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Speculations on contouring sparse data: Gaussian curvature

Jon Claerbout and Sergey Fomel1

ABSTRACT

We speculate about regularizing (interpolating) sparse data. We speculate thatL1 regular-
ization would be desirable. An example convinces us it would not. Changing direction we
learn that flexed paper has zero Gaussian curvature. Unfortunately, Gaussian curvature is
a nonlinear function of the altitude.

INTRODUCTION

Twenty-five years ago I2 attended a series of lectures organized by the University of Houston
called “Petroleum Geology for Geophysicists”. One of the professors, Daniel Busch (if I recall
correctly), proposed a data set that would be “interesting to contour”. He might have said that
specialized knowledge of petroleum reservoirs would be helpful. His experience was with
very sparse data. I recall it being well logs from Mexico. Of special interest were (and are)
sand thicknesses. He cited four wells, each with a measurement:
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The question for the interpreter is, what should be the value ofx? Mathematical algorithms
generally give a value ofx near 53. As a petroleum geologist, Busch was accustomed to visu-
alizing drainage patterns such as rivers with residual sands. For a river running northwesterly,
the value ofx would be near 6. On the other hand, he said, a paleotopography also commonly
contains ridges, so maybex should be roughly 100.

This example charmed me enough to remember it for 25 years and to relay it to you now,
with the hope that we can do something helpful about Busch’s problem (that mathematical
contouring is not as good as common sense). The solutions that we are most accustomed to
are the linear solutions that come from minimizing quadratic forms. Such setups generally
give the average value ofx near 54 that Busch would like to avoid.

1email: claerbout@stanford.edu, sergey@sep.stanford.edu
2In this paper “I” refers to the first author alone.
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We might wonder if Busch’s problem is too hard for any mathematical method. I think we
would feel that progress had been made, however, if we uncovered a method that told us this
data
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suggests a river while this data
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suggests a ridge. The whole problem could be more interesting in the presence of more data
values. The more remote data values could actually be making the choice of a river channel or
a ridge.

The goal is that the result should look more like topography than what we see arising
from familiar L2 methods. The essential aspect of real world topography is that erosion cuts
drainage channels.

Will L1 solve the problem?

A motivation of this paper is to explore the idea that theL1 norm might produce the kind of
solutions that Daniel Busch would like to see. I’m far from certain of this. The behavior of
theL1 norm is well understood inoverdeterminedformulations. ThereL1 is valuable because
it rejects outliers (large residuals). The behavior of theL1 norm inunderdeterminedproblems
is not well understood nor has it been widely observed.

One reason the behavior of theL1 norm is not widely observed in underdetermined prob-
lems is that we do not have fast and reliable computational methods for problems of high
dimensionality. For example, in Busch’s example the unknowns are a cartesian mesh of all
possible altitudes where just four altitudes are constrained. (Actually, we probably also need
to specify the behavior at infinite distance.)

To see ifL1 might help us solve problems like the one posed by Busch, and to help us
guess whether we should invest resources inL1 solvers, I review here various examples of
lesser scope.
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EXAMPLES

Median of an even number of points

Consider four numerical values, say (5,7,98,100). The median value is the middle value.
Since this is an even number of points, there is no middle. A way to define the medianm
mathematically is to choosem to minimize

q = |m−5|+ |m−7|+ |m−98|+ |m−100| (1)

If you plot the functionq(m) you find it has a flat spot betweenm = 7 andm = 98. This
illustrates a principle ofL1 optimizations: The minimum residual is unique. The model,
however, is not unique, but is a range. This is an interesting feature ofL1 which differs from
our usual least squaresL2 experience where we never get intervals. WithL2, solutions are
unique, except for a possible null space, an infinite family of added solutions. Having a 5th
data point, even if very weakly weighted, would resolve the ambiguity so we might be on the
track of a Busch-like solution.

Best fitting straight line

Consider the straight line that best fits a collection of data points. Suppose there are four points.
Two of them are (−10,−10), (−10,10). I’ll call these two data points the “left slot”. The other
two are (10,−10), (10,10) which I’ll call the “right slot”. You can easily see that straight lines
that lie within both the left slot and the right slot all have the same sum of absolute distances
from the line to the data. For each slot the sum is 20 so the total is 40. ThusL1 gives us many
lines inside the slots but it does not select any particular line. (This example is said to come
from Albert Tarantola.)

