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Huygens wavefront tracing:
A robust alternative to conventional ray tracing

Paul Sava and Sergey Fomel1

ABSTRACT

We present a method of ray tracing that is based on a system of differential equations
equivalent to the eikonal equation, but formulated in the ray coordinate system. We use a
first-order discretization scheme that is interpreted very simply in terms of the Huygens’
principle. The method has proved to be a robust alternative to conventional ray tracing,
while being faster and having a better ability to penetrate the shadow zones.

INTRODUCTION

Though traveltime computation is widely used in seismic modeling and routine data process-
ing, attaining sufficient accuracy without compromising speed and robustness is problematic.
Moreover, there is no easy way to obtain the traveltimes corresponding to the multiple arrivals
that appear in complex velocity media.

The tradeoff between speed and accuracy becomes apparent in the choice between the two
most commonly used methods, ray tracing and numerical solutions to the eikonal equation.
Other methods reported in the literature (dynamic programming (Moser, 1991), wavefront
construction (Vinje et al., 1993), etc.) are less common in practice (Audebert et al., 1994).

Eikonal solvers provide a relatively fast and robust method of traveltime computations
(Vidale, 1990; van Trier and Symes, 1991). They also avoid the problem of traveltime inter-
polation to a regular grid which imaging applications require. However, the eikonal solvers
compute first-arrival traveltimes and lack the important ability to track multiple arrivals. In
complex velocity structures, the first arrival does not necessarily correspond to the most ener-
getic wave, and other arrivals can be crucially important for accurate modeling and imaging
(Geoltrain and Brac, 1993; Gray and May, 1994).

On the other hand, one-point ray tracing can compute multiple arrivals with great accuracy.
Unfortunately, it lacks the robustness of eikonal solvers. Increasing the accuracy of ray tracing
in the regions of complex velocity variations raises the cost of the method and makes it pro-
hibitively expensive for routine large-scale applications. Mathematically, ray tracing amounts
to a numerical solution of the initial value problem for a system of ordinary differential equa-
tions (Červený, 1987). These ray equations describe characteristic lines of the eikonal partial
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differential equation.

Here, we propose a somewhat different approach to traveltime computation, that is both
fast and accurate, and has the ability to find multiple arrival traveltimes. The theoretical con-
struction is based on a system of differential equations, equivalent to the eikonal equation,
but formulated in the ray coordinate system. Unlike eikonal solvers, our method produces the
output in ray coordinates. Unlike ray tracing, it is computed by a numerical solution of partial
differential equations. We show that the first-order discretization scheme has a remarkably
simple interpretation in terms of the Huygens’ principle and propose aHuygens wavefront
tracing (from now on referred to asHWT) scheme as a robust alternative to conventional ray
tracing. Numerical examples demonstrate the following properties of the method: stability in
media with strong and sharp lateral velocity variations, better coverage of the shadow zones,
and greater speed than paraxial ray tracing (from now on referred to asPRT).

CONTINUOUS THEORY

The eikonal equation, governing the traveltimes from a fixed source in an isotropic heteroge-
neous medium, has the form(
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Here x, y, andz are spatial coordinates,τ is the traveltime (eikonal), andv stands for the
velocity field. Constant-traveltime contours in the traveltime fieldτ (x, y,z), constrained by
equation (1) and appropriate boundary conditions, correspond to wavefronts of the propagating
wave. Additionally, each point on a wavefront can be parameterized by an arbitrarily chosen
ray parameterγ . In three dimensions,γ includes a pair of independent parameters. For
brevity, from now on we will restrict the analysis to two dimensions. One can easily generalize
it to the 3-D case by consideringγ and x as vector quantities. Thus, we will refer to the
following two-dimensional form of equation (1):(
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For a point source,γ can be chosen as the initial ray angle at the source. Zhang (1993) shows
thatγ as a function of spatial coordinates satisfies the simple partial differential equation
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Equation (3) merely expresses the fact that in an isotropic medium, rays are locally orthogonal
to wavefronts. The fieldγ (x,z) has not only theoretical interest as it provides one of the
possible ways for evaluating propagation amplitudes. In particular, the geometrical spreading
factor J(x,z) is connected toγ by the simple relationship (Zhang, 1993)(
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It is important to note that for complex velocity fields, bothτ andγ as functions ofx andz
become multi-valued. In this case, the multi-valued character of the ray parameterγ corre-
sponds to the situation, where more than one ray from the source passes through a particular
point {x,z} in the subsurface. This situation presents a very difficult problem when equations
(2) and (3) are solved numerically. Typically, only the first-arrival branch of the traveltime is
picked in the numerical calculation. The ray tracing method is free from that limitation be-
cause it operates in the ray coordinate system. Ray tracing computes the traveltimeτ and the
corresponding ray positionsx andz for a fixed ray parameterγ .

