figure 10 shows a simple synthetic example of gap interpolation from Claerbout (1999).
The input data has a large elliptic gap cut out from a two plane-wave model. I estimate both
dip components from the input data by using the method of equations (16-18). The initial
values for the two local dips were 1 and 0, and the estimated values are close to the true dips
of 2 and -1 (two middle plots in Figure 10.) Although the estimation program did not make
any assumption about dip being constant, it correctly estimated nearly constant values with the
help of regularization equations (17-18). The rightmost plot in Figure 10 shows the result of
gap interpolation with a two-plane local plane-wave destructor. The result is nearly perfect and
compares favorably with the analogous result of theT-X PEF technique (Claerbout, 1999).

Figure 11 is another benchmark gap interpolation example from Claerbout (1999). The
data are ocean depth measurements from one day SeaBeam acquisition. The data after nor-
malized binning are shown in the left plot of Figure 11. From the known part of the data,
we can partially see a certain elongated and faulted structure on the ocean floor. Estimating a
smoothed dominant dip in the data and interpolating with the plane-wave destructor filters pro-
duces the image in the right plot of Figure 11. The V-shaped acquisition pattern is somewhat
visible in the interpolation result, which might indicate the presence of a fault. Otherwise,
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Figure 10: Synthetic gap interpolation example. From left to right: original data, input data,
first estimated dip, second estimated dip, interpolation output.pwd-hole [ER]

the result is both visually pleasing and fully agreeable with the data. Clapp (2000b) shows
on the same data example how to obtain multiple statistically equivalent realizations of the
interpolated data.

A 3-D interpolation example is shown in Figure 12. The input data resulted from a passive
seismic experiment (Cole, 1995) and originally contained many gaps because of instrument
failure. I interpolated the 3-D gaps with a pair of two orthogonal plane-wave destructors
in the manner proposed by Schwab and Claerbout (1995) forT-X prediction filters. The
interpolation result shows a visually pleasing continuation of locally plane events through the
gaps. It compares favorably with an analogous result of a stationaryT-X PEF.

We can conclude that plane-wave destructors provide an effective method of gap filling
and missing data interpolation.

Trace interpolation beyond aliasing

Spitz (1991) popularized the application of prediction-error filters to regular trace interpolation
and showed how the spatial aliasing restriction can be overcome by scaling the frequencies of
F-X PEFs. An analogous technique forT-X filters was developed by Claerbout (1992a,
1999) and applied for 3-D interpolation with non-stationary PEFs by Crawley (2000). TheT-
X technique implies stretching the filter in all directions so that its dip spectrum is preserved,
while the coefficients can be estimated at alternating traces. After the filter is estimated, it
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Figure 11: Depth of the ocean from SeaBeam measurements. Left plot: after binning. Right
plot: after binning and gap interpolation.pwd-seab[ER,M]

Figure 12: 3-D gap interpolation in passive seismic data. The left 12 panels are slices of
the input data. The right 12 panels are the corresponding slices in the interpolation output.
pwd-passfill [ER,M]
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is scaled back and used for interpolating missing traces in between the known ones. A very
similar method works for finite-difference plane wave destructors, only we need to take a
special care to avoid aliased dips at the dip estimation stage.

Figure 13 shows a marine 2-D shot gather from a deep water Gulf of Mexico survey before
and after subsampling in the offset direction. The data are similar to those used by Crawley
(2000). The shot gather has long-period multiples and complicated diffraction events caused
by a salt body. Subsampling by a factor of two (the right plot in Figure 13) causes a clearly
visible aliasing in the steeply dipping events. The goal of my first experiment was to inter-
polate the missing traces in the subsampled data and to compare the result with the original
gather shown in the left plot of Figure 13.

Figure 13: 2-D marine shot gather. Left: original. Right: subsampled by a factor of two in the
offset direction. pwd-sean2[ER]

A straightforward application of the dip estimation equations (16-18) applied to aliased
data can easily lead to erroneous aliased dip estimation. In order to avoid this problem, I
chose a slightly more complex strategy. The algorithm for trace interpolation of aliased data
consists of the following steps:

1. Applying Claerbout’sT-X methodology, stretch a two-dip plane-wave destructor filter
and estimate the dips from decimated data.

