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Residual migration in VTI media
using anisotropy continuation

Tariq Alkhalifah and Sergey Fomel1

ABSTRACT

We introduce anisotropy continuation as a process which relates changes in seismic im-
ages to perturbations in the anisotropic medium parameters. This process is constrained
by two kinematic equations, one for perturbations in the normal-moveout (NMO) velocity
and the other for perturbations in the dimensionless anisotropy parameterη. We consider
separately the case of post-stack migration and show that the kinematic equations in this
case can be solved explicitly by converting them to ordinary differential equations by the
method of characteristics. Comparing the results of kinematic computations with syn-
thetic numerical experiments confirms the theoretical accuracy of the method.

INTRODUCTION

A well-known paradox in seismic imaging is that the detailed information about the subsur-
face velocity is required before a reliable image can be obtained. In practice, this paradox
leads to an iterative approach to building the image. It looks attractive to relate small changes
in velocity parameters to inexpensive operators perturbing the image. This approach has been
long known asresidual migration. A classic result is the theory of residual post-stack migra-
tion (Rothman et al., 1985), extended to the prestack case by Etgen (1990). In a recent paper,
Fomel (1996) introduced the concept of velocity continuation as the continuous model of the
residual migration process. All these results were based on the assumption of the isotropic
velocity model.

Recently, emphasis has been put on the importance of considering anisotropy and its in-
fluence on data. Alkhalifah and Tsvankin (1995) demonstrated that, for TI media with vertical
symmetry axis (VTI media), just two parameters are sufficient for performing all time-related
processing, such as normal moveout (NMO) correction (including non-hyperbolic moveout
correction, if necessary), dip-moveout (DMO) correction, and prestack and poststack time mi-
gration. One of these two parameters, the short-spread NMO velocity for a horizontal reflector,
is given by

vnmo(0) = vv

√
1+2δ , (1)

wherevv is the verticalP-wave velocity, andδ is one of Thomsen’s anisotropy parameters
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(Thomsen, 1986). Takingvh to be theP-wave velocity in the horizontal direction, the other
parameter,η, is given by

η ≡ 0.5(
v2

h

v2
nmo(0)

−1) =
ε − δ

1+2δ
, (2)

whereε is another of Thomsen’s parameters. In addition, Alkhalifah (1997) has showed that
the dependency on just two parameters becomes exact when the vertical shear wave velocity
(VS0) is set to zero. SettingVS0 = 0 leads to remarkably accurate kinematic representations.
It also results in much simpler equations that describeP-wave propagation in VTI media.
Throughout this paper, we use these simplified, yet accurate, equations, based on settingVS0 =

0, to derive the continuation equations. Because we are only considering time sections, and
for the sake of simplicity, we denotevnmo by v. Thus, time processing in VTI media, depends
on two parameters (v andη), whereas in isotropic media onlyv counts.

In this paper, we generalize the velocity continuation concept to handle VTI media. We
define anisotropy continuation as the process of seismic image perturbation when eitherv or η

change as migration parameters. This approach is especially attractive, when the initial image
is obtained with isotropic migration (that is withη = 0). In this case, anisotropy continuation is
equivalent to introducing anisotropy in the model without the need of repeating the migration
step.

For the sake of simplicity, we start from the post-stack case and purely kinematic descrip-
tion. We define however the guidelines for moving to the more complicated and interesting
cases of prestack migration and dynamic equations. The results are preliminary, but they open
promising opportunities for seismic data processing in presence of anisotropy.

THE GENERAL THEORY

In the case of zero-offset reflection, the ray travel distance,l , from the source to the reflection
point is related to the two-way zero-offset time,t , by the simple equation

l = vgt , (3)

wherevg is the half of the group velocity, best expressed in terms of its components, as follows:

vg =

√
v2

gx +v2
vv

2
gτ .