You might object to having two data points at the same coordinate. By moving them apart
a little, we suppose the “degeneracy” is broken, that a unique line becomes defined. Perhaps
so. Never the less, it is clear that the residual is “almost minimum” for all lines inside the slots,
and it is much bigger for lines outside the slots. Thus the reality of the slots remains, even
where technically we might avoid them. Again,L1 has the appealing feature that an additional
data point, even if weighted weakly, could break the ambiguity.

Statics

An important example is the estimation of source and receiver time corrections. Here one has
a set of observed traveltimes from thei th source to thej th receiver. After known systematic
geometrical and velocity effects are removed, the time residual matrixti j remains. Then, near-
source traveltimessi and near-receiver traveltimesr j are estimated from theti j by minimizing
the errorei j in

ei j = ti j −si − r j . (2)
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A trivial nonuniqueness is that an arbitrary constant added to all thesi and subtracted from all
ther j will give the same residuals. I was surprised to discover deeper nonuniqueness lurking
in a simple example. Absolute error minimization reduced a 3-by-3 matrix ofti j to theei j

residual matrix

ei j =

 0 −12 4
17 0 0
0 10 0

 . (3)

As expected theoretically (by the solution method I used), there are 5 zeros representing the 5
independent unknowns of the 6 unknowns. Note that

∑
|ei j | = 43. Now modify source and

receiver times by applying+12 to row 1 and−12 to column 1. We have 0 0 16
5 0 0

−12 10 0

 , (4)

still with
∑

|ei j | = 43. Now apply+12 to row 3 and−12 to column 3. We have 0 0 4
5 0 −12
0 22 0

 . (5)

Furthermore, we can generate an infinite set ofei j (and hence source and receiver corrections)
all with the same

∑
|ei j | by taking residuals (3)-(5) and forming any convex combination

(weighted combination where each weight is positive and the weights sum to one).

The existence of a sizeable nonuniqueness with absolute error minimization leaves us the
uncomfortable feeling that the mathematical uniqueness of squared error is not genuine, i.e.,
that the uniqueness of results with squared error is not a realistic charactorization of our cer-
tainty.

Often, however, the this unfamiliar nonuniqueness does not arise. It depends on the data,
not the mathematical structure of the problem. For example, I don’t know any other minimum
L1 solutions with theei j matrix:  0 0 0

0 7 −11
0 −3 8

 . (6)

More details are found in (Claerbout and Muir, 1973) which is where I recovered this example.

Curve through two points

Consider values along a horizontalx-axis ranging from 1 to 100. Suppose atx = 1, they value
is given to bey1 = 1. Likewise atx = 100 they value is given to bey100 = 100. Now we are
to find all the intervening points,y2, y3, . . . , y99. Let us use theL1 criterion

min
y2,y3,... ,y99

|y2 − y1|+ |y3 − y2|+ |y4 − y3|+ · · · (7)
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The solution to this problem is any curve with a positive slope since all such curves result in
the same value of 99 for (7) That is quite a lot of curves!

Now we begin to appreciate the strange flavor ofL1. We appreciate the idea that solutions
are “intervals”. But it is distressing to realize that we could often have graphical difficulty
displaying the results. In practice we might need to settle for “seeing some examples.” Perhaps
a satisfactory way of generating those examples would be by using random starting values for
the fitting.

Suppose we set up the Busch problem withL1. Perhaps we will find the solution is not a
unique surface. It might turn out to be a “mat” of variable thickness. It would be annoying to
try to display the thickness, but perhaps the thickness is related to the uncertainty of the result.
That should have value.

WHAT IS THE L1 NORM OF THE 2-D GRADIENT?

