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Angle-gather time migration

Sergey Fomel and Marie Prucha1

ABSTRACT

Angle-gather migration creates seismic images for different reflection angles at the reflec-
tor. We formulate an angle-gather time migration algorithm and study its properties. The
algorithm serves as an educational introduction to the angle gather concept. It also looks
attractive as a practical alternative to conventional common-offset time migration both for
velocity analysis and for AVO/AVA analysis.

INTRODUCTION

Angle-gather migration creates seismic images collected by the reflection angle at the point
of reflection. Major advantages of this approach are apparent in the case of prestack depth
migration. As shown by Prucha et al. (1999), the ray pattern of angle-gather migration is
significantly different from that of the conventional common-offset migration. The difference
can be exploited for overcoming illumination difficulties of the conventional depth migration
in complex geological areas.

In this paper, we explore the angle-gather concept in the case of prestack time migration.
The first goal of this study is educational. Since we can develop the complete mathematical
theory of angle-gather time migration analytically, it is much easier to understand the most
basic properties of the method in the time migration domain. The second goal is practical.
Angle gathers present an attractive tool for post-migration AVO/AVA studies and velocity
analysis, and even the most basic time migration approach can find a valuable place in the
complete toolbox of seismic imaging.

We start with analyzing the traveltime relations for the basic Kirchhoff implementation
of angle-gather time migration. The analysis follows Fowler’s general approach to prestack
time migration methods (Fowler, 1997). Next, we derive formulas for the amplitude weighting
and discuss some frequency-domain approaches to angle gathers. Finally, we present simple
synthetic tests of the method and discuss further research directions.
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Figure 1: Reflection rays in a
constant-velocity medium: a scheme.
angle-rays[NR]
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TRAVELTIME CONSIDERATIONS

Let us consider a simple reflection experiment in an effectively constant-velocity medium, as
depicted in Figure 1. The pair of incident and reflected rays and the line between the source
s and the receiverr form a triangle in space. From the trigonometry of that triangle we can
derive simple relationships among all the variables of the experiment (Fomel, 1995, 1996a,
1997).

Introducing the dip angleα and the reflection angleγ , the total reflection traveltimet can
be expressed from the law of sines as

t =
2h

v

cos(α +γ )+cos(α −γ )

sin2γ
=

2h

v

cosα

sinγ
, (1)

wherev is the medium velocity, andh is the half-offset between the source and the receiver.

Additionally, by following simple trigonometry, we can connect the half-offseth with the
depth of the reflection pointz, as follows:

h =
z

2

sin2γ

2 cos(α +γ ) cos(α −γ )
= z

sinγ cosγ

cos2α −sin2γ
. (2)

Finally, the horizontal distance between the midpointx and the reflection pointξ is

x − ξ = h
cos(α −γ ) sin(α +γ ) + cos(α +γ ) sin(α −γ )

sin2γ
= h

sinα cosα

sinγ cosγ
(3)

Equations (1–3) completely define the kinematics of angle-gather migration. Regrouping
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the terms, we can rewrite the three equations in a more symmetric form:

t =
2z

v

cosα cosγ

cos2α −sin2γ
(4)

h = z
sinγ cosγ

cos2α −sin2γ
(5)

x − ξ = z
sinα cosα

cos2α −sin2γ
(6)

For completeness, here is the inverse transformation fromt , h, andx − ξ to z, γ , andα:

z2
=

[
(v t/2)2 − (x − ξ )2

] [
(v t/2)2 −h2

]
(v t/2)2

(7)

sin2γ =
h2
[
(v t/2)2 − (x − ξ )2

]
(v t/2)4 −h2 (x − ξ )2

(8)

cos2α =
(v t/2)2

[
(v t/2)2 − (x − ξ )2

]
(v t/2)4 −h2 (x − ξ )2

(9)

The inverse transformation (7-9) can be found by formally solving system (4-6).

The lines of constant reflection angleγ and variable dip angleα for a given position of
a reflection (diffraction) point{z,ξ} have the meaning of summation curves for angle-gather
Kirchhoff migration. The whole range of such curves for all possible values ofγ covers
the diffraction traveltime surface - “Cheops’ pyramid” (Claerbout, 1985) in the{t ,x,h} space
of seismic reflection data. As pointed out by Fowler (1997), this condition is sufficient for
proving the kinematic validity of the angle-gather approach. For comparison, Figure 2 shows
the diffraction traveltime pyramid from a diffractor at 0.5 km depth. The pyramid is composed
of common-offset summation curves of the conventional time migration. Figure 3 shows the
same pyramid composed of constant-γ curves of the angle-gather migration.

