
Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 77–??

76

Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 77–??

On model-space and data-space regularization:
A tutorial

Sergey Fomel1

ABSTRACT

Constraining ill-posed inverse problems often requires regularized optimization. I de-
scribe two alternative approaches to regularization. The first approach involves a column
operator and an extension of the data space. The second approach constructs a row op-
erator and expands the model space. In large-scale problems, when the optimization is
incomplete, the two methods of regularization behave differently. I illustrate this fact with
simple examples and discuss its implications for geophysical problems.

INTRODUCTION

Regularization is a method of imposing additional conditions for solving inverse problems
with optimization methods. When model parameters are not fully constrained by the problem
(the inverse problem is mathematically ill-posed), regularization limits the variability of the
model and guides the iterative optimization to the desired solution by adding assumptions
about the model power, smoothness, predictability, etc. In other words, it constrains the model
null space to ana priori chosen pattern. A thorough mathematical theory of regularization has
been introduced by works of Tikhonov’s school (Tikhonov and Arsenin, 1977).

In this paper, I discuss two alternative formulations of regularized least-square inversion
problems. The first formulation, which I callmodel-space, extends the data space and con-
structs a composite column operator. The second,data-space, formulation extends the model
space and constructs a composite row operator. This second formulation is intrinsically related
to the concept of model preconditioning. I illustrate the general theory with examples from
Three-Dimensional Filtering(Claerbout, 1994).

Two excellent references cover almost all of the theoretical material in this note. One is
the paper by Ryzhikov and Troyan (1991). The other one is a short note by Harlan, available
by courtesy of the author on the World Wide Web (Harlan, 1995). I have attempted to translate
some of the ideas in these two references to the linear operator language, familiar to the readers
of Claerbout (1992, 1994).

1email: sergey@sep.stanford.edu

77

78 Fomel SEP–94

MODEL-SPACE REGULARIZATION

Let us denote the linear forward modeling operator byL . Then the basic matrix equation to
be inverted is

Lm = d , (1)

wherem stands for the model vector, andd represents the data vector.

Quite often the size of the data space is smaller than the desired size of the model space.
This is typical for some interpolation problems (Claerbout, 1992, 1994), but may also be the
case in tomographic problems. Even if the data size is larger than the model size, certain
components of the modelm may not be fully constrained by equation (1). In interpolation
applications, this situation corresponds to empty bins in the model space. In tomography
applications, it corresponds to shadow zones in the model, not illuminated by the tomographic
rays.

Model-space regularization suggests adding equations to system (1) to obtain a fully con-
strained (well-posed) inverse problem. These additional equations are based on prior assump-
tions about the model and typically take the form

Dm ≈ 0 , (2)

where D represents the imposed condition in the form of a linear operator. In many appli-
cations,D can be thought of as a filter, enhancing “bad” components in the model, or as a
differential equation that we assume the model should satisfy.

The full system of equations (1)-(2) can be written in a short notation as

Gmm =

[
L

λD

]
m =

[
d
0

]
= d̂ , (3)

whered̂ is the effective data vector:

d̂ =

[
d
0

]
, (4)

Gm is acolumnoperator:

Gm =

[
L

λD

]
, (5)

andλ is a scaling parameter. The subscriptm stands formodel spaceto help us distinguish
Gm from the analogous data-space operator, introduced in the next section.

Now that the inverse problem (3) is fully constrained, we can solve it by means of un-
constrained least-square optimization, minimizing the squared powerr̂ T r̂ of the compound
residual vector

r̂ = d̂− Gmm =

[
d− Lm
−λDm

]
. (6)

SEP–94 Regularization 79

The formal solution of the regularized optimization problem has the known form

<m>=
(
GT

mGm
)−1

GT
md̂ =

(
L T L +λ2DT D

)−1
L T d . (7)

To recall the derivation of formula (7), consider the objective function

r̂ T r̂ =

(
d̂− Gmm

)T (
d̂− Gmm

)
and take its partial derivative with respect to the model vectorm. Setting the derivative equal
to zero leads to thenormalequations

GT
mGmm = GT

md̂ , (8)

whose solution has the form of formula (7).