The idea of finding smooth solutions is to minimize a measure of the gradient. The first time
I thought about doing this withL1, I tried the wrong approach (and that put me off the track
for 25 years). The wrong approach is to take theL1 norm of thex-component of the gradient
and add it to theL1 norm of they-component of the gradient. This is bad because it embeds
the orientation of the coordinate system. Axiomatically, in science we like solutions that are
independent of the human choice of a coordinate system. ThusL1 appears to conflict with this
basic requirement.

An approach independent of coordinate rotation and translation on a grid is to minimize

q(u) =

∑√
∇u ·∇u (8)

whereu = u(x, y) and where the summation is over (x, y)-space. MultivariateL1-norm prob-
lems generally reduce to a line search that is a weighted median. Hoare’s algorithm makes this
very fast. Unfortunately, this multidimensional generalization ofL1 does not seem to reduce
to a weighted median so Hoare’s algorithm is irrelevant, as might be otherL1 experiences we
have seen in 1− D.

I discussed the
∑√

∇u ·∇u criterion for a while with Bill Symes. We came up with this
simple problem where we would use zero side boundaries and seek the response of an impulse
in the medium.

0 0 0 0

0 a 10 0

0 b c 0

0 0 0 0

The free variables area, b, andc. We take thex derivative diagonally to the northeast and the
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y derivative diagonally to the southeast.

q(a,b,c) = |a| +
√

102 +a2 + 10 +
√

b2 +a2 +

√
(a−c)2 + (b−10)2 +

√
102 +c2 +

|b| +
√

b2 +c2 + c

(9)

A few manual calculations quickly convinced us that the solution isa = b = c = 0. Thus
multidimensionalL1 does not look like the answer we seek. It looks like the boundaries
at infinite distance dominate the data (in this case the 10). Thus, the response to an isolated
collection of spikes, might simply be the spike values where they are given and zero elsewhere.

GAUSSIAN CURVATURE

I proposed that we find out the differential equation that describes the bending of paper and
use it as a regularization. The idea is to encourage a Busch-like behavior. As withL1, I would
like to have a linear operator to preserve the uniqueness of the solution. Uniqueness gives
reliability. My exerience has taught me that if a method has multiple isolated minima, I will
descend into the wrong one. If the paper-bending operator is nonlinear, I could linearize it.

Bill Symes suggested the Gaussian curvature. My favorite search engine (google.com)
quickly gave me several references. Indeed a sheet of paper does seem to have a Gaussian
curvature of zero. The Gaussian curvature of a 2-D function vanishes wherever the the function
is locally one dimensional. The Gaussian curvature is the product of the principal curvatures.
The Gaussian curvature is

hxxhyy −h2
xy

1+h2
x +h2

y
(10)

For small dips, the numerator is the important part. The numerator is the determinant of the
Hessian,

det

∣∣∣∣ hxx hxy

hyx hyy

∣∣∣∣ (11)

We might regularize a collection of data points by minimizing this determinant. I have begun
looking for references that may have previously investigated this very basic idea. Unfortu-
nately, the function is nonlinear. We can linearize it. Replacingh by h̄+h and dropping terms
in h2 we get

0 ≈ (h̄xxh̄yy − h̄2
xy)+ h̄xxhyy +hxxh̄yy −2h̄xyhxy (12)

The most important question is: what is̄h(x, y)? How do we initialize it, and how can we
safely update it? A way to initializēh(x, y) is to approximate the initial data by a best fitting
one-dimensional parabola. One way to stablizeh̄(x, y) is to smooth it in patches.

I am reminded of "LOMOPLAN", an earlier idea I had to fit a best plane wave, then use
it to define a linear operator to use as a weighting function in estimation. The idea is that a
sedimentary section consists of a single local plane wave. Perhaps that two-stage least squares
process is akin to linearizing the Gaussian curvature.



SEP–103 Gaussian curvature 149

MORE ON GAUSSIAN CURVATURE

Given a functionu(x, y), its x-derivativeux, its y-derivativeuy, and a slope parameterp, we
have the planewave operatorL

0 = L(u) = ux + puy (13)

which vanishes whenu(x, y) is not really a two-dimensional function but is a one-dimensional
functionu = f (x − py).

Next we get two equations from the plane-wave equation, one differentiating byx, the
other byy.