Sincex(τ ,γ ) andz(τ ,γ ) are uniquely defined for arbitrarily complex velocity fields, we
can now make an important mathematical transformation. Considering equations (2) and (3)
as a system and applying the general rules of calculus, we can transform this system by substi-
tuting the inverse functionsx(τ ,γ ) andz(τ ,γ ) for the original fieldsτ (x,z) andγ (x,z). The
resultant expressions take the form(
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Comparing equations (5) and (6) with the original system (2-3) shows that equations (5)
and (6) again represent the dependence of ray coordinates and Cartesian coordinates in the
form of partial differential equations. However, the solutions of system (5-6) are better be-
haved and have a unique value for everyτ andγ . These values can be computed with the
conventional ray tracing. However, the ray-tracing approach is based on a system of ordinary
differential equations, which represents a different mathematical model.

We use equations (5) and (6) as the basis of our wavefront tracing algorithm. The next
section discusses the discretization of the differential equations and the physical interpretation
we have given to the scheme.

A DISCRETIZATION SCHEME AND THE HUYGENS’ PRINCIPLE

A natural first-order discretization scheme for equation (5) leads to the difference equation(
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where the indexi corresponds to the ray parameterγ , j corresponds to the traveltimeτ ,
r i

j = 4τ vi
j , 4τ is the increment in time, andvi

j is the velocity at the{i , j } grid point. It is
easy to notice that equation (7) simply describes a sphere (or a circle in two dimensions) with
the center at{xi

j ,z
i
j } and the radiusr i

j . This sphere is, of course, the wavefront of a secondary
Huygens source.
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This observation suggests that we apply the Huygens’ principle directly to find an appro-
priate discretization for equation (6). Let us consider a family of Huygens spheres, centered at
the points along the current wavefront. Mathematically, this family is described by an equation
analogous to (7), as follows:

(x − x(γ ))2
+ (z− z(γ ))2

= r 2(γ ) . (8)

Here the ray parameterγ serves as the parameter that distinguishes a particular Huygens
source. According to the Huygens’ principle, the next wavefront corresponds to the envelope
of the wavefront family. To find the envelop condition, we can simply differentiate both sides
of equation (8) with respect to the family parameterγ . The result takes the form

(x(γ )− x) x′(γ )+ (z(γ )− z) z′(γ ) = r (γ )r ′(γ ) , (9)

which is clearly a semidiscrete analog of equation (6). To complete the discretization, we
can represent theγ -derivatives in (9) by a centered finite-difference approximation. This
representation yields the scheme(
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which supplements the previously found scheme (7) for a unique determination of the point
{xi

j +1,zi
j +1} on the i -th ray and the (j + 1)-th wavefront. Formulas (7) and (10) define an

update scheme, depicted in Figure 1. To fill the{τ ,γ } plane, the scheme needs to be initialized
with one complete wavefront (around the wave source) and two boundary rays.

The solution of system (7-10) has the explicit form
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Figure 2 shows a geometric interpretation of formulas (7) and (10). Formula (10) is clearly
a line equation. Thus, the new pointD in Figure 2 is defined as one of the two intersections
of this line with theB sphere, defined by formula (7). It is easy to show geometrically that
the newly created ray segmentB D is orthogonal to the common tangent of spheresA and
C. Within the finite-difference approximation, the common tangent reflects local wavefront
behavior.
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Figure 1: An updating scheme for
HWT. Three points on the cur-
rent wavefront (A, B, and C) are
used to advance in theτ direction.
huygens-scheme[NR]
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Figure 2: A geometrical updating
scheme for HWT in the physical do-
main. Three points on the current
wavefront (A, B, and C) are used
to compute the position of theD
point. The bold lines represent equa-
tions (7) and (10). The tangent to
circle B at point D is parallel to the
common tangent of circlesA andC.
huygens-huygens[CR]
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IMPLEMENTATION DETAILS

There are a few problems that have to be addressed for the successful implementation of the
algorithm described in the preceding section. The most important are the boundary values,
the existence of a double solution (7-10), and the complications of finding the solution in the
vicinity of the cusp points.

