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A variational formulation
of the fast marching eikonal solver

Sergey Fomel1

ABSTRACT

I exploit the theoretical link between the eikonal equation and Fermat’s principle to de-
rive a variational interpretation of the recently developed method for fast traveltime com-
putations. This method, known as fast marching, possesses remarkable computational
properties. Based originally on the eikonal equation, it can be derived equally well from
Fermat’s principle. The new variational formulation has two important applications: First,
the method can be extended naturally for traveltime computation on unstructured (trian-
gulated) grids. Second, it can be generalized to handle other Hamilton-type equations
through their correspondence with variational principles.

Now we are in the rarefied atmosphere of theories of excessive beauty and we are nearing a
high plateau on which geometry, optics, mechanics, and wave mechanics meet on a common
ground. Only concentrated thinking, and a considerable amount of re-creation, will reveal the
full beauty of our subject in which the last word has not been spoken yet.–Cornelius Lanczos,
The variational principles of mechanics

INTRODUCTION

Traveltime computation is one of the most important tasks in seismic processing (Kirchhoff
depth migration and related methods) and modeling. The traveltime field of a fixed source in
a heterogeneous medium is governed by the eikonal equation, derived about 150 years ago
by Sir William Rowan Hamilton. A direct numerical solution of the eikonal equation has be-
come a popular method of computing traveltimes on regular grids, commonly used in seismic
imaging (Vidale, 1990; van Trier and Symes, 1991; Podvin and Lecomte, 1991). A recent con-
tribution to this field is thefast marchinglevel set method, developed by Sethian (1996a) in
the general context of level set methods for propagating interfaces (Osher and Sethian, 1988;
Sethian, 1996b). Sethian and Popovici (1997) report a successful application of this method
in three-dimensional seismic computations. The fast marching method belongs to the family
of upwind finite-difference schemes aimed at providing theviscositysolution (Lions, 1982),
which corresponds to the first-arrival branch of the traveltime field. The remarkable stability
of the method results from a specifically chosen order of finite-difference evaluation. The or-
der selection scheme resembles theexpanding wavefrontsmethod of Qin et al. (1992). The
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fast speed of the method is provided by the heap sorting algorithm, commonly used in Di-
jkstra’s shortest path computation methods (Cormen et al., 1990). A similar idea has been
used previously in a slightly different context, in thewavefront trackingalgorithm of Cao and
Greenhalgh (1994).

In this paper, I address the question of evaluating the fast marching method’s applicabil-
ity to more general situations. I describe a simple interpretation of the algorithm in terms
of variational principles (namely, Fermat’s principle in the case of eikonal solvers.) Such
an interpretation immediately yields a useful extension of the method for unstructured grids:
triangulations in two dimensions and tetrahedron tesselations in three dimensions. It also
provides a constructive way of applying similar algorithms to solving other eikonal-like equa-
tions: anisotropic eikonal (Dellinger, 1991), “focusing” eikonal (Biondi et al., 1997), kine-
matic offset continuation (Fomel, 1995), and kinematic velocity continuation (Fomel, 1996).
Additionally, the variational formulation can give us hints about higher-order enhancements
to the original first-order scheme.

A BRIEF DESCRIPTION OF THE FAST MARCHING METHOD

For a detailed description of level set methods, the reader is referred to Sethian’s recently
published book (1996b). More details on the fast marching method appear in articles by
Sethian (1996a) and Sethian and Popovici (1997). This section serves as a brief introduction
to the main bulk of the algorithm.

The key feature of the algorithm is a carefully selected order of traveltime evaluation. At
each step of the algorithm, every grid point is marked as eitherAlive (already computed),
NarrowBand(at the wavefront, pending evaluation), orFarAway(not touched yet). Initially,
the source points are marked asAlive, and the traveltime at these points is set to zero. A
continuous band of points around the source are marked asNarrowBand, and their traveltime
values are computed analytically. All other points in the grid are marked asFarAwayand have
an “infinitely large” traveltime value.