Herevgx denotes the horizontal component of group velocity,vv is the verticalP-wave ve-
locity, andvgτ is the vv-normalized vertical component of the group velocity. Under the
assumption of zero shear-wave velocity in VTI media, these components have the following
analytic expressions:

vgx =
v2 px

(
−1−2η+2η pτ

2
)

−2+v2 (1+2η) px
2 + pτ

2
, (4)
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and

vgτ =

(
1−2v2η px

2
)

pτ

2−v2 (1+2η) px
2 + pτ

2
, (5)

where px is the horizontal component of slowness, andpτ is the normalized (again by the
vertical P-wave velocityvv) vertical component of slowness. The two components of the
slowness vector are related by the following eikonal-type equation (Alkhalifah, 1997):

pτ =

√
1−

v2 px
2

1−2v2η px
2
. (6)

Equation (6) corresponds to a normalized version of the dispersion relation in VTI media.

If we considerv andη as imaging parameters (migration velocity and migration anisotropy
coefficient), the ray lengthl can be taken as an imaging invariant. This implies that the partial
derivatives ofl with respect to the imaging parameters are zero. Therefore,

∂l

∂v
=

∂vg

∂v
t +vg

∂t

∂v
= 0, (7)

and

∂l

∂η
=

∂vg

∂η
t +vg

∂t

∂η
= 0. (8)

Applying the simple chain rule to equations (7) and (8), we obtain

∂t

∂v
=

∂t

∂τ

∂τ

∂v
,

∂t

∂η
=

∂t

∂τ

∂τ

∂η
, (9)

where ∂t
∂τ

= −pτ , and the two-way vertical traveltime is given by

τ = vgτ t .

Combining equations (7-9) eliminates the two-way zero-offset timet , which leads to the equa-
tions

∂τ

∂v
=

∂vg

∂v

τ

pτ vgτvg
, (10)

and

∂τ

∂η
=

∂vg

∂η

τ

pτ vgτvg
. (11)

After some tedious algebraic manipulation, we can transform equations (5) and (6) to the
general form

∂τ

∂v
= τ Fv (px,v,η) , (12)
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and

∂τ

∂η
= τ Fη (px,v,η) . (13)

Since the residual migration is applied to migrated data, with the time axis given byτ and
the reflection slope given by∂τ

∂x , instead oft and px, respectively, we need to eliminatepx

from equations (12) and (13). This task can be achieved with the help of the following explicit
relation, derived in Appendix A,

p2
x =

2τx
2

1+v2 (1+2η) τx
2 + S

, (14)

whereτx=∂τ
∂x , and

S=

√
−8v2ητx

2 +
(
1+v2 (1+2η) τx

2
)2

.

Inserting equation (14) into equations (12) and (13) yields exact, yet complicated equa-
tions, describing the continuation process forv andη. In summary, these equations have the
form

∂τ

∂v
= τ fv

(
∂τ

∂x
,v,η

)
(15)

and

∂τ

∂η
= τ fη

(
∂τ

∂x
,v,η

)
. (16)

Equations of the form (15) and (16) contain all the necessary information about the kinematic
laws of anisotropy continuation in the domain of zero-offset migration.

Linearization

A useful approximation of equations (15) and (16) can be obtained by simply settingη equal
to zero in the right-hand side of the equations. Under this approximation, equation (15) leads
to the kinematic velocity-continuation equation for elliptically anisotropic media, which has
the following relatively simple form:

∂τ

∂v
=

v τ
(
2v2

−vv
2
)
τx

2
(
1+v2τx

2
)

vv
2 +v4τx

2
. (17)

It is interesting to note that settingv = vv, yields Fomel’s expression for isotropic media
(Fomel, 1996) given by

∂τ

∂v
= v τ τx

2. (18)
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Alkhalifah and Tsvankin (1995) have shown that time-domain processing algorithms for
elliptically anisotropic media should be the same as those for isotropic media. However, in
anisotropic continuation, elliptical anisotropy and isotropy differ by a vertical scaling factor
that is related to the difference between the vertical and NMO velocities. In isotropic me-
dia, when velocity is continued, both the vertical and NMO velocities (which are the same)
are continued together, whereas in anisotropic media (including elliptically anisotropic) the
NMO-velocity continuation is separated from the vertical-velocity one, and equation (19) cor-
responds to continuation only in the NMO velocity. This also implies that equation (19) is
more flexible than equation (18), in that we can isolate the vertical-velocity continuation (a
parameter that is usually ambiguous in surface processing) from the rest of the continuation
process. Usingτ =

z
vv

, wherez is depth, we immediately obtain the equation

∂τ

∂vv

= −
τ

vv

,

which represents the vertical-velocity continuation.

