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Short Note

Traveltime computation with
the linearized eikonal equation

Sergey Fomel1

INTRODUCTION

Traveltime computation is an important part of seismic imaging algorithms. Conventional im-
plementations of Kirchhoff migration require precomputing traveltime tables or include trav-
eltime calculation in the innermost computational loop . The cost of traveltime computations
is especially noticeable in the case of 3-D prestack imaging where the input data size increases
the level of nesting in computational loops.

The eikonal differential equation is the basic mathematical model, describing the travel-
time (eikonal) propagation in a given velocity model. Finite-difference solutions of the eikonal
equation have been recognized as one of the most efficient means of traveltime computations
(Vidale, 1990; van Trier and Symes, 1991; Popovici, 1991). The major advantages of this
method in comparison with ray tracing techniques include an ability to work on regular model
grids, a complete coverage of the receiver space, and a fair numerical robustness. The most
common implementations of the finite-difference eikonal equation compute thefirst-arrival
traveltimes, though frequency-dependent enhancements (Biondi, 1992; Nichols, 1994) can
extend the method to computing the most energetic arrivals. The major numerical complex-
ity of the finite-difference eikonal computations arises from the fundamental non-linearity of
the eikonal equation. The numerical complexity is related not only to the direct cost of the
computation, but also to the accuracy and stability of finite-difference schemes.

It is important to note that the current practice of seismic imaging is not limited to a single
migration. Moreover, it is repeated migrations, with velocity analysis and refinement of the
velocity model at each step, that take most of the computational effort. When the changes
in the velocity model at each step are small compared to the initial model, it is appropriate
to linearize the eikonal equation with respect to the slowness and traveltime perturbations.
Mathematically, the linearized eikonal equation corresponds precisely to the linearization as-
sumption, commonly used in traveltime tomography.

In this paper, I propose an algorithm of finite-difference traveltime computations, based on
an iterative linearization of the eikonal equation. The algorithm takes advantage of an implicit
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finite-difference scheme with superior stability and accuracy properties. I test the algorithm
on a simple synthetic example and discuss its possible applications in residual traveltime com-
putation, interpolation, and tomography.

THE LINEARIZED EIKONAL EQUATION

The eikonal equation, describing the traveltime propagation in an isotropic medium, has the
form

(∇τ )2
= n2(x, y,z) , (1)

whereτ (x, y,z) is the traveltime (eikonal) from the source to the point with the coordinates
(x, y,z), andn is the slowness at that point (the velocityv equals 1/n.) In Appendix A, I
review a basic derivation of the eikonal and transport equations. To formulate a well-posed
initial-value problem on equation (1), it is sufficient to specifyτ at some closed surface and to
choose one of the two branches of the solution (the wave going from or to the source.)

Equation (1) is nonlinear. The nonlinearity is essential for producing multiple branches
of the solution. Multi-valued eikonal solutions can include different types of waves (direct,
reflected, diffracted, head, etc.) as well as different branches of caustics. To linearize equation
(1), we need to assume that an initial estimateτ0 of the eikonalτ is available. The traveltime
τ0 corresponds to some slownessn0, which can be computed from equation (1) as

n0 = |∇τ0| . (2)

Let us denote the residual traveltimeτ −τ0 by τ1 and the residual slownessn−n0 by n1. With
these definitions, we can rewrite equation (1) in the form

(∇τ0 +∇τ1)2
= (∇τ0)2

+2∇τ0 ·∇τ1 + (∇τ1)2
= (n0 +n1)2

= n2
0 +2n0n1 +n2

1 , (3)

or, taking into account equality (2),

2∇τ0 ·∇τ1 + (∇τ1)2
= 2n0n1 +n2

1 . (4)

Neglecting the squared terms, we arrive at the equation

∇τ0 ·∇τ1 = n0n1 , (5)

which is the linearized version of the eikonal equation (1). The accuracy of the linearization
depends on the relative ratio of the slowness perturbationn1 and the true slowness modeln.
Though it is difficult to give a quantitative estimate, the ratio of 10% is generally assumed to
be a safe upper bound.

The intimate connection of the linearized eikonal equation and traveltime tomography is
discussed in Appendix B.
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ALGORITHM

Linearization of the eikonal equation suggests the following algorithm of traveltime computa-
tion:

1. Start with an initial traveltime fieldτ0. The initial traveltime may be the result of a
previous computation or (for simple models) the result of an approximate analytic eval-
uation.

2. Compute the finite-difference gradient∇τ0 and the corresponding slowness modeln0

with equation (2).

3. Compute the slowness perturbationn1 as the difference between the true slowness
modeln andn0. Exit the computation if the perturbation is smaller than the desired
accuracy.

