Polynomial Interpolation (Mathematica notebook:
http://math.lbl.gov/~fomel/128A/Polynomial.nb)

Example Function

An example function for studying polynomial interpolation is

$$
f(x)=\frac{1}{x} .
$$

We select three nodes and find the interpolating polynomial for them.

x	2	4	5
f	0.5	0.25	0.2

The second-order interpolation polynomial does not reconstruct the function exactly but fits the input data.

Lagrange Interpolation

The Lagrange form of the interpolation polynomial is

$$
P(x)=\sum_{k=1}^{n} f_{k} L_{k}(x),
$$

where

$$
L_{k}(x)=\prod_{i \neq k} \frac{x-x_{i}}{x_{k}-x_{i}} .
$$

In our example,

$$
\begin{aligned}
L_{1}(x) & =\frac{(x-4)(x-5)}{(2-4)(2-5)}=\frac{(x-4)(x-5)}{6} \\
L_{2}(x) & =\frac{(x-2)(x-5)}{(4-2)(4-5)}=-\frac{(x-2)(x-5)}{2} \\
L_{3}(x) & =\frac{(x-2)(x-4)}{(5-2)(5-4)}=\frac{(x-2)(x-4)}{3}
\end{aligned}
$$

$L_{1}(x)$ is one at $x_{1}=2$ and zero at $x_{2}=4$ and $x_{3}=5$. Likewise, $L_{2}(x)$ is one at x_{2} and zero at x_{1} and $x_{3} . L_{3}(x)$ is one at x_{3} and zero at x_{1} and x_{2}.

Putting it all together,

$$
P(x)=\frac{(x-4)(x-5)}{12}-\frac{(x-2)(x-5)}{8}+\frac{(x-2)(x-4)}{15}=0.025 x^{2}-0.275 x+0.95 .
$$

Lagrange Interpolation

Newton Interpolation

The Newton form of the interpolation polynomial is

$$
P(x)=\sum_{k=1}^{n} f\left[x_{1} x_{2}, \ldots, x_{k}\right] N_{k}(x),
$$

where

$$
N_{k}(x)=\prod_{i=1}^{k-1}\left(x-x_{i}\right)
$$

and $f\left[x_{1} x_{2}, \ldots, x_{k}\right]$ is the divided difference, evaluated with the help of the recursive relationship

$$
\begin{aligned}
f\left[x_{k}\right] & =f_{k} \\
f\left[x_{1} x_{2}, \ldots, x_{k}\right] & =\frac{f\left[x_{2}, \ldots, x_{k}\right]-f\left[x_{1}, \ldots, x_{k-1}\right]}{x_{k}-x_{1}}
\end{aligned}
$$

In our example,

$$
\begin{aligned}
& N_{1}(x)=1 \\
& N_{2}(x)=x-2 \\
& N_{3}(x)=(x-2)(x-4)
\end{aligned}
$$

Newton Polynomials

The divided difference table is

$f\left[x_{1}\right]=0.5$		
$f\left[x_{2}\right]=0.25$	$f\left[x_{1}, x_{2}\right]=\frac{0.25-0.5}{4-2}=-0.125$	
$f\left[x_{3}\right]=0.2$	$f\left[x_{2}, x_{3}\right]=\frac{0.2-0.25}{5-4}=-0.05$	$f\left[x_{1}, x_{2}, x_{3}\right]=\frac{-0.05+0.125}{5-2}=0.025$

Putting it all together,

$$
P(x)=\frac{1}{2}-\frac{x-2}{8}+\frac{(x-2)(x-4)}{40}=0.025 x^{2}-0.275 x+0.95 .
$$

Neville Interpolation

The Neville form of the interpolation polynomial is defined by recursion

$$
\begin{aligned}
P_{0}(x) & =f_{1} \\
P_{k-1}(x) & =\frac{P_{k-2}(x)\left(x_{k}-x\right)-Q_{k-2}(x)\left(x-x_{1}\right)}{x_{k}-x_{1}},
\end{aligned}
$$

where $P_{k-1}(x)$ interpolates at nodes $x_{1}, x_{2}, \ldots, x_{k}$, and $Q_{k-2}(x)$ interpolates at nodes x_{2}, \ldots, x_{k}.
The zeroth-order Neville polynomials are constant functions.

The first-order Neville polynomials are

$$
\begin{aligned}
& P_{1}(x)=\frac{\frac{1}{2}(4-x)+\frac{1}{4}(x-2)}{4-2}=\frac{6-x}{8} \\
& Q_{1}(x)=\frac{\frac{1}{4}(5-x)+\frac{1}{5}(x-4)}{5-4}=\frac{9-x}{20}
\end{aligned}
$$

Neville Polynomials, Order 1

The second-order Neville polynomial is

$$
P_{2}(x)=\frac{\frac{6-x}{8}(5-x)+\frac{9-x}{20}(x-2)}{5-2}=\frac{(6-x)(5-x)}{24}+\frac{(9-x)(x-2)}{60}=0.025 x^{2}-0.275 x+0.95
$$