For the sake of simplicity, we will consider separately a “trivial” regularization, which
seeks the smallest possible model from all the models, defined by equation (1). For this form
of regularization,DT D is an identity operator. If we denote the model-space identity operator
by Im, the least-square estimate in this case takes the form

<m>=
(
L T L +λ2 Im

)−1
L T d . (9)

DATA-SPACE REGULARIZATION

In this section, I consider an alternative formulation of the regularized least-square optimiza-
tion.

We start again with the basic equation (1) and introduce a residual vectorr , defining it by
the relationship

λr = d− Lm , (10)

whereλ is a scaling parameter. Let us consider a compound modelm̂, composed of the model
vectorm itself and the residualr . With respect to the compound model, equation (10) can be
rewritten as [

L λ Id
][

m
r

]
= Gdm̂ = d , (11)

whereGd is arow operator:

Gd =
[

L λ Id
]

, (12)

and Id represents the data-space identity operator.

System (11) is clearly under-determined with respect to the compound modelm̂. If from
all possible solutions of this system we seek the one with the minimal powerm̂T m̂, the formal
(ideal) result takes the well-known form

<m̂>=

[
<m>

<r>

]
= GT

d

(
GdGT

d

)−1
d =

[
L T

(
LL T +λ2 Id

)−1
d

λ
(
LL T +λ2 Id

)−1
d

]
. (13)

80 Fomel SEP–94

To recall the derivation of formula (13), decompose the effective model vectorm̂ into two
terms

m̂ = GT
d d0 + m0 , (14)

whered0 andm0 are to be determined. First, we choosem0 to be an orthogonal supplement
to GT

d d0. The orthogonality implies that the objective functionm̂T m̂ = dT
0 GdGT

d d0 + mT
0 m0

is minimized only whenm0 = 0. To determined0, substitute (14) into equation (11) and solve
the corresponding linear system. The result takes the form of equation (13).

Let us show that estimate (13) is exactly equivalent to estimate (9) from the “trivial” model-
space regularization. Consider the operator

G = L T LL T
+λ2L T , (15)

which is a mapping from the data space to the model space. We can group the multiplicative
factors in formula (25) in two different ways, as follows:

G = L T (LL T
+λ2 Id) = (L T L +λ2 Im)L T . (16)

Regrouping the terms in (16), we arrive at the exact equality between the model estimates
<m> from equations (13) and (9):

L T (LL T
+λ2 Id)−1

≡ (L T L +λ2 Im)−1L T . (17)

To obtain equation (17), multiply both sides of (16) by(L T L +λ2 Im)−1 from the left and by
(LL T +λ2 Id)−1 from the right. Forλ 6= 0, both these matrices are indeed invertible.

Not only the optimization estimate, but also the form of the objective function, is exactly
equivalent for both data-space and mode-space cases. The objective function of model-space
least squareŝr T r̂ is connected with the data-space objective functionm̂T m̂ by the simple
proportionality

r̂ T r̂ = λ2m̂T m̂ . (18)

This fact implies that the iterative methods of optimization – most notably, the conjugate-
gradient method (Hestenes and Steifel, 1952) – should yield the same results for both formu-
lations. Of course, this conclusion doesn’t take into account the numerical effects of finite-
precision computations.

To move to a more general (and interesting) case of “non-trivial” data-space regularization,
we need to refer to the concept of modelpreconditioning(Nichols, 1994). A preconditioning
operatorP is used to introduce a new modelx with the equality

m = Px . (19)

Substituting definition (19) into formula (11), we arrive at the following “preconditioned”
form of the operatorGd:

G̃d =
[

L P λ Id
]

. (20)

SEP–94 Regularization 81

The operatorG̃d applies to the compound model vector

x̂ =

[
x
r

]
. (21)

Substituting formula (20) into (13) leads to the following estimate forx̂:

<x̂>=

[
<x>

<r>

]
= G̃T

d

(
G̃dG̃T

d

)−1
d =

[
PT L T

(
L P PT L T +λ2 Id

)−1
d

λ
(
L P PT L T +λ2 Id

)−1
d

]
. (22)

Applying formula (19), we obtain the corresponding estimate for the initial modelm, as fol-
lows:

<m>= P <x>= P PT L T (
L P PT L T

+λ2 Id
)−1

d . (23)

Now we can show that estimate (23) is exactly equivalent to formula (7) from the model-
space regularization under the condition(

P PT)−1
= DT D . (24)

Condition (24) assumes that the operatorC ≡ P PT is invertible2. Consider the operator

G = L T LC L T
+λ2L T , (25)

which is another mapping from the data space to the model space. Grouping the multiplicative
factors in two different ways, we can obtain the equality

G = L T (LC L T
+λ2 Id) = (L T L +λ2C−1)C LT , (26)

or, in another form,

C LT (LC L T
+λ2 Id)−1

≡ (L T L +λ2C−1)−1L T . (27)

The left-hand side of equality (27) is exactly the projection operator from formula (23), and
the right-hand side is the operator from formula (7).

