Midterm Exam

Math 128A Spring 2002 Sergey Fomel

March 12, 2002

Your Name: _____

- Time: 75 minutes.
- Answer ALL questions.
- Please read carefully every question before answering it.
- If you need extra space, use the other side of the page.

- 1. (6 points) IEEE defines not only the single-precision and double-precision formats but also the double-extended format: 1 bit for the sign, 15 bits for the exponent, and 63 bits for the mantissa (79 bits in total). A double-extended non-zero number *x* can be written in this standard as x = ±(1.d₁d₂...d₆₃)₂ × 2^{n-2¹⁴+1}, with 1 ≤ n ≤ 2¹⁵, and 0 ≤ d_k ≤ 1 for k = 1, 2, ..., 63. Find:
 - a. The machine epsilon (the smallest positive ϵ such that $1 + \epsilon$ has a computer representation and $1 + \epsilon > 1$) in the double-extended format.

b. The largest positive double-extended floating-point number. You can express your answer with a formula. Do not use binary in your final answer.

- 2. (8 points) Some computers do not have a hardware operation for division.
 - a. Show that one can approximate the inverse square root $c = \frac{1}{\sqrt{a}}$ without doing any divisions by applying Newton's method for solving the equation f(x) = 0 with an appropriately selected function f(x).

b. Starting with $c_0 = 1$, find the next two iterations for approximating $c = \frac{1}{\sqrt{2}} \approx 0.707$.

3. (4 points)

a. The figure shows a function f(x) and the initial interval [a,b]. Sketch the first two iterations of the *regula falsi* method.

b. The figure shows a function f(x) and the initial root estimates c_0 and c_1 . Sketch the next two iterations of the secant method.

4. (10 points) The goal of the *Hermite* polynomial interpolation is to construct a polynomial H(x) of order 2n - 1 that satisfies the conditions $H(x_k) = f(x_k)$ and $H'(x_k) = f'(x_k)$ for k = 1, 2, ..., n. Prove that you can solve the Hermite interpolation problem for two nodes x_1 and x_2 by Newton's interpolation with the divided difference table, where each interpolation node is entered twice:

x	f[]	f[,]	f[,,]	<i>f</i> [,,]		
x_1	f_1					
x_1	f_1	$f[x_1, x_1] = f'(x_1)$ $f[x_1, x_2]$ $f[x_2, x_2] = f'(x_2)$				
x_2	f_2	$f[x_1, x_2]$	$f[x_1, x_1, x_2]$			
x_2	f_2	$f[x_2, x_2] = f'(x_2)$	$f[x_1, x_2, x_2]$	$f[x_1, x_1, x_2, x_2]$		
$H(x) = f_1 + f'(x_1)(x - x_1) + f[x_1, x_1, x_2](x - x_1)^2 + f[x_1, x_1, x_2, x_2](x - x_1)^2(x - x_2)$						

5. (8 points) Interpolate the function $f(x) = cos(\pi x)$ at the nodes $x_1 = 0$ and $x_2 = 1$ with the cubic *Hermite* polynomial H(x) (see the previous problem for the definition of the Hermite interpolation). Find the absolute error of H(1/2) and H'(1/2).

6. (4 points) A function S(x) defined on the interval [a,b] is a spline of order *m* if S(x) and all its derivatives up to the order m-1 are continuous $(S(x) \in C^{m-1}[a,b])$ and the portion of S(x) on each of the subintervals $[x_k, x_{k+1}]$ is a polynomial of order m (k = 1, 2, ..., n-1 and $a = x_1 < x_2 < \cdots < x_n = b$). How many boundary conditions are necessary for specifying the spline of order *m* that interpolates f(x) at the nodes $x_1, x_2, ..., x_n$?