Boundary values

As mentioned in the preceding section, the application of formulas (11-12) requires the ex-
istence of known boundary values for both the first value ofτ (next to the wave source) and
the extreme values of the take-off angleγ . Therefore, we have to initialize the complete first
wavefront as well as two boundary rays that represent all the extreme points of each conse-
quent wavefront (that is, for the first and last considered take-off angle).

To initialize the points on the first wavefront, we consider that the velocity is constant
around the source, and therefore this wavefront becomes a circle centered at the source. This
is a reasonable assumption because we use a finite difference scheme with very small time
steps, and the velocity models have limited local variation.

The values of the boundary rays are externally supplied. This apparent problem is very
easy to solve by using a ray tracing program to compute the trajectories of these two boundary
rays. We can shoot several “trial” rays and select the ones that are the smoothest and that
penetrate the most into the model.

Figure 3: The double solution of the
system of equations (7-10). D and
E are the intersection points between
the circle given by equation (7) and
the line given by equation (10). Point
O is the previous point on the ray go-
ing through B. The distance (OE) is
smaller than the distance (OD) and,
therefore, D is the next selected point.
The middle ray is defined locally by
the succession of points (-O-B-D-).
huygens-solution[CR]
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The double solution

The system (7-10) has two theoretical solutions (11-12), though there is only one that makes
physical sense given a velocity map. Again, we used a geometrical argument to select the
appropriate solution. We observed that even though a wavefront can make a sharp turn, the
corresponding rays cannot (see the examples in the next section). We define a turn as “sharp”
if it happens over a very small number of samples (say, three). Consequently, we decided to
impose the condition that the correct solution is the one represented by the point farthest away
from the preceding one on the same ray (Figure 3).

Cusp Points

The final problem to be solved is represented by the cusp points, the case in which the three-
point scheme doesn’t provide a satisfactory solution because it tends to decrease in an unnat-
ural way the sharpness of the wavefronts. In this case, we reduce the three-point scheme to a
two-point one by assuming that one of the exterior points (either A or C, Figure 4) is merged
with the point in the middle (B).

Figure 4: Cusp points. A, B and
C are the three points on the current
wavefront. Point O is the previous
point on the ray going through B. The
angle CBA is smaller than the an-
gle OBA, and therefore B is a cusp
point. If the angle CBA is closer
to 90 degrees than the angle OBA,
then C is merged with B; otherwise,
A is merged with B. The three-point
scheme becomes a two-point scheme
without any change in the program.
huygens-cusp[CR]
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A

B
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EXAMPLES

This section presents three examples in which we applied the method described in the last
section. The first two applications are on simple Gaussian velocity anomalies in a medium of
constant velocity. We used these models to check the validity, accuracy, and stability of the
HWT method. The third example concerns the very complex Marmousi 2-D model, which is
one of the most difficult benchmarks for ray tracing methods. Throughout the test, we have
compared our results with those obtained with Rekdal’s PRT program (Rekdal and Biondi,
1994) for accuracy, speed, and stability.
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Gaussian velocity anomalies

Our first two examples are Gaussian velocity anomalies (one positive and one negative) with
a magnitude of 2.0 km/s in a constant velocity medium of 2.0 km/s for the positive anomaly,
shown in Figure 5, and of 3.0 km/s for the negative anomaly in Figure 6. The anomaly is
centered at a depth of 1.0km and has a half-width of 300 m. The source is placed on the
surface directly above the anomaly (at x=6.0 km).

Figure 5: A Gaussian positive velocity anomaly. The background velocity is 2.0 km/s, and the
maximum anomaly at the center is +2.0 km/s.huygens-gp-velocity[NR]

We have selected these velocity models to test the way our method applies to different
patterns of velocity variation. In the case of the negative anomaly, the rays focus inward,
while in the case of the positive anomaly the rays spread outward.

The distribution of rays as obtained with the PRT and HWT methods are presented in
Figure 7 for the positive anomaly, and in Figure 8 for the negative.

One way to compare the two methods is to compute the distance between the points that
correspond to the same ray, identified by the same take-off angle, at the same traveltimes.
This is obviously not a perfect quantitative comparison, because once two rays, obtained with
the two methods, become slightly divergent, they keep going in different directions, and thus
the distance between corresponding points keeps growing (Figures 9 and 10). However, this
effect is not necessarily a manifestation of decreasing precision. It can be easily seen that
if such an angular mismatch doesn’t occur, the rays maintain practically the same path (see,
for example, the rays shot in the (-20,-40) and (20,40) degree intervals, where the distance
decreases in many cases to almost zero). Even in the case of divergent rays, the distance is
kept to a reasonable level (less than 1%). Consequently, we do not interpret these differences
as error.
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Figure 6: A Gaussian negative velocity anomaly. The background velocity is 3.0 km/s, and
the maximum anomaly at the center is -2.0 km/s.huygens-gn-velocity[NR]