Comparing formulas (23) and (7), it is interesting to note that we can turn a trivial reg-
ularization into a non-trivial one by simply replacing the exact adjoint operatorL T by the
operatorC LT , which is a transformation from the data space to the model space, followed by
enforcing model correlations with the operatorC. This fact can be additionally confirmed by
the equality

C LT (LC L T
+λ2 Id)−1

≡ (C LT L +λ2 Im)−1C LT , (28)

2The reader familiar with the statistical literature will recognize inC the model covariance matrix. The
statistical roots of the least-square optimization are in the method of maximum likelihood. Connecting this
statistical estimation method with least squares requires an assumption of uncorrelated additive noise with
zero-mean Gaussian distribution.

82 Fomel SEP–94

which is derived analogously to formula (27). Iterative optimization methods, which don’t
require exact adjoint operators [e.g. the method of conjugate directions (Fomel, 1996)] could
be employed for the task.

Though the final results of the model-space and data-space regularization are identical, the
effect of preconditioning may alter the behavior of iterative gradient-based methods, such as
the method of conjugate gradients. Though the objective functions are equal, their gradients
with respect to the model parameters are different. Note, for example, that the first iteration of
the model-space regularization yieldsL T d as the model estimate regardless of the regulariza-
tion operator, while the first iteration of the model-space regularization yieldsC LT d, which
is a “simplified” version of the model. Since iteration to the exact solution is never achieved
in the large-scale problems, the results of iterative optimization may turn out quite differently.
Harlan (1995) points out that the two components of the model-space regularization [equa-
tions (1) and (2)] conflict with each other: the first one enforces “details” in the model, while
the second one tries to smooth them out. He describes the advantage of preconditioning:

The two objective functions produce different results when optimization is in-
complete. A descent optimization of the original (model-space –S.F.) objective
function will begin with complex perturbations of the model and slowly converge
toward an increasingly simple model at the global minimum. A descent optimiza-
tion of the revised (data-space –S.F.) objective function will begin with simple
perturbations of the model and slowly converge toward an increasingly complex
model at the global minimum.. . . A more economical implementation can use
fewer iterations. Insufficient iterations result in an insufficiently complex model,
not in an insufficiently simplified model.

Examples in the next section illustrate these conclusions.

EXAMPLES

All the test examples in this section are borrowed directly from (Claerbout, 1994)3, taking
advantage of SEP’s standards of reproducible research.

Inverse Linear Interpolation

The first example is a simple synthetic test for 1-D inverse interpolation. The input data were
randomly subsampled (with decreasing density) from a sinusoid (Figure 1). The forward op-
eratorL in this case is linear interpolation. We seek a regularly sampled model that could
predict the data with a forward linear interpolation. Sparse irregular distribution of the in-
put data makes the regularization enforcement a necessity. Following Claerbout, I applied
convolution with the simple(1,−1) difference filter as the operatorD that forces model conti-
nuity (the first-order spline). An appropriate preconditionerP in this case is recursive causal

3The Fortran-90 version of the electronic book

SEP–94 Regularization 83

Figure 1: The input data are irregu-
larly sampled.precon-data[ER]

integration. Figures 2 and 3 show the results of inverse interpolation after exhaustive 300 it-
erations of the conjugate-direction method. The results from the model-space and data-space
regularization look similar except for the boundary conditions outside the data range. As a
result of using the causal integration for preconditioning, the rightmost part of the model in
the data-space case stays at a constant level instead of decreasing to zero. If we specifically
wanted a zero-value boundary condition, it wouldn’t be difficult to implement it by adding a
zero-value data point at the boundary.