4. Solve numerically equation (5) for the traveltime perturbationτ1.

5. Update the traveltime fieldτ0 by addingτ1 to it.

6. Repeat the loop.

Equation (5) can be solved numerically with a simple explicit upwind finite-difference
method. For a numerical test of the algorithm, I chose to solve it by a less efficient but more
robust “brute-force” implicit method, applying one of the generic linear solvers. The gradient
operator∇ was computed with centered finite differences. The implicit method is uncon-
ditionally stable. Its accuracy corresponds to the accuracy of the finite-difference gradient
approximation. I found it helpful to regularize the linear solver with a smoothing precondi-
tioner. The regularization assures that the traveltime remains a smooth function of the spatial
coordinates.

An important feature of the suggested algorithm is that it does not require an iterative
solver to iterate until the full convergence. A few iteration steps of the estimation process can
be interlaced with re-linearization in the main loop of the algorithm.

Theoretically, a global convergence of the described procedure cannot be guaranteed for
all cases. However, I observed a stable convergence in the preliminary numerical tests.

NUMERICAL TEST

For the first numerical test, I used a model with a smooth anomaly inside a constant slow-
ness background. The initial traveltime was computed analytically, using the background
slowness. The result of the computation is shown in Figure 1. The computation involved 3
re-linearization cycles with 10 linear inversion iterations in each cycle.
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Figure 1: The traveltime contours for a smooth anomaly, computed by the linearized eikonal
solver. The background slowness is 1 s/km. The maximum anomaly slowness is 2.3 s/km.
The wave source is in the middle of the top plane of the model. The left plot shows a vertical
slice. The right plot shows a horizontal slice, taken at 2.5 km depth.lineiko-linear-0.01[ER]

Figure 2: The traveltime contours for a smooth anomaly, computed by the exact eikonal
solver. The input and plotting parameters are the same as in the preceeding figure.
lineiko-mihai-0.01 [ER]
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The result shows the expected behavior of the wavefronts. It agrees with the result of a
direct eikonal computation, shown in Figure 2. The direct computation was done with Mihai
Popovici’s TTGES eikonal solver, which has outstanding efficiency and stability properties.
Obviously, more tests are required to evaluate the comparative performance of the algorithm
and the limits of its practical applicability. The discussion section contains some speculations
about the perspective usage of the linearized algorithm.

DISCUSSION

Although the first numerical experiments have been too incomplete for drawing any solid
conclusions, it is interesting to discuss the possible applications of the linearized eikonal.

Multi-valued traveltimes Conventional eikonal solvers usually force the choice of a particu-
lar branch of the multi-valued traveltime, most commonly the first-arrival branch. How-
ever, in some cases other branches may in fact be more useful for imaging or velocity
estimation (Gray and May, 1994). When the linearization assumption is correct, the
linearized eikonal should follow the branch of the initial traveltime. This branch does
not have to be the first arrival. It can correspond to any other arrival, such as reflected
waves or multiple reflections.

Spherical Coordinates Though the eikonal equation itself does not favor any particular di-
rection, its solution for the case of a point source lands more naturally into a spherical
coordinate system. van Trier and Symes (1991), Popovici (1991), Fowler (1994), and
Schneider (1995) presented upwind finite-difference eikonal schemes based on a spher-
ical computational grid. To use the linearized equation (5) on such a grid, it is necessary
to rewrite the gradient operator in the spherical coordinates, as follows:

∇τ =

{
∂τ

∂r
,

1

r

∂τ

∂θ
,

1

r sin2θ

∂τ

∂φ

}
.

.

Interpolation One of the most natural applications for the linearized eikonal is interpolation
of traveltimes. Interpolating regularly gridded input (such as subsampled traveltime
tables) reduces tomaskedinversion of equation (5). Interpolating irregular input (such
as the result of a ray tracing procedure) reduces toregularizedinversion. In both cases,
a simpler way of traveltime binning would be required to initiate the linearization.

Tomography Tomographic velocity estimation is possible when the input traveltime data cor-
responds to a collection of sources. In this case, we can reduce the linearized traveltime
inversion to the system of equations

n(1)
0 ·∇τ

(1)
1 = n(2)

0 ·∇τ
(2)
1 = ·· · = s1 . (6)

Hereτ
(i )
1 stands for the traveltime from sourcei . Equations (6) are additionally con-

strained by the known values of the traveltime fields at the receiver locations.
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Amplitudes The amplitude transport equation, briefly reviewed in Appendix A, has the form
(A-4). Introducing the logarithmic amplitudeJ = −ln(A/A0), whereA0 is the constant
reference, we can rewrite this equation in the form

2∇τ ·∇ J = 1τ . (7)

The left-hand side of equation (7) has exactly the same form as the left-hand side part
of the linearized eikonal equation (5). This suggests reusing the traveltime computation
scheme for amplitude calculations. The amplitude transport equation is linear. However,
it explicitly depends on the traveltime. Therefore, the amplitude computation needs to
be coupled with the eikonal solution.