An elementary step of the algorithm consists of the following moves:

1. Among all theNarrowBandpoints, extract the point with the minimum traveltime.

2. Mark this point asAlive.

3. Check all the immediate neighbors of the minimum point and update them if necessary.

4. Repeat.

An update procedure is based on an upwind first-order approximation to the eikonal equa-
tion. In simple terms, the procedure starts with selecting one or more (up to three) neighboring
points around the updated point. The traveltime values at the selected neighboring points need
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to be smaller than the current value. After the selection, one solves the quadratic equation∑
j

(
ti − tj
4xi j

)2

= s2
i (1)

for ti . Here ti is the updated value,tj are traveltime values at the neighboring points,si is
the slowness at the pointi , and4xi j is the grid size in thei j direction. As the result of
the updating, either aFarAwaypoint is marked asNarrowBandor aNarrowBandpoint gets
assigned a new value.

Except for the updating scheme (1), the fast marching algorithm bears a very close re-
semblance to the famous shortest path algorithm of Dijkstra (1959). It is important to point
out that unlike Moser’s method, which uses Dijkstra’s algorithm directly (Moser, 1991), the
fast marching approach does not construct the ray paths from predefined pieces, but dynami-
cally updates traveltimes according to the first-order difference operator (1). As a result, the
computational error of this method goes to zero with the decrease in the grid size in a linear
fashion. The proof of validity of the method (omitted here) is also analogous to that of Di-
jkstra’s algorithm (Sethian, 1996a,b). As in most of the shortest-path implementations, the
computational cost of extracting the minimum point at each step of the algorithm is greatly
reduced [fromO(N) to O(logN) operations] by maintaining a priority-queue structure (heap)
for theNarrowBandpoints (Cormen et al., 1990).

Figure 1 shows an example application of the fast marching eikonal solver on the three-
dimensional SEG/EAGE salt model. The computation is stable despite the large velocity
contrasts in the model. The current implementation takes about 10 seconds for computing
a 100x100x100 grid on one node of SGI Origin 200. Alkhalifah and Fomel (1997) discuss the
differences between Cartesian and polar coordinate implementations.

The difference equation (1) is a finite-difference approximation to the continuous eikonal
equation (

∂t

∂x

)2

+

(
∂t

∂y

)2

+

(
∂t

∂z

)2

= s2(x, y,z) , (2)

wherex, y, andz represent the spatial Cartesian coordinates. In the next two sections, I show
how the updating procedure can be derived without referring to the eikonal equation, but with
the direct use of Fermat’s principle.

THE THEORETIC GROUNDS OF VARIATIONAL PRINCIPLES

This section serves as a brief reminder of the well-known theoretical connection between
Fermat’s principle and the eikonal equation. The reader, familiar with this theory, can skip
safely to the next section.

Both Fermat’s principle and the eikonal equation can serve as the foundation of traveltime
calculations. In fact, either one can be rigorously derived from the other. A simplified deriva-
tion of this fact is illustrated in Figure 2. Following the notation of this figure, let us consider a
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Figure 1: Constant-traveltime con-
tours of the first-arrival traveltime,
computed in the SEG/EAGE salt
model. A point source is positioned
inside the salt body. The top plot is
a diagonal slice; the bottom plot, a
depth slice.fmeiko-salt [CR]

Figure 2: Illustration of the connec-
tion between Fermat’s principle and
the eikonal equation. The shortest
distance between a wavefront and a
neighboring point M is along the
wavefront normal. fmeiko-fermat
[NR]
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point M in the immediate neighborhood of a wavefrontt(N) = tN . Assuming that the source
is on the other side of the wavefront, we can express the traveltime at the pointM as the sum

tM = tN + l (N, M)sM , (3)

whereN is a point on the front,l (N, M) is the length of the ray segment betweenN andM ,
andsM is the local slowness. As follows directly from equation (3),

|∇t |cosθ =
∂t

∂l
= lim

M→N

tM − tN

l (N, M)
= sN . (4)

Hereθ denotes the angle between the traveltime gradient (normal to the wavefront surface)
and the line fromN to M , and ∂t

∂l is the directional traveltime derivative along that line.