Figure 2: Estimation of a continuous
function by the model-space regular-
ization. The difference operatorD
is the derivative operator (convolution
with (1,−1)). precon-im1[ER,M]

Figure 3: Estimation of a continuous
function by the data-space regulariza-
tion. The preconditioning operator
P is causal integration.precon-fm1
[ER,M]

As expected from the general theory, the data-space regularization provides a much faster
rate of convergence. Following Matthias Schwab’s suggestion, I measured the rate of conver-
gence by the model residual, which is a distance from the current model to the final solution.
Figure 5 shows that the data regularization method converged to the final solution in about 6
times fewer iterations than the model regularization. Since the cost of each iteration for each
method is roughly equal, the computational economy should be evident. Figure 4 shows the
final solution, and the estimates from model- and data-space regularization after only 5 itera-
tions of conjugate directions. The data-space estimate looks much closer to the final solution
than its competitor.

84 Fomel SEP–94

Figure 4: The top figure is the exact solution found in 250 iterations. The middle is with data-
space regularization after 5 iterations. The bottom is without model-space regularization after
5 iterations. precon-early1[ER]

Figure 5: Convergence of the itera-
tive optimization, measured in terms
of the model residual. The “d” points
stand for data-space regularization;
the “m” points, model-space regular-
ization. precon-schwab1[ER]

SEP–94 Regularization 85

Changing the preconditioning operator changes the regularization result. Figure 6 shows
the result of data-space regularization after applying a triangle smoother as the model precon-
ditioner.

Figure 6: Estimation of a smooth
function by the data-space regulariza-
tion. The preconditioning operatorP
is a triangle smoother.precon-fm6
[ER,M]

If, instead of looking for a smooth interpolation, we want to limit the number of fre-
quency components, then the best choice for the model-space regularization operatorD is a
prediction-error filter (PEF). To obtain a mono-frequency output, we need to use a three-point
PEF, which has theZ-transform representationD(Z) = 1+a1Z +a2Z2. In this case, the cor-
responding preconditionerP could be the three-pointrecursivefilter P(Z) = 1/(1+ a1Z +

a2Z2). To test this idea, I estimated the PEFD(Z) from the output of inverse linear interpola-
tion (Figure 3), and ran the data-space regularized estimation again, substituting the recursive
filter P(Z) = 1/D(Z) in place of the causal integration. I repeated this two-step procedure
three times to get a better estimate for the PEF. The result, shown in Figure 7, exhibits the
desired mono-frequency output.

Figure 7: Estimation of a mono-
frequency function by the data-space
regularization. The preconditioning
operatorP is a recursive filter (the in-
verse of PEF).precon-pm1[ER,M]

Deburst

The next example of regularization is the problem of removing large spiky noise from exper-
imental data. The input synthetic data, shown in the top plot of Figure 8, contains numerous
noise spikes and bursts. Some of the noise bursts are a hundred times larger than shown. Sim-
ple median smoothing (second top plot in Figure 8) can remove some individual spikes, but
fails to provide an adequate output overall. Claerbout suggestsiteratively reweighted least
squaresas a robust efficient method of despiking. The operatorL in this case is as simple as
identity, but we weight equation (1) by some weighting operatorW, which is chosen to sup-
press non-Gaussian statistical distribution of the noise. Good results in the considered example

86 Fomel SEP–94

were achieved with the “Cauchy” weighting function

W(r i) = diag

 1√
1+

r 2
i

r̄ 2

 , (29)

wherer i denote components of the residualr = d − m, andr̄ is the residual median value.
The dependence onr of the weighted operator makes the problem nonlinear, but iterative
reweighting allows us to approach it with piecewise linearization.

Figure 8: The top is synthetic data with noise spikes and bursts. Next is after despiking with
running medians. The two bottom plots are outputs of the deburst process with regularized
iteratively reweighted least squares.precon-burst4[ER]

Claerbout’s model-space regularization used convolution with the Laplacian filter (1,−2,1)
as the roughening operatorD. For a comparison with the data-space regularization, I applied
triangle smoothing as the preconditioning operatorP. The results, shown in the two bottom
plot of Figure 8, look similar. Both methods succeeded in removing the noise bursts from the
data and producing a smooth output. The data-space regularization did a better job of preserv-
ing the amplitudes of the original data. This effect partially results from a low dependency
on the scaling parameterλ, which I reduced to 0.01 (compared with 1 in the case of model-
space regularization.) The model residual plot in Figure 9 shows again a considerably faster
convergence for the data-space method, in complete agreement with the theory.