Anisotropy In a recent paper, Alkhalifah (1997) proposed a simple eikonal-type equation
for seismic imaging in vertically transversally-isotropic media. Alkhalifah’s equation
should be suitable for linearization, either in the normal moveout velocityVN M O or in
the dimensionless anisotropy parameterη. This untested opportunity looks promising
because of the validity of the weak anisotropy assumption in many regions of the world.

CONCLUSIONS

I have presented a finite-difference method of traveltime computations, based on the linearized
eikonal equation. Preliminary numerical experiments show that the method is as simple and
robust as can be expected from the theory. The required assumption is that a reasonable
estimate of the traveltime is available prior to linearization. Such an estimate may result from
the computation in a different velocity model, with a different method (e.g., ray tracing), or by
an analytic evaluation.

In the situations where the underlying assumption is valid, the linearized approach may
allow us

• to employ unconditionally stable implicit finite-difference schemes with an easy control
of the numerical stability,

• to parallelize the essential parts of the algorithm with minimum effort,

• to compute branches of the multi-valued traveltime other than the first arrival,

• to connect traveltime computations with tomographic velocity estimation,

• to couple traveltime and amplitude computations.

Future research is necessary to confirm these expectations.
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APPENDIX A

A SIMPLE DERIVATION OF THE EIKONAL AND TRANSPORT EQUATIONS

In this Appendix, I remind the reader how the eikonal equation is derived from the wave
equation. The derivation is classic and can be found in many popular textbooks. See, for
example, (̌Cerveny et al., 1977).

Starting from the wave equation,

∂2P

∂x2
+

∂2P

∂y2
+

∂2P

∂z2
= n2(x, y,z)

∂2P

∂t2
, (A-1)

we introduce a trial solution of the form

P(x, y,t) = A(x, y,z) f (t − τ (x, y,z)) , (A-2)

whereτ is the eikonal, andA is the wave amplitude. The waveform functionf is assumed to
be a high frequency (discontinuous) signal. Substituting solution (A-2) into equation (A-1),
we arrive at the constraint

1A f −2∇ A ·∇τ f ′
− A1τ f ′

+ A(∇τ )2 f ′′
= n2A f ′′ . (A-3)

Here1 ≡ ∇
2 denotes the Laplacian operator. Equation (A-3) is as exact as the initial wave

equation (A-1) and generally difficult to satisfy. However, we can try to satisfy it asymptoti-
cally, considering each of the high-frequency asymptotic components separately. The leading-
order component corresponds to the second derivative of the waveletf ′′. Isolating this com-
ponent, we find that it is satisfied if and only if the traveltime functionτ (x, y,z) satisfies the
eikonal equation (1).

The next asymptotic order corresponds to the first derivativef ′. It leads to theamplitude
transport equation

2∇ A ·∇τ + A1τ = 0 . (A-4)

The amplitude, defined by equation (A-4), is often referred to as the amplitude of the zero-
order term in the ray series. A series expansion of the functionf in high-frequency asymptotic
components produces recursive differential equations for the terms of higher order. In practice,
equation (A-4) is sufficiently accurate for describing the major amplitude trends in most of the
cases. It fails, however, in some special cases, such as caustics and diffraction.

APPENDIX B

CONNECTION OF THE LINEARIZED EIKONAL EQUATION AND TRAVELTIME
TOMOGRAPHY

The eikonal equation (1) can be rewritten in the form

n ·∇τ = n , (B-1)
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wheren is the unit vector, pointing in the traveltime gradient direction. The integral solution
of equation (B-1) takes the form

τ =

∫
0(n)

ndl , (B-2)

which states thatthe traveltimeτ can be computed by integrating the slowness n along the ray
0(n), tangent at every point to the gradient directionn.

Similarly, we can rewrite the linearized eikonal equation (5) in the form

n0 ·∇τ1 = n1 , (B-3)

wheren0 is the unit vector, pointing in gradient direction for the initial traveltimeτ0. The
integral solution of equation (B-3) takes the form

τ1 =

∫
0(n0)

n1dl , (B-4)

which states thatthe traveltime perturbationτ1 can be computed by integrating the slowness
perturbation n1 along the ray0(n0), defined by the initial slowness model n0. This is exactly
the basic principle of traveltime tomography.

I have borrowed this proof from Lavrentiev et al. (1970), who used linearization of the
eikonal equation as the theoretical basis for traveltime inversion.
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