2. The second estimated dip will be infected by aliasing. Ignore this initial estimate.

3. Estimate the second dip component again by fixing the first dip component and using
it as the initial estimate of the second component. This trick prevents the nonlinear
estimation algorithm from picking the wrong (aliased) dip in the data.
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4. Down-scale the estimated two-dip filter and use it for interpolating missing traces.

The two estimated dip components are shown in Figure 14. The first component contains only
positive dips. The second component coincides with the first one in the areas where only a
single dip is present in the data. In other areas, it picks the complimentary dip, which has a
negative value for back-dipping hyperbolic diffractions.

Figure 14: Two components of the estimated dip field for the decimated 2-D marine shot
gather. pwd-sean2-dip[ER]

Figure 15 shows the interpolation result and the difference between the interpolated traces
and the original traces, plotted at the same clip value. The method succeeded in the sense that
it is impossible to distinguish interpolated traces from the interpolation result alone. However,
it is not perfect in the sense that some of the original energy is missing in the output. A
closeup comparison between the original and the interpolated traces in Figure 16 shows that
imperfection in more detail. Some of the steepest events in the middle of the section are poorly
interpolated, and in some of the other places, the second dip component is continued instead
of the first one.

The interpolation result can be considerably improved by including another dimension. To
achieve a better result, we can use a pair of plane-wave destructors, one predicting local plane
waves in the offset direction, and the other predicting local plane waves in the shot direction.
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Figure 15: Left: 2-D marine shot gather after trace interpolation. Right: Difference between
the interpolated and the original gather.pwd-sean2-int[ER]

Figure 16: Close-up comparison of the interpolated (right) and the original data (left).
pwd-sean2-close[ER,M]
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Signal and noise separation

Signal and noise separation and noise attenuation are yet another important application of
plane-wave prediction filters (Canales, 1984; Abma, 1995; Soubaras, 1995; Spitz, 1999; Brown
et al., 1999; Clapp and Brown, 2000; Claerbout and Fomel, 2000).

The problem has a very clear interpretation in terms of the local dip components. If two
components,s1 ands2 are estimated from the data, and we can interpret the first component
as signal, and the second component as noise, then the signal and noise separation problem
reduces to solving the least-squares system

C(s1)d1 ≈ 0 , (19)

εC(s2)d2 ≈ 0 (20)

for the unknown signal and noise componentsd1 andd2 of the input datad:

d1 +d2 = d. (21)

The scalar parameterε in equation (20) reflects the signal to noise ratio. We can combine
equations (19-20) and (21) in the explicit system for the noise componentd2:

C(s1)d2 ≈ C(s1)d , (22)

εC(s2)d2 ≈ 0 . (23)

Figure 17 shows a simple example of the described approach. I estimated two dip com-
ponents from the input synthetic data in a manner similar to that of Figure 10, and separated
the corresponding events by solving the least-squares system (22-23). The separation result is
visually perfect.

Figure 18 presents a significantly more complicated case: a receiver line from of a 3-D
land shot gather from Saudi Arabia, contaminated with three-dimensional hyperbolic ground-
roll. The same dataset has been used previously by Brown et al. (1999). The ground-roll
noise and the reflection events have a significantly different frequency content, which might
suggest an idea of separating them on the base of frequency alone. The result of frequency-
based separation, shown in Figure 19 is, however, not ideal: part of the noise remains in the
estimated signal after the separation. Changing theε parameter in equation (23) could clean
up the signal estimate, but it would also bring some of the signal into the subtracted noise.
A better strategy is to separate the events by using both the difference in frequency and the
difference in slope. For that purpose, I adopted the following algorithm:

1. Use a frequency-based separation (or, alternatively, a simple low-pass filtering) to obtain
an initial estimate of the ground-roll noise.

2. Select a window around the initial noise. The further separation will happen only in that
window.

3. Estimate the noise dip from the initial noise estimate.
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Figure 17: Simple example of dip-based single and noise separation. From left to right: ideal
signal, input data, estimated signal, estimated noise.pwd-sn2 [ER]

4. Estimate the signal dip in the selected data window as the complimentary dip component
to the already known noise dip.

