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Missing data interpolation by
recursive filter preconditioning

Sergey Fomel, Robert Clapp, and Jon Claerbout1

ABSTRACT

Missing data interpolation problems can be conveniently preconditioned by recursive in-
verse filtering. A helix transform allows us to implement this idea in the multidimensional
case. We show with examples that helix preconditioning can give a magnitude-order
speedup in comparison with the older methods.

INTRODUCTION

A recent work (Claerbout, 1997) proposed ahelix transform for mapping multidimensional
convolution operators to their one-dimensional equivalents. The helix idea proves the feasi-
bility of multidimensional deconvolution, an issue that has been in question for more than 15
years. By mapping discrete convolution operators to one-dimensional space, the inverse fil-
tering problem can be conveniently recast in terms of recursive filtering, a well-known part of
the digital filtering theory.

In this paper, we show how recursive deconvolution can be applied for preconditioning
interpolation problems. We consider a problem of filling empty bins in a regularly gridded
data volume. For a given estimate of the regularization filter, the missing data problem re-
duces to least-square optimization. Theoretical analysis and numerical examples show that
helix preconditioning can produce a significant speed-up in the convergence of the iterative
optimization schemes.

THEORY OF MISSING DATA INTERPOLATION

Claerbout (1992) formulates the basic principle of missing data interpolation as follows:

A method for restoring missing data is to ensure that the restored data, after spec-
ified filtering, has minimum energy.

Mathematically, this principle can be expressed by the simple equation

Dm ≈ 0 , (1)
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wherem is the data vector, andD is the specified filter. The approximate equality sign means
that equation (1) is solved by minimizing the squared norm (the power) of its left side. Ad-
ditionally, the known data values must be preserved in the optimization scheme. Introducing
the mask operatorK , which can be considered as a diagonal matrix with zeros on the missing
data locations and ones elsewhere, we can rewrite equation (1) in the more rigorous form

D( I − K )m ≈ −DK m = −Dmk , (2)

in which I is the identity operator, andmk is the known portion of the data. It is important to
note that equation (2) corresponds to the limiting case of the regularized linear system{

K m = mk ,
λDm ≈ 0

(3)

for the scaling coefficientλ approaching zero. This means that we put far more weight on the
first equation in (3) and use the second equation only to constrain the null space of the solution.
Applying the general theory of data-space regularization (Fomel, 1997), one can immediately
transform system (3) to the equation

K Px ≈ mk , (4)

where P is a preconditioning operator, andx is a new variable, connected withm by the
simple relationship

m = Px .

In theory, equations (4) and (2) have exactly the same solutions if the following condition is
satisfied:

P PT
= (DT D)−1 , (5)

where we need to assume the self-adjoint operatorDT D to be invertible. IfD is represented by
a discrete convolution, the natural choice forP is the corresponding deconvolution operator:

P = D−1 . (6)

The helix transform provides a constructive way of implementing multidimensional deconvo-
lution by one-dimensional recursive filtering.

EXAMPLES

The first two examples in this paper are taken directly fromGeophysical Exploration Mapping
(Claerbout, 1997). They start from a simple 1-D synthetic data test. Figure 1 shows the inter-
polation results of the unpreconditioned technique with three different filters. For comparison
with the preconditioned scheme, we changed the boundary convolution conditions from in-
ternal to truncated transient convolution. The system was solved with a conjugate-gradient
iterative optimization. As depicted on the right side of the figures, the interpolation process
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Figure 1: Unpreconditioned interpolation with three different regularization filters. On the left
plot: the top shows the input data; the middle, the result of interpolation; and the bottom, the
filter. The right plot shows the convergence process for the first four iterations.mishel-mall
[ER]
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starts with a “complicated” model and slowly “simplifies” it until the final result is achieved.

Preconditioned interpolation (Figure 2) behaves differently. At the early iterations, the
model is simple. As the iteration proceeds, new details are added into the model. After a
surprisingly small number of iterations, the output closely resembles the final output. This
observation is fully consistent with the general theory of regularization and preconditioning
(Nichols, 1994; Harlan, 1995; Fomel, 1997). The final output of interpolation with recursive
deconvolution preconditioning is exactly the same as that of the original method.