STACK EQUALIZATION

In his notes3-D seismic imaging4, Biondo Biondi discusses partial stacking as the simplest
prototype example of an imaging operator. A simple implementation of partial stacking can
employ normal moveout (NMO) to correct for traveltime differences in the data. Stacking

4available at http://sepwww.stanford.edu/sep/biondo/GP291/Notes/Ps/notes-latest.ps

SEP–94 Regularization 87

Figure 9: Convergence of the iterative
optimization for deburst, measured in
terms of the model residual. The “d”
points stand for data-space regular-
ization; the “m” points, model-space
regularization.precon-conv4[ER]

irregular data after residual NMO can be regarded then as an inverse interpolation problem,
which one can solve by optimization methods. In this section, I include a simple example of
an efficient data-space regularization for optimizing partial stack.

Following Biondi’s reproducible example, I use a potion of the Conoco North Sea dataset
with offsets, windowed in the range from 400 to 600 m. The geometry of the CMP locations of
the input traces is illustrated in Figure 10. The fold distribution, shown as a map view in Figure
11 and as a histogram in Figure 12 is fairly dense overall, but has noticeable holes (empty bins).
The regions of zero fold make the inverse interpolation problem underconstrained and suggest
an application of a regularized optimization scheme.

Figure 10: Midpoint geometry of the
input dataprecon-cmp[ER]

Figure 13 shows the result of simple binning (the adjoint of nearest neighbor interpolation),
normalized by the inverse of the fold density. Obviously, the regions of zero fold don’t receive
any signal, which can lead to undesirable artifacts in future processing. Figure 14 is the result
of non-regularized optimization, with 5 conjugate-gradient iterations at each time slice level.
This approach not only fails to fill the empty holes, but also creates unbalanced output because

88 Fomel SEP–94

Figure 11: Fold distribution of the in-
put data. A map view.precon-fold
[ER]

Figure 12: Fold distribution of the in-
put data. A histogram.precon-hist
[ER]

SEP–94 Regularization 89

of the poor conditioning of the inverse problem. Figure 15 shows the result of a data-space
regularized inversion with a small smoothing filter as a preconditioner. The convergence is
fast, and the result looks much improved. Because of the fast convergence of the data-space
regularization, the inverse interpolation scheme is inexpensive to apply. One easy way of
improving the result further is to change the simple nearest neighbor interpolation operator to
a more accurate one. Figure 16 is the result of the regularized inverse interpolation with the
Lagrange 4-point interpolator.

Figure 13: Data transformed to a regular grid by normalized adjoint interpolation (simple
binning.) precon-bin [ER]

As demonstrated by Biondi et al. (1996), an accurate interpolation for dipping reflector
events and diffractions requires the azimuth moveout operator. Another interesting, though
untested, approach is to use the inverse of a prediction-error filter for preconditioning the
inverse interpolation.

90 Fomel SEP–94

Figure 14: Data transformed to a regular grid by non-regularized inverse interpolation.
precon-invbin [ER]

SEP–94 Regularization 91

Figure 15: Data transformed to a regular grid by data-space regularized inverse interpolation.
precon-regbin[ER]

92 Fomel SEP–94

Figure 16: Data transformed to a regular grid by data-space regularized inverse interpolation,
using Lagrange’s 4-point interpolator as the forward interpolation operator.precon-regtin
[ER]

SEP–94 Regularization 93

Table 1: Comparison between model-space and data-space regularization

Trivial regularization Model-space Data-space

effective model m m̂ =

[
m
r

]

effective data d̂ =

[
d
0

]
d

effective operator Gm =

[
L

λ Im

]
Gd =

[
L λ Id

]
optimization problem minimize r̂ T r̂ ,

where
r̂ = d̂− Gmm

minimizem̂T m̂
under the constraint
Gdm̂ = d

formal estimate form
(
L T L +λ2 Im

)
L T d L T (LL T +λ2 Id)−1d

Non-trivial regularization Model-space Data-space

effective model m x̂ =

[
x
r

]

effective data d̂ =

[
d
0

]
d

effective operator Gm =

[
L

λD

]
G̃d =

[
L P λ Id

]
optimization problem minimize r̂ T r̂ ,

where
r̂ = d̂− Gmm

minimize x̂T x̂
under the constraint
G̃d x̂ = d

formal estimate form
(
L T L +λ2C−1

)
L T d,

whereC−1 = DT D

C LT (LC L T +λ2 Id)−1d,

whereC = P PT .