5. Use the signal and noise dips together with the signal and noise frequencies to perform
the final separation. This is achieved by cascading single-dip plane-wave destructor
filters with local 1-D three-coefficient PEFs, destructing a particular frequency.

The separation result is shown in Figure 20. The separation goal has been fully achieved: the
estimated ground-roll noise is free of the signal components, and the estimated signal is free
of the noise.

The left plot in Figure 21 shows another test example: a shot gather contaminated by
nearly linear low-velocity noise. In this case, a simple dip-based separation was sufficient for
achieving a good result. The algorithm proceeds as follows

1. Bandpass the original data with an appropriate low-pass filter to obtain an initial noise
estimate (the right plot in Figure 21.)

2. Estimate the local noise dip from the initial noise model.

3. Estimate the signal dip from the input data as the complimentary dip component to the
already known noise dip.

4. Estimate the noise by an iterative optimization of system (22-23) and subtract it from
the data to get the signal estimate.
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Figure 18: Ground-roll-contaminated data from Saudi Arabian sand dunes. A slice out of a
3-D shot gather.pwd-dune-dat[ER]

Figure 22 shows the separation result. The signal and noise components are nicely separated.
(Guitton, 2000) uses the same data example to develop a method of pairing noise separation
with stacking velocity analysis.

The examples in this subsection show that when the signal and noise components have
distinctly different local slopes, we can successfully separate them with plane-wave destructor
filters.

CONCLUSIONS

The main conclusion of this paper is simple: plane-wave destructors with an improved finite-
difference design can be a valuable tool in processing multidimensional seismic data. On sev-
eral examples, I showed their good performance in such problems as fault detection, missing
data interpolation, and noise attenuation. Further experiments will be necessary to gain more
experience with plane-wave destructors and to improve the practical aspects of their usage.

It might be useful to summarize the similarities and differences between plane-wave de-
structors andT-X prediction-error filters.

Similarities:

• Both types of filters operate in the original time-and-space domain of recorded data.
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Figure 19: Signal and noise separation based on frequency. Top: estimated signal. Bottom:
estimated noise.pwd-dune-exp[ER,M]
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Figure 20: Signal and noise separation based on both dip and frequency. Top: estimated signal.
Bottom: estimated noise.pwd-dune-sn[ER,M]
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Figure 21: Left: Input noise-contaminated shot gather. Right: Result of low-pass filtering.
pwd-ant-dat[ER]

Figure 22: Signal and noise separation based on dip. Left: estimated signal. Right: estimated
noise. pwd-ant-sn[ER,M]
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• Both filters aim at predicting local plane-wave events in the data.

• In most problems, one filter type can be replaced by the other, and certain techniques,
such as Claerbout’s trace interpolation method, are common for both approaches.

Differences:

• The design of plane-wave destructors is purely deterministic and follows the plane-wave
differential equation. The design ofT-X PEF has statistical roots in the framework
of the maximum-entropy spectral analysis (Burg, 1975). In principle,T-X PEF can
characterize more complex signals than local plane waves.

• In the case of PEF, we estimate filter coefficients. In the case of plane-wave destructors,
the estimated quantity is the local plane slope. Several important distinctions follow
from that difference:

– The filter estimation problem is linear. The slope estimation problem, in the case
of the improved filter design, is non-linear, but can be iteratively linearized. In
general, non-linearity is an undesirable feature because of local minima and the
dependence on initial conditions. However, we can sometimes use it creatively.
For example, it helped me avoid aliased dips in the trace interpolation example.

– Non-stationarity is handled gracefully in the local slope estimation. It is a much
more difficult issue for PEFs because of the largely underdetermined problem.

– Local slope has a clearly interpretable physical meaning, which allows for an easy
quality control of the results. The coefficients ofT-X PEFs are much more diffi-
cult to interpret.

• Plane-wave destructors are stable filters by construction. Stability is not guaranteed in
the traditional PEF estimation and often can be a serious practical problem.

• The efficiency of the two approaches is difficult to compare. Plane-wave destructors are
generally more efficient to apply because of the optimally small number of filter coeffi-
cients. However, they may require more computation at the estimation stage because of
the already mentioned non-linearity problem.
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