Figure 2: Interpolation with preconditioning. On the left plot: the top shows the input data;
the middle, the result of interpolation; and the bottom, the filter. The right plot shows the
convergence process for the first four iterations.mishel-sall [ER]

The next example is the SeaBeam dataset, a result of water bottom measurements from
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a single day of acquisition. This dataset has been used at SEP for benchmarking different
strategies of data interpolation. The left plot in Figure 3 shows the original data. The right
plot shows the result of (unpreconditioned) missing data interpolation with the Laplacian filter.
The result is unsatisfactory, because the Laplacian filter doesn’t absorb the spatial frequency
distribution of the input dataset. We judge the quality of an interpolation scheme by its ability
to hide the footprints of the acquisition geometry in the final result.

Figure 3: On the left, the SeaBeam data: the depth of the ocean under ship tracks; on the right,
an interpolation with the Laplacian filter.mishel-seabdat[ER]

Claerbout (1997) obtains a significantly better result (Figure 4) by replacing the Laplacian
filter with a prediction-error filter (PEF), estimated from the input data. The result in the
left plot of Figure 4 was obtained after 200 conjugate-gradient iterations. If we stop after 20
iterations, the output (the right plot in Figure 4) shows only a small deviation from the input
data. Large areas of the image remain unfilled.

Inverting the PEF convolution with the help of the helix transform, we can now apply the
inverse filtering operator to precondition the interpolation problem. As expected, the result
after 200 iterations (the left plot in Figure 5) is similar to the result of the corresponding
unpreconditioned interpolation. However, the output after just 20 iterations (the right plot in
Figure 5) is already fairly close to the solution.

For our third example we apply the preconditioning methodology to simulate interpolating
well log velocities using reflector dip information as a guide. In the first two cases we used a
space-invariant filter for our operator D, and the corresponding inverse P. In this exampleD is
composed of a series of steering filters, small plane wave anihilators, oriented at some a priori
angle(Clapp et al., 1997).

We started with a velocity field from a synthetic anticline model above a horizontal uncon-
formity. To build the steering filters we make the assumption that velocity follows reflector
dips. We first select four reflectors that characterize dip in the section (Figure 6, top right).
The selected dips are then interpolated to all model locations and smoothed (Figure 6, top
left). Using this dip field, the methodology in equation (6), and a series of well logs (Figure
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Figure 4: SeaBeam interpolation with the prediction-error filter. The left plot was taken after
200 conjugate-gradient iterations; the right, after 20 iterations.mishel-seabold[ER,M]

Figure 5: SeaBeam interpolation with the inverse prediction-error filter. The left plot was
taken after 200 conjugate-gradient iterations; the right, after 20 iterations.mishel-seabnew
[ER,M]
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6, bottom left) constructed from the original velocity model, we attempted to reinterpolate
the unknown velocities. The bottom right plot of Figure 6 shows that the interpolation was
successful in minimal iterations (in this case only 12 iterations were required).

DISCUSSION

The result of this work can be interpreted in a broader context of geophysical estimation (of-
ten called inversion). The basic formulation of a geophysical estimation problem consists of
setting up two goals, one for data fitting, and the other for model smoothing. These two goals
may be written as:

0 ≈ Lm−d (7)

0 ≈ Am (8)

which defines two residuals, a so-called “data residual” and a “model residual” that are usually
minimized by conjugate-gradient, least-squares methods.

Perhaps the most straightforward application is geophysical mapping. Then d is data sprin-
kled randomly around in space, L is the linear interpolation operator, and m is the vector of
unknown map values on a cartesian mesh. Many map pixels have no data values; and they are
determined by the model-residual goal (damping) which is generally specified by a “rough-
ening operator” A. Our experience shows that binning is often a useful approximation to
interpolation L. With binning, our fitting goals look formally the same, but they are a little
easier to understand

0 ≈ Km−b (9)

0 ≈ Am = x (10)

where b denotes binned data values and K is an identity matrix for nonempty bins and zero for
empty ones. Also, we introduce the roughened model x= Am. Claerbout (1992, 1997) shows
how to estimate the PEF A and shows that the roughened model x is indeed a “spectrally
whitened” model. It is white in the multidimensional space of the model and white in the
space of the unwound helix. In other words, the autocorrelation of x is an impulse function in
either one-dimensional “unwound” space or in multidimensional physical space.