94 Fomel SEP–94

DISCUSSION

I summarize the differences between model-space and data-space regularization in Table 1.
Which of the two approaches is preferable in practical applications? In the case of “trivial”
regularization (i.e., constraining the problem by the model power minimization), the answer
to this question depends on the relative size of the model and data vectors: data-space regu-
larization may be preferable when the data size is noticeably smaller than the model size. In
the case of non-trivial regularization, the answer may additionally depend on the following
questions:

• Which of the operatorsD or P (C−1 or C) is easier to construct and implement?

• Is an initial estimate forx available? In data-space regularization, it is difficult to start
from a non-zero value of the modelm.

• Is it possible to approximate or to compute analytically one of the inverted matrices in
formula (27)?

The derivation of formula (27) suggests experimenting with the operatorWmGWd = Wm
(
L T LC L T +λ2L T

)
Wd,

whereWm approximates(L T L +λ2C−1)−1, andWd approximates(LC L T +λ2 Id)−1.

Ryzhikov and Troyan (1991) present a curious interpretation of the operatorLC L T in
ray tomography applications. In these applications, each data point corresponds to a ray,
connecting the source and receiver pair. If the model-space operatorC−1 = DT D has the
meaning of a differential equation (Laplace’s, Helmholtz’s, etc.), then, according to Ryzhikov
and Troyan, each value in the matrixLC L T has the physical meaning of a potential energy
between two rays, considered as charged strings in a potential field. Such an interpretation
leads to a fast direct computation of the matrix operatorG.

The scaling parameterλ controls the relative amount ofa priori information added to the
problem. In a sense, it allows us to reduce the search for an adequate model null space to a
one-dimensional problem of choosing the value ofλ. Solving the optimization problem with
different values ofλ leads to the continuation approach, proposed by Bube and Langan (1994).
As Nichols (1994) points out, preconditioning can reduce the sensitivity of the problem to the
parameterλ if initial system (1) is essentially under-determined.

ACKNOWLEDGMENTS

Jon Claerbout’s encourangement and challenging suggestions motivated my interest in the
subject. I am also grateful to Biondo Biondi, Gennady Ryzhikov, Bill Harlan, Jim Berryman,
Bill Symes, Dave Nichols, and Yalei Sun for insightful discussions. The topic of regularization
deserves a more detailed study than this short paper, and I hope to continue discussing it with
the experts.

The 3-D North Sea dataset was released to SEP by Conoco and its partners, BP and Mobil.

SEP–94 Regularization 95

REFERENCES

Biondi, B., Fomel, S., and Chemingui, N., 1996, Application of azimuth moveout to the co-
herent partial stacking of a 3-D marine data set: SEP–92, 1–12.

Bube, K. P., and Langan, R. T., 1994, A continuation approach to regularization for traveltime
tomography: 64th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 980–
983.

Claerbout, J. F., 1992, Earth Soundings Analysis: Processing Versus Inversion: Blackwell
Scientific Publications.

Claerbout, J. F., 1994, Applications of Three-Dimensional Filtering: Stanford Exploration
Project.

Fomel, S., and Claerbout, J., 1996, Simple linear operators in Fortran 90: SEP–93, 317–328.

Fomel, S., 1996, Least-square inversion with inexact adjoints. Method of conjugate directions:
A tutorial: SEP–92, 253–265.

Harlan, W. S., 1995, Regularization by model redefinition:
http://sepwww.stanford.edu/oldsep/harlan/papers/regularization.ps.gz.

Hestenes, M. R., and Steifel, E., 1952, Methods of conjugate gradients for solving linear
systems: J. Res. Nat. Bur. Stand.,49, 409–436.

Nichols, D., 1994, A simple example of a null space and how to modify it: SEP–82, 177–182.

Ryzhikov, G., and Troyan, V., 1991, On regularization methods in 3-D ray tomography: Geo-
physical Data Interpretation by Inverse Modeling, Proc. of the 9-th International Seminar
on Model Optimization in Exploration Geophysics, 53–61.