If we accept the local Fermat’s principle, which says that the ray from the source toM
corresponds to the minimum-arrival time, then, as we can see geometrically from Figure 2,
the angleθ in formula (4) should be set to zero to achieve the minimum. This conclusion
leads directly to the eikonal equation (2). On the other hand, if we start from the eikonal
equation, then it also follows thatθ = 0, which corresponds to the minimum traveltime and
constitutes the local Fermat’s principle. The idea of that simplified proof is taken from Lanczos
(1966), though it has obviously appeared in many other publications. The situations in which
the wavefront surface has a discontinuous normal (given raise to multiple-arrival traveltimes)
require a more elaborate argument, but the above proof does work for first-arrival traveltimes
and the corresponding viscosity solutions of the eikonal equation (Lions, 1982).

The connection between variational principles and first-order partial-differential equations
has a very general meaning, explained by the classic Hamilton-Jacobi theory. One generaliza-
tion of the eikonal equation is ∑

i , j

ai j (x)
∂τ

∂xi

∂τ

∂xj
= 1 , (5)

wherex = {x1,x2, . . . } represents the vector of space coordinates, and the coefficientsai j form
a positive-definite matrixA. Equation (5) defines the characteristic surfacest = τ (x) for a
linear hyperbolic second-order differential equation of the form

∑
i , j

ai j (x)
∂2u

∂xi ∂xj
+ F(x,u,

∂u

∂xi
) =

∂2u

∂t2
, (6)

where F is an arbitrary function.

A known theorem (Smirnov, 1964) states that the propagation rays [characteristics of equa-
tion (5) and, correspondingly, bi-characteristics of equation (6)] are geodesic (extreme-length)
curves in the Riemannian metric

dτ =

√∑
i , j

bi j (x)dxi dxj , (7)
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wherebi j are the components of the matrixB = A−1. This means that a ray path between two
pointsx1 andx2 has to correspond to the extreme value of the curvilinear integral∫ x2

x1

√∑
i , j

bi j (x)dxi dxj .

For the isotropic eikonal equation (2),ai j = δi j /s2(x), and metric (7) reduces to the familiar
traveltime measure

dτ = s(x)dσ , (8)

wheredσ =

√∑
i dx2

i is the usual Euclidean distance metric. In this case, the geodesic curves
are exactly Fermat’s extreme-time rays.

From equation (7), we see that Fermat’s principle in the general variational formulation
applies to a much wider class of situations if we interpret it with the help of non-Euclidean
geometries.

VARIATIONAL PRINCIPLES ON A GRID

In this section, I derive a discrete traveltime computation procedure, based solely on Fermat’s
principle, and show that on a Cartesian rectangular grid it is precisely equivalent to the update
formula (1) of the first-order eikonal solver.

Figure 3: A geometrical scheme for
the traveltime updating procedure in
two dimensions. fmeiko-triangle
[NR]
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For simplicity, let us focus on the two-dimensional case2. Consider a line segment with
the end pointsA and B, as shown in Figure 3. LettA and tB denote the traveltimes from a
fixed distant source to pointsA andB, respectively. Define a parameterξ such thatξ = 0 at A,

2A very similar analysis applies in three dimensions, but requires a slightly more tedious algebra. It is left
as an exercise for the reader.
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ξ = 1 at B, andξ changes continuously on the line segment betweenA andB. Then for each
point of the segment, we can approximate the traveltime by the linear interpolation formula

t(ξ ) = (1− ξ )tA + ξ tB . (9)

Now let us consider an arbitrary pointC in the vicinity of AB. If we know that the ray from
the source toC passes through some pointξ of the segmentAB, then the total traveltime atC
is approximately

tC = t(ξ )+sC

√
|AB|2(ξ − ξ0)2 +ρ2

0 , (10)

wheresC is the local slowness,ξ0 corresponds to the projection ofC to the lineAB (normal-
ized by the length|AB|), andρ0 is the length of the normal fromC to ξ0.

Fermat’s principle states that the actual ray toC corresponds to a local minimum of the
traveltime with respect to raypath perturbations. According to our parameterization, it is suf-
ficient to find a local extreme oftC with respect to the parameterξ . Equating theξ derivative
to zero, we arrive at the equation

tB − tA +
sC |AB|

2 (ξ − ξ0)√
|AB|2(ξ − ξ0)2 +ρ2

0

= 0 , (11)

which has (as a quadratic equation) the explicit solution forξ :

ξ = ξ0 ±
ρ0 (tA − tB)

|AB|

√
s2
C |AB|2 − (tA − tB)2

. (12)

Finally, substituting the value ofξ from (12) into equation (10) and selecting the appropriate
branch of the square root, we obtain the formula

c tC = ρ0

√
s2
Cc2 − (tA − tB)2 +c tA (1− ξ0)+c tB ξ0 =

ρ0

√
s2
Cc2 − (tA − tB)2 +a tA cosβ +b tB cosα , (13)

wherec = |AB|, a = |BC|, b = |AC|, angleα corresponds toB̂ AC, and angleβ corresponds
to ÂBC in the triangleABC (Figure 3).