A good preconditioner is one that somehow allows iterative solvers to obtain their solu-
tions in a fewer numbers of iterations. It is easy to guess a preconditioner and try it to see if
it helps. Start from the fitting goals (9) and (10) for finding the model m, and any transfor-
mation B. Implicitly define a new variable y by m= By; insert it into the goals (9) and (10);
iteratively solve for y; and finally convert y back to m with m= By. You have found a good
preconditioner if you have solved the problem in fewer iterations.

The helix enters the picture because it offers us another guess for the operator B. As we
have shown in this paper, the guess B= A−1 is an outstanding choice, speeding by an order of
magnitude (or more) the solution to the first problem we tried.
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Figure 6: Interpolating a synthetic velocity field from the well data. The left top plot shows the
synthetic model; top right, the dip field for calculating steering filters; bottom left, the input
data; bottom right, the interpolation result. Only 12 conjugate-gradient interpolations were
required. mishel-qdome-combo1[ER]
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The spectacularly successful guess is this: Instead of iteratively fitting the goals (9) and
(10) for the model m we recast those goals for the whitened model x. Substituting m= A−1x
into the fitting goals we get

0 ≈ KA−1x−b (11)

0 ≈ x (12)

When a fitting task is large and the iterations cannot go to completion then it is often
suggested that we simply omit the damping (12) and regard the results of each iteration as the
result of decreasing the amount of model damping. We find this idea to have merit when the
model goal is cast as 0≈ x but not when the model smoothing goal is cast in the equivalent
form 0≈ Am.

To move towards the fitting goal (11), we start at x= x0 where often x0 = 0. For each
iteration, we apply polynomial division by the PEF on the helix, A−1. It is very quick. At the
end, we can plot the deconvolved map x, the map itself m= Ax, or the known bin values with
the empties replaced by their prediction, Km+(I −K)Ax. Our first results are exciting because
they solve the problem so rapidly that we anticipate success with problems of industrial scale.

This example suggests that the philosophy of image creation by optimization has a dual
orthonormality: First, Gauss (and common sense) tells us that the data residuals should be
roughly equal in size. Likewise in Fourier space they should be roughly equal in size, which
means they should be roughly white, i.e. orthonormal. (I use the word “orthonormal” because
white means the autocorrelation is an impulse, which means the signal is statistically orthog-
onal to shifted versions of itself.) Second, to speed convergence of iterative methods, we need
a whiteness, another othonormality, in the solution. The map image, the physical function that
we seek, might not be itself white, so we should solve first for another variable, the whitened
map image, and as a final step, transform it to the “natural colored” map.

Often geophysicists create a preconditioning matrix B by inventing columns that “look
like” the solutions that they seek. Then the space x has many fewer components than the
space of m. This approach is touted as a way of introducing geological and geophysical prior
information into the solution. Indeed, it strongly imposes the form of the solution. Perhaps this
approach deserves the diminutive term “curve fitting” instead of the grandiloquent “geophysi-
cal inverse theory.” Our preferred approach is not to invent the columns of the preconditioning
matrix, but to estimate the prediction-error filter of the model and use its inverse.

CONCLUSIONS

Applying inverse filtering operators that we can construct with the helix transform to pre-
condition interpolation problems, we observe a significant (order of magnitude) speed-up in
the optimization convergence. Since inverse recursive filtering takes almost the same time
as forward convolution, the acceleration translates straightforwardly into computational time
savings.



224 Fomel, et al. SEP–95

For simple test problems, these savings are hardly noticeable. On the other hand, for large-
scale (seismic-exploration-size) problems, the achieved acceleration can have a direct impact
on the mere feasibility of iterative least-square inversion.
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