Settingη = 0 andv = vv in equation (16) leads to the following kinematic equation for
η-continuation:

∂τ

∂η
=

τv4τx
4

1+v2τx
2
. (19)

We include more discussion about different aspects of linearization in Appendix B. The
next section presents the analytic solution of equation (19). Later in this paper, we compare
the analytic solution with a numerical synthetic example.

ORDINARY DIFFERENTIAL EQUATION REPRESENTATION: ANISOTROPY
RAYS

According to the classic rules of mathematical physics, the solution of the kinematic equa-
tions (15) and (16) can be obtained by solving the following system of ordinary differential
equations:

dx

dm
= −τ

∂ fm
∂τx

,
dτ

dm
= −ττx

∂ fm
∂τx

+ τm,

dτm

dm
= τ

∂ fm
∂m

+ τm fm ,
dτx

dm
= τx fm . (20)

Herem stands for eitherv or η, τx=∂τ
∂x , f =

∂τ
∂m. To trace thev andη rays, we must first

identify the initial valuesx0, τ0, τx0, andτm0 from the boundary conditions. The variablesx0

andτ0 describe the initial position of a reflector in a time-migrated section,τx0 describes its
migrated slope, andτm0 is simply f (m0,τ0,τx0).

Using the exact kinematic expressions forf results in rather complicated representations
of the ordinary differential equations. The linearized expressions, on the other hand, are simple
and allow for a straightforward analytical solution.
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From kinematics to dynamics

The kinematicη-continuation equation (19) corresponds to the following linear fourth-order
dynamic equation

∂4P

∂t3∂η
+v2 ∂4P

∂x2∂t ∂η
+ tv4∂4P

∂x4
= 0 , (21)

where thet coordinate refers to the vertical traveltimeτ , andP(t ,x,η) is the migrated image,
parameterized in the anisotropy parameterη. To find the correspondence between equations
(19) and (21), it is sufficient to apply a ray-theoretical model of the image

P(t ,x,η) = A(x,η) f (t − τ (x,η)) (22)

as a trial solution to (21). Here the surfacet = τ (x,η) is the anisotropy continuation “wave-
front” - the image of a reflector for the corresponding value ofη, and the functionA is the
amplitude. Substituting the trial solution into the partial differential equation (21) and con-
sidering only the terms with the highest asymptotic order (those containing the fourth-order
derivative of the waveletf ), we arrive at the kinematic equation (19). The next asymptotic
order (the third-order derivatives off ) gives us the linear partial differential equation of the
amplitude transport, as follows:(

1+v2τ2
x

) ∂ A

∂η
+2v2τx

(
τη −2v2ττ2

x

) ∂ A

∂x
+v2A

(
2τxτxη + τητxx −6v2ττ2

x τxx
)
= 0 . (23)

We can see that when the reflector is flat (τx = 0 andτxx = 0), equation (23) reduces to the
equality

∂ A

∂η
= 0 ,

and the amplitude remains unchanged for differentη. This is of course a reasonable behavior
in the case of a flat reflector. It doesn’t guarantee though that the amplitudes, defined by (23),
behave equally well for dipping and curved reflectors. The amplitude behavior may be altered
by adding low-order terms to equation (21). According to the ray theory, such terms can
influence the amplitude behavior, but do not change the kinematics of the wave propagation.