To see the connection of formula (13) with the eikonal difference equation (1), we need
to consider the case of a rectangular computation cell with the edgeAB being a diagonal
segment, as illustrated in Figure 4. In this case, cosα =

a
c , cosβ =

b
c , ρ0 =

ab
c , and formula

(13) reduces to

tC =

ab
√

s2
C(a2 +b2)− (tA − tB)2 +a2 tA +b2 tB

a2 +b2
. (14)

We can notice that (14) is precisely equivalent to the solution of the quadratic equation (13),
which in our new notation takes the form(

tC − tA

b

)2

+

(
tC − tB

a

)2

= s2
C . (15)
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Figure 4: A geometrical scheme for
traveltime updating on a rectangular
grid. fmeiko-square[NR]
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What have we accomplished by this analysis? First, we have derived a local traveltime
computation formula for an arbitrary grid. The derivation is based solely on Fermat’s princi-
ple and a local linear interpolation, which provides the first-order accuracy. Combined with
the fast marching evaluation order, which is also based on Fermat’s principle, this procedure
defines a complete algorithm of first-arrival traveltime calculation. On a rectangular grid, this
algorithm is exactly equivalent to the fast marching method of Sethian (1996a) and Sethian
and Popovici (1997). Second, the derivation provides a general principle, which can be ap-
plied to derive analogous algorithms for other eikonal-type (Hamilton-Jacobi) equations and
their corresponding variational principles.

SOLVING THE EIKONAL EQUATION ON A TRIANGULATED GRID

Unstructured (triangulated) grids have computational advantages over rectangular ones in
three common situations:

• When the number of grid points can be substantially reduced by putting them on an
irregular grid. This situation corresponds to irregular distribution of details in the prop-
agation medium.

• When the computational domain has irregular boundaries. One possible kind of bound-
ary corresponds to geological interfaces and seismic reflector surfaces (Wiggins et al.,
1993). Another type of irregular boundary, in application to traveltime computations,
is that of seismic rays. The method of bounding the numerical eikonal solution by ray
envelopes has been introduced recently by Abgrall and Benamou (1996).

• When the grid itself needs to be dynamically updated to maintain a certain level of
accuracy in the computation.

With its computational speed and unconditional stability, the fast marching method provides
considerable savings in comparison with alternative, more accurate methods, such as semi-
analytical ray tracing (Guiziou et al., 1991; Stankovic and Albertin, 1995) or the general
Hamilton-Jacobi solver of Abgrall (1996).
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Figure 5: Traveltime contours, computed in the rough Marmousi model (left), the smoothed
Marmousi (middle), and the smoothed triangulated Marmousi (right).fmeiko-test [NR]

Figure 5 shows a comparison between first-arrival traveltime computations in regularly
gridded and triangulated Marmousi models. The two results match each other within the first-
order accuracy of the fast marching method. However, the cost of the triangulated computation
has been greatly reduced by constraining the number of nodes.

Computational aspects of triangular grid generation are outlined in Appendix A. A three-
dimensional application would follow the same algorithmic patterns.

CONCLUSIONS

Variational principles have played an exceptionally important role in the foundations of math-
ematical physics. Their potential in numerical algorithms should not be underestimated.

In this paper, I interpret the fast marching eikonal solver with the help of Fermat’s prin-
ciple. Two important generalizations follow immediately from that interpretation. First, it
allows us to obtain a fast method of first-arrival traveltime computation on triangulated grids.
Furthermore, we can obtain a general principle, which extends the fast marching algorithm to
other Hamilton-type equations and their variational principles. More research is required to
confirm these promises.