0 = L(ux) = uxx + puxy (14)

0 = L(uy) = uyx + puyy (15)

Eliminate p from these two equations by solving for it:

−p =
uxx

uxy
=

uyx

uyy
(16)

or

G(u) = uxxuyy −uxyuyx = 0 (17)

The plane-wave operatorL(u) will not vanish unlessu is a plane wave going in the direction
specified byp. A remarkable property of the functionG(u) is that it vanishes for any orienta-
tion of plane wave. If we want to test a 2-D field for one-dimensionality, the testL(u) requires
us to knowp. The testG(u) does not. Generally we do not knowp and we need to estimate
it by statistical means in a window of some size that we must specify. In principle,G escapes
those problems (although it might be worse in practice because it is a nonlinear function of the
wavefield).

In differential geometry, a quantity appears that is known as the “Gaussian curvature”. For
small vertical motionsu, this Gaussian curvature reduces to our expressionG.

The gentle flexure of a sheet of paper follows the principle that the Gaussian curvature
vanishes. The deformation must be one dimensional. We were first attracted to Gaussian
curvature as a way of interpolating sparse data where the data represents a wavefield or a
sedimentary earth model. We would seek the interpolation that was most “paper like”, which
minimized the integral of the square of the Gaussian curvature. Unfortunately,G is already a
quadratic function ofu even before we squareG to minimize a positive value.

Thin-plate versus biharmonic equation

The biharmonic equation uses the Laplacian operator twice: The biharmonic equation results
from minimizing the quadratic form

B(u) = u′(∂xx + ∂yy)
′(∂xx + ∂yy)u (18)

B(u) = u′(∂ ′

xx∂xx + ∂ ′

xx∂yy + ∂ ′

yy∂xx + ∂ ′

yy∂yy)u (19)
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To minimize, simply cancel offu′ and set to zero. The thin plate equation resembles the
biharmonic equation but differs in a subtle but important way. The quadratic form minimized
for a thin plate is:

T(u) = v′v wherev =


∂xx

∂xy

∂yx

∂yy

u (20)

or

T(u) = u′(∂ ′

xx∂xx + ∂ ′

yy∂yy + ∂ ′

xy∂xy + ∂ ′

yx∂yx)u (21)

Again, we find the associated differential equation by canceling off theu′.

What is bothering me is that the dispersion relations look the same but the quadratic
forms look different. The difference between the biharmonic quadratic form and the thin
plate quadratic form lies in the cross term. Let us form half this differenceG = (B− T)/2.

G(u) = uxxuyy −uxyuxy (22)

We see the difference has turned out to be the Gaussian curvature. Although the difference is
a quadratic form, it is not uniformly positive or negative, as it can have both signs.

By means of rotation of coordinates, we can diagonalize the matrix[
uxx uxy

uyx uyy

]
rotation
−−−→

[
K1 0
0 K2

]
(23)

Thus we can think ofG = K1K2 as the product of the curvatures while the biharmonic
quadratic form is the square of the sumB = (K1 + K2)2. In terms of curvatures, in the ro-
tated coordinates the thin plate operator is

T = B−2G (24)

T = (K1 + K2)2
−2K1K2 (25)

T = K 2
1 + K 2

2 (26)

which is the sum of the squares of the curvatures.

The meaning is this: The biharmonic equation zeroesB = (K1 + K2)2 so its solution
could be expected to have many places ofK1 = −K2 where the curvature on one axis is the
negative of that on the other axis. In other words, solving the biharmonic equation might
give us a function containing many saddles. On the other hand, the thin-plate equationT =

K 2
1 + K 2

2 tries to eliminate both curvatures (not allowing credit for when one cancels the other).
However, with respect to optimization, both quadratic forms are equivalent.
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CONCLUSION

In conclusion, we do not see any immediate action items. The notion of minimizing Gaussian
curvature is appealing, but it is nonlinear, which means that solutions depend on the starting
location. Physically, when flexing paper, the final deformation probably depends on the defor-
mation history. For practical purposes the thin plate operator is the Laplacian squared. If we
are going to try to minimize the Gaussian curvature, a nonlinear criteria, we should probably
begin from the thin plate which is unique.
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