Figure 7: The rays obtained in the case of the Gaussian positive velocity anomaly. We present
the rays obtained with the PRT method (left) and with the HWT method (right). The source is
located on the surface at x=6.0 km.huygens-gp-velrw[NR]
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Figure 8: The rays obtained in the case of the Gaussian negative velocity anomaly. We present
the rays obtained with the PRT method (left) and with the HWT method (right). The source is
located on the surface at x=6.0 km.huygens-gn-velrw[NR]

Figure 9: The distance between the
corresponding points on the rays ob-
tained with the PRT method and with
the HWT method. Distances are
given in meters. huygens-gp-diff
[NR]

Figure 10: The distance between the
corresponding points on the rays ob-
tained with the PRT method and with
the HWT method. Distances are
given in meters. huygens-gn-diff
[NR]
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The Marmousi model

In the third example, we have applied the same method to trace rays in the far more complex
Marmousi 2-D Model. Figure 11 contains the true velocity (left) and a smoothed version
using twice a tridiagonal 5×5 filter (right). In Figure 12 we present the rays obtained on the
unsmoothed Marmousi Model with the PRT method (left) and with the HWT method (right).
In Figure 13 we present the rays obtained on the smoothed Marmousi Model with the PRT
method (left) and with the HWT method (right).

Figure 11: The Marmousi model. The true velocity appears on the left,the smoothed velocity
on the right. huygens-m-velocity[ER]

Figure 12: The rays obtained in the true velocity Marmousi model using the PRT method (left)
and the HWT method (right).huygens-m-velrw-raw[NR]

As expected, the rays traced using the PRT method (Figure 12, left), which represents a
more exact solution to the eikonal equation for the given velocity field, have a very rough
distribution. Since this erratic result is of no use in practice, regardless of its accuracy, the
only way to get a proper result is to apply the ray tracing to a smoothed velocity model (Figure
13, left).
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Figure 13: The rays obtained in the smoothed Marmousi model using the PRT method (left)
and the HWT method (right).huygens-m-velrw-smooth[NR]

On the other hand, the result obtained with the HWT method looks a lot better, though
some imperfections are still visible. For the case of the unsmoothed velocity medium, the rays
have a much smoother pattern, which is less dependent on how rough the velocity model is
(Figure 12, right). This feature is preserved in the case of the smoothed model (Figure 13,
right) where the distributions of rays displayed by the two methods are much more similar,
though some differences remain (see, for example the zone around x=6.5km, z=2.0km).

As with the Gaussian model, we present the distances between the points that correspond
to the same ray, identified by the same take-off angle, at the same traveltimes (Figure 14). This
is another way to interpret what we saw in Figure 13, where most of the rays have a consistent
behavior, displaying similar paths regardless of the method used, and therefore small distances,
and a few have a different trajectory, resulting in big distances that increase with traveltime.

Figure 14: The distance between
the corresponding points on the rays
obtained with the PRT method
and with the HWT method.
Distances are given in meters.
huygens-m-diff-smooth[NR]
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CONCLUSIONS

The results obtained so far have led us to the following conclusions:

1. Stability: The HWT method is a lot more stable in rough velocity media than the PRT
method. The increased stability results from the fact that HWT derives the points on the
new wavefronts from three points on the preceding wavefront, compared to only one in
the usual PRT, which also means that a certain degree of smoothing is already embedded
in the method. This feature allows us to use the HWT method in media of very sharp
velocity variation and still obtain results that are reasonable from a geophysical point of
view.

2. Coverage: Being more stable and giving smoother rays than the PRT method, enables
the HWT method to provide a better coverage of the shadow zones. The idea is that
since the wavefront is traced from one ray to the other, it is very easy to introduce in the
code a condition to decrease the shooting angle as soon as the wavefront length exceeds
a specified upper limit.

3. Speed: Both methods were tested on an SGI 200. The execution time for shooting 90
rays of 130 samples for each ray was 1.31s for the PRT method and 0.22 s for the HWT
method. Even though in the current implementation of HWT we do not compute the
amplitudes of the waves, our method has still yielded a big improvement in speed for
the 2-D case, which gives us hope of doing even better in the 3-D case.

In our future work, we will implement the 3-D Huygens wavefront tracing method. We
expect to preserve its stability, while making it run even faster in comparison to other conven-
tional 3-D ray tracing methods.
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