In addition, future research should focus on 3-D implementations and on increasing the
approximation order of the method.
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APPENDIX A

INCREMENTAL DELAUNAY TRIANGULATION AND RELATED PROBLEMS

Delaunay triangulation (Delaunay, 1934; Sibson, 1978; Guibas and Stolfi, 1985) is a funda-
mental geometric construction, which has numerous applications in different computational
problems. For a given set of nodes (points on the plane), Delaunay triangulation constructs
a triangle tessellation of the plane with the initial nodes as vertices. Among all possible tri-
angulations, the Delaunay triangulation possesses optimal properties, which make it very at-
tractive for practical applications, such as computational mesh generation. One of the most
well-known properties is maximizing the minimum triangulation angle. In three dimensions,
Delaunay triangulation generalizes naturally to a tetrahedron tessellation.

Several optimal-time algorithms of Delaunay triangulation (and its counterpart–Voronoi
diagram) have been proposed in the literature. The divide-and-conquer algorithm (Shamos
and Hoey, 1975; Guibas and Stolfi, 1985) and the sweep-line algorithm (Fortune, 1987) both
achieve the optimalO(N logN) worst-case time complexity. Alternatively, a family of in-
cremental algorithms has been used in practice because of their simplicity and robustness.
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Though the incremental algorithm can takeO(N2) time in the worst case, the expectation
time can still beO(N logN), provided that the nodes are inserted in a random order (Guibas
et al., 1992).

The incremental algorithm consists of two main parts:

1. Locate a triangle (or an edge), containing the inserted point.

2. Insert the point into the current triangulation, making the necessary adjustments.

The Delaunay criterion can be reduced in the second step to a simpleInCircle test (Guibas
and Stolfi, 1985): if a circumcircle of a triangle contains another triangulation vertex in its
circumcenter, then the edge between those two triangles should be “flipped” so that two new
triangles are produced. The testing is done in a recursive fashion consistent with the incremen-
tal nature of the algorithm. When a new node is inserted inside a triangle, three new triangles
are created, and three edges need to be tested. When the node falls on an edge, four triangles
are created, and four edges are tested. In the case of test failure, a pair of triangles is replaced
by the flip operation with another pair, producing two more edges to test. Under the random-
ization assumption, the expected total time of point insertion isO(N). Randomization can be
considered as an external part of the algorithm, provided by preprocessing.

Guibas et al. (1992) reduce the point location step to an efficientO(N logN) procedure by
maintaining a hierarchical tree structure: all triangles, occurring in the incremental triangula-
tion process, are kept in memory, associated with their “parents.” One or two point location
tests (CCWtests) are sufficient to move to a lower level of the tree. The search terminates with
a current Delaunay triangle.

To test the algorithmic performance of the incremental construction, I have profiled the
execution time of my incremental triangulation program with the Unixpixie utility. The pro-
filing result, shown in Figures A-1 and A-2, complies remarkably with the theory:O(N logN)
operations for the point location step, andO(N) operations for the point insertion step. The
experimental constant for the insertion step time is about 8.6. The experimental constant for
the point location step is 4. The CPU time, depicted in Figure A-3, also shows the expected
O(N logN) behavior.

Figure A-1: The number of point in-
sertion operations (InCircle test) plot-
ted against the number of points.
fmeiko-itime [NR]
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Figure A-2: Number of point location
operations (CCWtest) plotted against
the number of points.fmeiko-ctime
[NR]
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Figure A-3: CPU time (in seconds per
point) plotted against the number of
points. fmeiko-time [NR]
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A straightforward implementation of Delaunay triangulation would provide an optimal
triangulation for any given set of nodes. However, the quality of the result for unfortunate
geometrical distributions of the nodes can be unsatisfactory. In the rest of this appendix, I de-
scribe three problems, aimed at improving the triangulation quality: conforming triangulation,
triangulation of height fields, and mesh refinement. Each of these problems can be solved with
a variation of the incremental algorithm.