Tikhonov, A. N., and Arsenin, V. Y., 1977, Solution of ill-posed problems: John Wiley and
Sons.

96 Fomel SEP–94

APPENDIX A

REGULARIZED REUSABLE LINEAR SOLVER

Experimenting with different forms of regularization, different kinds of interpolation and reg-
ularization operators, and different optimization algorithms was made easy with an improved
design of the generic solver subroutine (module.)

The Fortran-905 subprograms in this appendix are simplified from the actual version,
which is more heavily loaded with optional parameters. For example, the actual solver routine
can implement an iterative reweighting that I used in the deburst example, work with non-
linear operators, etc. Two solver subroutines together with some others (e.g. LSQR solver)
are packed in a MODULE, with overloading of the subroutine names, so that the user can eas-
ily switch from one solver to another without changing the name of the program (and without
even knowing the details of its implementation.)

The data-space regularization routine on the facing page takes three functions as its argu-
ments. Functionsoper and reg correspond to the linear operatorsL and P. They comply
with the generic linear operator interface, defined by Fomel and Claerbout (1996). Function
solv implements one step of an optimization descent. Its arguments are a logical parame-
ter forget , which controls a conditional restarting of the optimization, the current effective
modelmod, the gradient vectorg, the data residual vectorrr , and the conjugate gradient vec-
tor gg. An example of asolv function isconjgrad on page 100, which implements a classic
version of the conjugate-gradient method6. Subroutinelin_solver_dat constructs the ef-
fective model vectorx , which consists of the model-space partxm and the data-space partxd .
Similarly, the effective gradient vectorg is split into the the model-space partgmand the data-
space partgd. Subroutinechain from modulechainmod on page 99 is called to compute a
chain of the operatorsP andL (reg andoper).

The model-space regularization routine on page 98 has an analogous design. In this case,
function reg corresponds to the model regularization operatorD. We construct the effective
residual vectorrr , which consists of the model-space partrm and the data-space partrd .
Similarly, the effective conjugate gradient vectorgg is split into the the model-space partgm

and the data-space partgd. Subroutinearray from modulechainmod on page 99 is called to
compute an array of the operatorsL and D (oper andreg).

5Sidestepping the religious C++ versus Fortran war, I would like to point out that an object-oriented design
is more important than the actual implementation. The design should be easily transferrable from Fortran-90
to other advanced languages.

6Our current library has about 6 other functions of the same interface, implementing different linear and
nonlinear optimization methods.

SEP–94 Regularization 97

subroutine lin_solver_dat (oper, solv, reg, nreg, mod, dat, niter, eps, mod0)
interface

integer function oper (adj, add, mod, dat)
logical, intent (in) :: adj, add
real, dimension (:) :: mod, dat

end function oper
integer function solv (forget, mod, g, rr, gg)

logical :: forget
real, dimension (:) :: mod, g, rr, gg

end function solv
integer function reg (adj, add, mod, dat)

logical, intent (in) :: adj, add
real, dimension (:) :: mod, dat

end function reg
end interface
real, dimension (:), intent (in) :: dat ! data
real, dimension (:), intent (in), optional :: mod0 ! initial model
real, dimension (:), intent (out) :: mod ! model
integer, intent (in) :: niter, nreg ! size of x
real, intent (in) :: eps ! scaling

real, dimension (size (dat) + nreg), target :: x, g
real, dimension (size (dat)) :: rr, gg
real, dimension (:), pointer :: xm, xd, gm, gd
integer :: iter, stat
logical :: forget

xm => x (1 : nreg) ; xd => x (1 + nreg:) ; xd = 0.
gm => g (1 : nreg) ; gd => g (1 + nreg:)
if (present (mod0)) then

xm = mod0 ; call chain (oper, reg, .false., .false., xm, rr, mod)
rr = dat - rr

else
xm = 0. ; rr = dat

end if

forget = .false.
do iter = 1, niter

call chain (oper, reg, .true. , .false., gm, rr, mod) ; gd = eps*rr
call chain (oper, reg, .false., .false., gm, gg, mod) ; gg =gg+eps*gd
stat = solv (forget, x, g, rr, gg)

end do
stat = reg (.false., .false., xm, mod)

end subroutine lin_solver_dat

98 Fomel SEP–94

subroutine lin_solver_mod (oper, solv, reg, nreg, mod, dat, niter, mod0)
interface