Figure 2: Traveltime pyramid, com-
posed of common-offset summation
curves. angle-coffset[CR]

-4
-2

0
2

4

Midpoint
-4

-2

0

2

4

Offset

0

2

4

Time

-4
-2

0
2

4

Midpoint

The most straightforward Kirchhoff algorithm of angle-gather migration can be formulated
as follows:

• For each reflection angleγ and each dip angleα,
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Figure 3: Traveltime pyramid, com-
posed of common-reflection-angle
summation curves. angle-cangle
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– For each output location{z,ξ},

1. Find the traveltimet , half-offseth, and midpointx from formulas (4), (5),
and (6) respectively.

2. Stack the input data values into the output.

As follows from equations (4-6), the range of possibleα’s should satisfy the condition

cos2α > sin2γ or |α|+ |γ | <
π

2
. (10)

The described algorithm is not the most optimal in terms of the input/output organization, but
it can serve as a basic implementation of the angle-gather idea. The stacking step requires an
appropriate weighting. We discuss the weighting issues in the next section.

AMPLITUDE CONSIDERATIONS

One simple approach to amplitude weighting for angle-gather migration is based again on
Cheops’ pyramid considerations. Stacking along the pyramid in the data space is a double
integration in midpoint and offset coordinates. Angle-gather migration implies the change of
coordinates from{x,h} to {α,γ }. The change of coordinates leads to weighting the integrand
by the following Jacobian transformation:

dx dh=

∣∣∣∣∣det

(
∂x
∂α

∂x
∂γ

∂h
∂α

∂h
∂γ

)∣∣∣∣∣ dαdγ (11)

Substituting formulas (5) and (6) into equation (11) gives us the following analytical expres-
sion for the Jacobian weighting:

WJ =

∣∣∣∣∣det

(
∂x
∂α

∂x
∂γ

∂h
∂α

∂h
∂γ

)∣∣∣∣∣= z2(
cosα2 −sinγ 2

)2 (12)

Weighting (12) should be applied in addition to the weighting used in common-offset migra-
tion. By analyzing formula (12), we can see that the weight increases with the reflector depth
and peaks where the anglesα andγ approach condition (10).
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The Jacobian weighting approach, however, does not provide physically meaningful am-
plitudes, when migrated angle gathers are considered individually. In order to obtain a physi-
cally meaningful amplitude, we can turn to the asymptotic theory of true-amplitude migration
(Goldin, 1992; Schleicher et al., 1993; Tygel et al., 1994). The true-amplitude weighting
provides an asymptotic high-frequency amplitude proportional to the reflection coefficient,
with the wave propagation (geometric spreading) effects removed. The generic true-amplitude
weighting formula (Fomel, 1996b) transforms in the case of 2-D angle-gather time migration
to the form:

WTA =
1

√
2π

√
Ls Lr

v cosγ

∣∣∣∣ ∂2Ls

∂ξ∂γ
+

∂2Lr

∂ξ∂γ

∣∣∣∣ , (13)

whereLs and Lr are the ray lengths from the reflector point to the source and the receiver
respectively. After some heavy algebra, the true-amplitude expression takes the form

WTA =
2z sinα
√

2πv

cos2α +sin2γ(
cos2α −sin2γ

)5/2 . (14)

Under the constant-velocity assumption and in high-frequency asymptotic, this weighting pro-
duces an output, proportional to the reflection coefficient, when applied for creating an angle
gather with the reflection angleγ . Despite the strong assumptions behind this approach, it
might be useful in practice for post-migration amplitude-versus-angle studies. Unlike the con-
ventional common-offset migration, the angle-gather approach produces the output directly in
reflection angle coordinates. One can use the generic true-amplitude theory (Fomel, 1996b)
for extending formula (14) to the 3-D and 2.5-D cases.

EXAMPLES

We created some simple synthetic models with constant velocity backgrounds to test our angle-
gather migration method. One model is a simple dome (Figure 4). The other has a series of
flat reflectors of various dips (Figure 5). Both of these figures also show the corresponding
data that will be generated by Kirchhoff methods for zero and far offsets.

Figure 4: Left: Model. Center: Data at zero offset. Right: Data at far offset.angle-data.dome
[ER]
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Figure 5: Left: Model. Center: Data at zero offset. Right: Data at far offset.angle-data.lines
[ER]

Dome model

This model contains a wide range of geologic dips across the dome as well as having a flat
reflector at the base of the dome. Figure 6 shows the resulting common offset sections from
traditional Kirchhoff migration. As is expected for such a simple model, the near and far offset
sections are very similar and the stacked section is almost perfect. We are more interested in
the result of the angle-gather migration. Figure 7 shows the zero and large angle sections
as well as the stack for angle-gather Kirchhoff migration. The zero-angle section is weak
but clearly shows the correct shape and position. The large-angle section is actually only for
γ = 25◦. The reason for this is clear if you consider Figure 1. At greater depths, the rays
associated with large reflection angles (γ ) will not emerge at the surface within the model
space. Therefore at angles greater than 25◦ (the maximum useful angle), the information at
later times disappears. We expect the stacked sections for the offset method and the angle
method to be identical. Although we sum over different paths for the offset-domain migration
(Figure 2) and the angle-domain migration (Figure 3), the stack should sum all of the same
information together for both methods. Fortunately, a comparison of the stacked sections in
Figures 6 and 7 show that the results are identical as expected.