An appropriate initial-value condition for equation (21) is the result of isotropic migration
that corresponds to theη = 0 section in the (t ,x,η) domain. In practice, the initial-value
problem can be solved by a finite-difference technique.

SYNTHETIC TEST

Residual post-stack migration operators can be obtained by generating synthetic data for a
model consisting of diffractors for given medium parameters and then migrating the same data
with different medium parameters. For example, we can generate diffractions for isotropic
media and migrate those diffractions using an anisotropic migration. The resultant operator
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Figure 1: Residual post-stack migration operators calculated by solving equation (19), over-
laid above synthetic operators. The synthetic operators are obtained by applying TI post-
stack migration withη = 0.1 (left) andη = 0.2 (right) to three diffractions generated con-
sidering isotropic media. The NMO velocity for the modeling and migration is 2.0 km/s.
anico-impres[NR]



678 Alkhalifah and Fomel SEP–94

describes the correction needed to transform an isotropically migrated section to an anisotropic
one, that is theanisotropic residual migrationoperator.

Figure 1 shows such synthetic operators overlaid by kinematically calculated operators
that were computed with the help of equation (19) (the continuation equations for the case of
smallη). Despite the inherent accuracy of the synthetic operators, they suffer from the lack of
aperture in modeling the diffractions, and therefore, beyond a certain angle the operators van-
ish. The agreement between the synthetic and calculated operators for small angles, especially
for theη = 0.1 case, promises reasonable results in future dynamic implementations.

CONCLUSIONS

We have extended the concept of velocity continuation in isotropic media to continuations in
both the NMO velocity and the anisotropy parameterη for VTI media. Despite the fact that we
have considered the simple case of post-stack migration separately, the exact kinematic equa-
tions describing the continuation process are anything but simple. However, useful insights
into this problem are deduced from linearized approximations of the continuation equations.
These insights include the following conclusions:

• The leading order behavior of the velocity continuation is proportional toτ2
x , which

corresponds to small or moderate dips.

• The leading order behavior of theη continuation is proportional toτ4
x , which corre-

sponds to moderate or steep dips.

• Both leading terms are independent of the strength of anisotropy (η).

In practical applications, the initial migrated section is obtained by isotropic migration, and,
therefore, the residual process is used to correct for anisotropy. Settingη = 0 in the continu-
ation equations for this type of an application is a reasonable approximation, given thatη=0
is the starting point and we consider only weak to moderate degrees of anisotropy (η ≈ 0.1).
Numerical experiments with synthetically generated operators confirm this conclusion. Future
directions of research will focus on a practical implementation of anisotropy continuation as
well as on extending the theory to the case of residual prestack migration.

REFERENCES

Alkhalifah, T., and Tsvankin, I., 1995, Velocity analysis for transversely isotropic media:
Geophysics,60, 1550–1566.

Alkhalifah, T., 1997, Acoustic approximations for processing in transversely isotropic media:
submitted to Geophysics.

Etgen, J., 1990, Residual prestack migration and interval velocity estimation: Ph.D. thesis,
Stanford University.



SEP–94 Anisotropy Continuation 679

Fomel, S., 1996, Migration and velocity analysis by velocity continuation: SEP–92, 159–188.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical recipes,
the art of scientific computing: Cambridge University Press, New York.

Rothman, D. H., Levin, S. A., and Rocca, F., 1985, Residual migration – applications and
limitations: Geophysics,50, no. 1, 110–126.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics,51, no. 10, 1954–1966.

APPENDIX A

RELATING THE ZERO-OFFSET AND MIGRATION SLOPES

The chain rule of differentiation leads to the equality

px =
∂t

∂x
= −pτ

∂τ

∂x
, (A-1)

wherepτ = −
∂t
∂τ

. It is convenient to transform equality (A-1) to the form

∂τ

∂x
= −

px

pτ

. (A-2)

Using the expression forpτ from the main text, we can write equation (A-2) as a quadratic
polynomial in p2

x as follows

ap4
x +bp2

x +c = 0, (A-3)

where

a = −2v2η,

b = (
∂τ

∂x
)2v2(1+2η)+1,

and

c = −(
∂τ

∂x
)2.