Conforming Triangulation

In the practice of mesh generation, the input nodes are often supplemented by boundary edges:
geologic interfaces, seismic rays, and so on. It is often desirable to preserve the edges so that
they appear as edges of the triangulation (Albertin and Wiggins, 1994). One possible approach
is constrainedtriangulation, which preserves the edges, but only approximately satisfies the
Delaunay criterion (Lee and Lin, 1986; Chew, 1989). An alternative, less investigated, ap-
proach isconformingtriangulation, which preserves the “Delaunayhood” of the triangulation
by adding additional nodes (Hansen and Levin, 1992) (Figure A-4). Conforming Delaunay
triangulations are difficult to analyze because of the variable number of additional nodes. This
problem was attacked by Edelsbrunner and Tan (1993), who suggested an algorithm with a
defined upper bound on added points. Unfortunately, Edelsbrunner’s algorithm is slow in
practice because the number of added points is largely overestimated. I chose to implement
a modification of the simple incremental algorithm of Hansen and Levin. Although Hansen’s
algorithm has only a heuristic justification and sets no upper bound on the number of inserted
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nodes, its simplicity is attractive for practical implementations, where it can be easily linked
with the incremental algorithm of Delaunay triangulation.

The incremental solution to the problem of conforming triangulation can be described by
the following scheme:

• First, the boundary nodes are triangulated.

• Boundary edges are inserted incrementally.

• If a boundary edge is not present in the triangulations, it is split in half, and the middle
node is inserted into the triangulation. This operation is repeated for the two parts of the
original boundary edge and continues recursively until all the edge parts conform.

• If at some point during the incremental process, a boundary edge violates the Delaunay
criterion (theInCircle test), it is split to assure the conformity.

Figure A-4: An illustration of conforming triangulation. The left plot shows a triangulation of
500 random points; the triangulation in the right plot is conforming to the embedded boundary.
Conforming triangulation is a genuine Delaunay triangulation, created by adding additional
nodes to the original distribution.fmeiko-conform [ER]

To insert an edgeAB into the current triangulation, I use the following recursive algorithm:

FunctionInsertEdge (AB)

1. DefineC to be the midpoint ofAB.

2. Using the triangle tree structure, locate triangleT = DE F that containsC
in the current triangulation.

3. If AB is an edge ofT then return .

4. If A (or B) is a vertex ofT (for example,A = D) then defineC as an
intersection ofAB andE F.

5. ElsedefineC as an intersection ofAB and an arbitrary edge ofT (if such
an intersection exists).
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6. InsertC into the triangulation.

7. InsertEdge (C A).

8. InsertEdge (C B).

The intersection point of edgesAB andE F is given by the formula

C = A+λ(B− A) , (A-1)

where

λ =
(Fy − Ey) (Ex − Ax)− (Fx − Ex) (Ey − Ay)

det

∣∣∣∣ Bx − Ax By − Ay

Fx − Ex Fy − Ey

∣∣∣∣ . (A-2)

The value ofλ should range between 0 and 1.

If, at some stage of the incremental construction, a boundary edgeAB fails the Delaunay
InCircle test for the circleC AB D, then I simply split it into two edges by adding the point
of intersection into the triangulation. The rest of the process is very much like the process of
edge validation in the original incremental algorithm.

Triangulation of Height Fields

Often, a velocity field (or other object that we want to triangulate) is defined on a regular
Cartesian grid. One way to perform a triangulation in this case is to select a smaller subset of
the initial grid points, using them as the input to a triangulation program. We need to select the
points in a way that preserves the main features of the original image, while removing some
unnecessary redundancy in the regular grid description.

Figure A-5: Illustration of Garland’s algorithm for triangulation of height fields. The left plot
shows the input image of a sphere, containing 100 by 100 pixels. The middle plot shows 500
pixels, selected by the algorithm and triangulated. The right plot is the result of local plane
interpolation of the triangulated surface.fmeiko-sphere[ER]
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Garland and Heckbert (1996) surveyed different approaches to this problem and proposed
a fast version of the incrementalgreedy insertionalgorithm. Their algorithm adds points
incrementally, selecting at each step the point with the maximum interpolation error with
respect to the current triangulation. Though a straightforward implementation of this idea
would lead to an unacceptably slow algorithm, Garland and Heckbert have discovered several
sources for speeding it up. First, we can take advantage of the fact that only a small area of
the current triangulation gets updated at each step. Therefore, it is sufficient to recompute the
interpolation error only inside this area. Second, the maximum extraction procedure can be
implemented very efficiently with a priority queue data structure.