Figure 6: Left: Migrated offset section at zero offset. Center: Migrated offset section at far
offset. Right: Stack.angle-offset.dome[ER]
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Figure 7: Left: Migrated angle section at small angle. Center: Migrated offset section at large
angle. Right: Stack.angle-angle-ta.dome[ER]

Dipping reflectors model

This model contains fewer dips than the dome model but it allows us to see what is happening
at later times. Figure 8 shows the common offset sections and stacked section from offset-
domain Kirchhoff migration. Once again, they are practically perfect. The only problem is
near the bottom of the section where we lose energy because the data was truncated. The
zero-angle and large-angle sections from the angle-domain migration are in Figure 9, along
with the stacked section. Once again, the zero angle section is very weak and the large angle
section only contains information down to a time of≈ .85 seconds, for the same reason as
explained for the dome model. Once again, we expect the stacked sections in Figures 8 and 9
to be the same. Although the angle-domain stack is slightly lower amplitude throughout the
section, it is clear that this is a simple scale factor so our expectations remain intact.

Figure 8: Left: Migrated offset section at zero offset. Center: Migrated offset section at far
offset. Right: Stack.angle-offset.lines[ER]

Reflectivity variation with angle

Amplitude variation with offset (AVO) would not be expected to be very interesting for the
simple models just shown. Consider Figure 10 which contains an offset gather and a reflection
angle gather taken from space location zero from the dome model in Figure 4. The offset
gather shows exactly what we expect for such a model - no variation. The angle gather also
shows no variation for angles less than the maximum useful angle (25◦) as discussed in the
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Figure 9: Left: Migrated angle section at zero angle. Center: Migrated angle section at large
angle. Right: Stack.angle-angle-ta.lines[ER]

previous two subsections. However, when the angle exceeds the maximum useful angle, the
event increases in amplitude and width. This is the phenomenon seen in de Bruin et al. (1990).

Figure 10: Gathers taken from space location zero in the dome model. Left: Offset domain.
Center: Angle domain less than 25◦. Right: Angle domain.angle-reflect-ta.dome[ER]

Velocity sensitivity

When dealing with real data we almost never know what the true velocity of the subsurface
is. Therefore it is important to understand the effects of velocity on our angle-gather time
migration algorithm. To do this we simply created data for the dome model in Figure 4 at a
fairly high velocity (3 km/s) and migrated it using a low velocity (1.5 km/s). The results are
in Figure 11. For angles less than the maximum useful angle (γ = 25◦), the angle-domain
gather behaves exactly as the offset-domain gather does. Beyond the maximum useful angle,
the events become even more curved and the amplitudes begin to change. The behavior of
the angle-gather migration is very similar to that of offset-domain migration as long as the
limitation of the maximum useful angle is recognized. Therefore, we can probably expect
angle-gather migration to behave like offset-domain migration inv(z) media also.
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Figure 11: Gathers taken from space location zero inthe dome model and migrated at too low
a velocity. Left: Offset domain. Center: Angle domain less than 25◦. Right: Angle domain.
angle-reflect-ta.fast.dome[ER]

FREQUENCY-DOMAIN CONSIDERATIONS

As pointed out by Prucha et al. (1999), the angle gathers can be conveniently formed in the
frequency domain. This conclusion follows from the simple formula (Fomel, 1996a)

tanγ =
∂z

∂h
, (15)

wherez refers to the depth coordinate of the migrated image. In the frequency-wavenumber
domain, formula (15) takes the trivial form

tanγ =
kh

kz
. (16)

It indicates that angle gathers can be conveniently formed with the help of frequency-domain
migration algorithms (Stolt, 1978). This interesting opportunity requires further research.

CONCLUSIONS

We have presented an approach to time migration based on angle gathers. The output of this
procedure are migrated angle gathers - images for constant reflection angles. When stacked
together, angle gathers can produce the same output as the conventional common-offset gath-
ers. Looking at angle gathers individually opens new possibilities for amplitude-versus-angle
studies and for velocity analysis.

Our first synthetic tests produced promising results. In the future, we plan to study the
amplitude behavior of angle-gather migration and the velocity sensitivity more carefully. We
also plan to investigate the frequency-domain approaches to this method. Initial results indi-
cate that angle-gather migration is comparable to offset-domain migration for angles less than
the angle at which rays exit the sides of the model, but further study will hopefully allow us
to extract useful information from the larger angles as well. Although the major advantages
of angle gathers lay in the depth migration domain, it is easier to analyze the time migration
results because of their theoretical simplicity.
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