Polynomial Interpolation (Mathematica notebook:

http://math.lbl.gov/~fomel/128A/Polynomial.nb)

Example Function

An example function for studying polynomial interpolation is

We select three nodes and find the interpolating polynomial for them.

x	2	4	5
f	0.5	0.25	0.2

The second-order interpolation polynomial does not reconstruct the function exactly but fits the input data.

Lagrange Interpolation

The Lagrange form of the interpolation polynomial is

$$P(x) = \sum_{k=1}^{n} f_k L_k(x) ,$$

where

$$L_k(x) = \prod_{i \neq k} \frac{x - x_i}{x_k - x_i} \, .$$

In our example,

$$L_1(x) = \frac{(x-4)(x-5)}{(2-4)(2-5)} = \frac{(x-4)(x-5)}{6}$$
$$L_2(x) = \frac{(x-2)(x-5)}{(4-2)(4-5)} = -\frac{(x-2)(x-5)}{2}$$
$$L_3(x) = \frac{(x-2)(x-4)}{(5-2)(5-4)} = \frac{(x-2)(x-4)}{3}$$

 $L_1(x)$ is one at $x_1 = 2$ and zero at $x_2 = 4$ and $x_3 = 5$. Likewise, $L_2(x)$ is one at x_2 and zero at x_1 and x_3 . $L_3(x)$ is one at x_3 and zero at x_1 and x_2 .

Putting it all together,

Newton Interpolation

The Newton form of the interpolation polynomial is

$$P(x) = \sum_{k=1}^{n} f[x_1 x_2, \dots, x_k] N_k(x),$$

where

$$N_k(x) = \prod_{i=1}^{k-1} (x - x_i),$$

and $f[x_1 x_2, ..., x_k]$ is the divided difference, evaluated with the help of the recursive relationship

$$f[x_k] = f_k$$

$$f[x_1 x_2, \dots, x_k] = \frac{f[x_2, \dots, x_k] - f[x_1 \dots, x_{k-1}]}{x_k - x_1}$$

In our example,

$$N_1(x) = 1$$

$$N_2(x) = x - 2$$

$$N_3(x) = (x - 2)(x - 4)$$

The divided difference table is

$f[x_1] = 0.5$		
$f[x_2] = 0.25$	$f[x_1, x_2] = \frac{0.25 - 0.5}{4 - 2} = -0.125$	
$f[x_3] = 0.2$	$f[x_2, x_3] = \frac{0.2 - 0.25}{5 - 4} = -0.05$	$f[x_1, x_2, x_3] = \frac{-0.05 + 0.125}{5 - 2} = 0.025$

Putting it all together,

$$P(x) = \frac{1}{2} - \frac{x-2}{8} + \frac{(x-2)(x-4)}{40} = 0.025 x^2 - 0.275 x + 0.95.$$

Neville Interpolation

The Neville form of the interpolation polynomial is defined by recursion

$$P_0(x) = f_1$$

$$P_{k-1}(x) = \frac{P_{k-2}(x)(x_k - x) - Q_{k-2}(x)(x - x_1)}{x_k - x_1}$$

where $P_{k-1}(x)$ interpolates at nodes x_1, x_2, \ldots, x_k , and $Q_{k-2}(x)$ interpolates at nodes x_2, \ldots, x_k .

The zeroth-order Neville polynomials are constant functions.

The first-order Neville polynomials are

The second-order Neville polynomial is