Sinceη can be small (as small as zero for isotropic media), we use the following form of
solution to the quadratic equation

p2
x =

2c

−b±
√

b2 −4ac

(Press et al., 1992). This form does not go to infinity asη approaches 0. We choose the
solution with the negative sign in front of the square root, because this solution complies with
the isotropic result whenη is equal to zero.
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APPENDIX B

LINEARIZED APPROXIMATIONS

Although the exact expressions might be sufficiently constructive for actual residual migra-
tion applications, linearized forms are still useful, because they give us valuable insights into
the problem. The degree of parameter dependency for different reflector dips is one of the
most obvious insights in the anisotropy continuation problem. Perturbation of a small param-
eter provides a general mechanism to simplify functions by recasting them into power-series
expansion over a parameter that has small values. Two variables can satisfy the small pertur-
bation criterion in this problem: The anisotropy parameterη (η << 1) and the reflection dip
τx (τxv << 1 or pxv << 1).

Settingη = 0 yields equation (19) for the velocity continuation in elliptical anisotropic
media and

∂τ

∂η
=

v4τ τx
4
(
−3vv

2
+2v4τx

2
+v2

(
4−vv

2τx
2
))(

1+v2τx
2
) (

vv
2 +v4τx

2
) . (B-1)

which represents the case when we initially introduce anisotropy into our model.

Becausepx (the zero-offset slope) is typically lower thanτx (the migrated slope), we
perform initial expansions in terms ofy = pxv. Applying the Taylor series expansion of
equations (12) and (13) in terms ofy and dropping all terms beyond the fourth power iny, we
obtain

∂τ

∂v
=

v τ px
2
(
2v2

−vv
2
)

vv
2

−
v3τ px

4
(
2v2

−vv
2
) (

v2
−2 (1+6η) vv

2
)

vv
4

, (B-2)

and

∂τ

∂η
=

v4τ px
4
(
4v2

−3vv
2
)

vv
2

. (B-3)

Although both equations are equal to zero forpx=0, the leading term in the velocity continu-
ation is proportional top2

x, whereas the the leading term in theη continuation is proportional
to p4

x. As a result the velocity continuation has greater influence at lower angles than theη

continuation. It is also interesting to note that both leading terms are independent of the size
of anisotropy (η).

Despite the typically lower values ofpx, expansions in terms ofτx are more important, but
less accurate. For smallτx, px ≈ τx, and, therefore, the leading-term behavior ofτx expansions
is the same as that ofpx As a result, we arrive at the equation

∂τ

∂v
=

v τ
(
2v2

−vv
2
)
τx

2

vv
2

+v4

(
−

v τ
(
2v2

−vv
2
)

vv
4

+
τ
(
2v2

−vv
2
)

v vv
2

+
12ητ

(
2v2

−vv
2
)

v vv
2

)
τx

4,

(B-4)
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and

∂τ

∂η
=

v4τ
(
4v2

−3vv
2
)
τx

4

vv
2

. (B-5)

Most of the terms in equations (B-4) and (B-5) are functions of the difference between the
vertical and NMO velocities. Therefore, for simplicity and without a loss of generality, we set
vv = v and keep only the terms up to the eighth power inτx. The resultant expressions take
the form

∂τ

∂v
= v τ τx

2
+12v3ητ τx

4
−4v5η (4−25η) τ τx

6
+4v7η

(
5−83η+144η2) τ τx

8 (B-6)

and

∂τ

∂η
= v4τ τx

4
−v6 (1−20η) τ τx

6
+v8 (1−54η+156η2) τ τx

8. (B-7)

Curiously enough, the second term of theη continuation heavily depends on the size of
anisotropy (∼ 20η). The first term of equation (B-6) (∼ τ2

x ) is the isotropic term; all other
terms in equations (B-6) and (B-7) are induced by the anisotropy.
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