integer function oper (adj, add, mod, dat)
logical, intent (in) :: adj, add
real, dimension (:) :: mod, dat

end function oper
integer function solv (forget, mod, g, rr, gg)

logical ::forget
real, dimension (:) :: mod, g, rr, gg

end function solv
integer function reg (adj, add, mod, dat)

logical, intent (in) :: adj, add
real, dimension (:) :: mod, dat

end function reg
end interface
real, dimension (:), intent (in) :: dat ! data
real, dimension (:), intent (in), optional :: mod0 ! initial model
real, dimension (:), intent (out) :: mod ! model
integer, intent (in) :: niter, nreg ! size of D mod

real, dimension (size (mod)) :: g
real, dimension (size (dat) + nreg), target :: rr, gg
real, dimension (:), pointer :: rd, rm, gd, gm
integer :: iter, stat
logical :: forget

rm => rr (1 : nreg) ; rd => rr (1 + nreg :)
gm => gg (1 : nreg) ; gd => gg (1 + nreg :)

if (present (mod0)) then
mod = mod0
stat = oper (.false., .false., mod, rr) ; rr = dat - rr
stat = reg (.false., .false., mod, rm) ; rm = - rm

else
mod = 0. ; rd = dat ; rm = 0.

end if

forget = .false.
do iter = 1, niter

call array (oper, reg, .true. , .false., g, rd, rm)
call array (oper, reg, .false., .false., g, gd, gm)
stat = solv (forget, mod, g, rr, gg)

end do
end subroutine lin_solver_mod

SEP–94 Regularization 99

module chainmod
contains

subroutine chain (oper1, oper2, adj, add, mod, dat, tmp)
interface

integer function oper1 (adj, add, mod, dat)
logical, intent (in) :: adj, add
real, dimension (:) :: mod, dat

end function oper1
integer function oper2 (adj, add, mod, dat)

logical, intent (in) :: adj, add
real, dimension (:) :: mod, dat

end function oper2
end interface
logical, intent (in) :: adj, add
real, dimension (:) :: mod, dat, tmp

integer :: stat1, stat2
if (adj) then

stat1 = oper1 (.true., .false., tmp, dat)
stat2 = oper2 (.true., add, mod, tmp)

else
stat2 = oper2 (.false., .false., mod, tmp)
stat1 = oper1 (.false., add, tmp, dat)

end if
end subroutine chain

subroutine array (oper1, oper2, adj, add, mod, dat1, dat2)
interface

integer function oper1 (adj, add, mod, dat)
logical, intent (in) :: adj, add
real, dimension (:) :: mod, dat

end function oper1
integer function oper2 (adj, add, mod, dat)

logical, intent (in) :: adj, add
real, dimension (:) :: mod, dat

end function oper2
end interface
logical, intent (in) :: adj, add
real, dimension (:) :: mod, dat1, dat2

integer :: stat1, stat2
if (adj) then

stat1 = oper1 (.true., add, mod, dat1)
stat2 = oper2 (.true., .true., mod, dat2)

else
stat1 = oper1 (.false., add, mod, dat1)
stat2 = oper2 (.false., add, mod, dat2)

end if
end subroutine array

end module chainmod

100 Fomel SEP–94

module conjgrad_mod
real, dimension (:), allocatable, private :: s, ss
real, parameter, private :: eps = 1.e-12

contains

subroutine conjgrad_close ()
deallocate (s, ss)

end subroutine conjgrad_close

function conjgrad (forget, x, g, rr, gg) result (stat)
integer :: stat
real, dimension (:) :: x, g, rr, gg
logical :: forget

real, save :: rnp
real :: rn, alpha, beta

rn = dot_product (g, g)
if (.not. allocated (s)) then

allocate (s (size (x)))
allocate (ss (size (rr)))
forget = .true.

end if

if (forget .or. rnp < eps) then
alpha = 0.d0

else
alpha = rn / rnp

end if

s = g + alpha * s ! model step
ss = gg + alpha * ss ! data step

beta = dot_product (ss, ss)
if (beta > eps) then

alpha = rn / beta
x = x + alpha * s ! update model
rr = rr - alpha * ss ! update residual

end if

rnp = rn ; forget = .false.
stat = 0

end function conjgrad

end module conjgrad_mod