Figure A-6: An image from the pre-
vious example, as rendered by the
OpenGL library. The shades on
polygonal (triangulated) sides are ex-
aggerated by a simulation of the di-
rect light source. fmeiko-opengl
[NR]

Figure A-5 illustrates this algorithm with a simple example. The original image (the left
plot) contained 10,000 points, laid out on a regular rectangular grid. The algorithm selects a
smaller number of points and immediately triangulates them (the middle plot). The image can
be reconstructed by local plane interpolation (the right plot.) The reconstruction quality can
be further improved by increasing the number of triangles. Figure A-6 shows the same image
as rendered by the OpenGL graphics library (Woo et al., 1997).

Figure A-7: Applying the height triangulation algorithm to the Marmousi model. The left
plot shows a smoothed and windowed version of the Marmousi model. The middle plot is a
result of 10,000-point triangulation, followed by linear interpolation. The right plot shows the
difference between the two images.fmeiko-marmousi[ER]

Figure A-7 shows an application of the height triangulation algorithm to the famous Mar-
mousi model. The left plot shows a smoothed and windowed version of the Marmousi, plotted
on a 501 by 376 computational grid. In the middle plot, 10,000 points from the original
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188,376 were selected for triangulation and interpolated back to the rectangular grid. The
right plot demonstates the small difference between the two images.

Mesh Refinement

One the main properties of Delaunay triangulation is that, for a given set of nodes, it provides
the maximum smallest angle among all possible triangulations. It is this property that supports
the wide usage of Delaunay algorithms in the mesh generation problems. However, it doesn’t
guarantee that the smallest angle will always be small. In fact, for some point distributions,
it is impossible to avoid skinny small-angle triangles. The remedy is to add additional nodes
to the triangulation so that the quality of the triangles is globally improved. This problem has
become known asmesh refinement(Ruppert, 1995).

Figure A-8: An illustration of Rivara’s refinement algorithm. The left plot shows an input to
the algorithm: a valid Delaunay triangulation with “skinny” triangles. Three other plots show
successive applications of the refinement algorithm.fmeiko-hole [ER]

One of the recently proposed mesh refinement algorithms is Rivara’sbackward longest-
side refinementtechnique (Rivara, 1996). The main idea of the algorithm is to trace the LSPP
(longest-side propagation path) for each refined triangle. The LSPP is an ordered list of trian-
gles, connected by a common edge, such that the longest triangle edge is strictly increasing.
After tracing the LSPP, we bisect the longest edge and insert its midpoint into the triangula-
tion. Rivara’s algorithm is remarkably efficient and easy to implement. In comparison with
alternative methods, it has the additional advantage of being applicable in three dimensions.

Figure A-9 demonstrates an application of different triangulation techniques to a simple
layered model, borrowed from the Seismic Unix demos (where it is attributed it to V.Červený.)
Another model from Hale and Cohen (1991) is used in Figure A-10.

Implementation Details

Edge operations form the basis of the incremental algorithm. Therefore, it is convenient to
describe triangulation with edge-oriented data structures (Guibas and Stolfi, 1985). I have
followed the idea of Hansen and Levin (1992) of associating with each edge two pointers to the
end points and two pointers to the adjacent triangles. The triangle structure is defined by three
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Figure A-9: A comparison of different triangulation techniques on a simple layered model.
The top left plot shows the original model; the top right plot, the result of noncomforming tri-
angulation; the two bottom plots, conforming triangulation and an additional mesh refinement.
fmeiko-cerveny[ER]
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Figure A-10: A comparison of different triangulation techniques on a simple salt-type model.
The top left plot shows the original model; the top right plot, the result of noncomforming
triangulation; the two bottom plots, conforming triangulation and an additional two-step mesh
refinement.fmeiko-susalt[ER]
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pointers to the edges of a triangle. Additionally, as required by the point location algorithm,
each triangle has a pointer to its “children.” This pointer is NULL when the triangle belongs
to the current Delaunay triangulation.

Many researchers have pointed out that the geometric primitives used in triangulation must
be robust with respect to round-off errors of finite-precision calculation. To assure the robust-
ness of the code, I used the adaptive-precision predicates of Shewchuk (1996), available as a
separate package from thenetlib public-domain archive.



476 SEP–95


