Midterm Exam

Math 128A Spring 2002
Sergey Fomel

March 12, 2002

Your Name:

\qquad

- Time: 75 minutes.
- Answer ALL questions.
- Please read carefully every question before answering it.
- If you need extra space, use the other side of the page.

1. (6 points) IEEE defines not only the single-precision and double-precision formats but also the double-extended format: 1 bit for the sign, 15 bits for the exponent, and 63 bits for the mantissa (79 bits in total). A double-extended non-zero number x can be written in this standard as $x= \pm\left(1 . d_{1} d_{2} \cdots d_{63}\right)_{2} \times 2^{n-2^{14}+1}$, with $1 \leq n \leq 2^{15}$, and $0 \leq d_{k} \leq 1$ for $k=1,2, \ldots, 63$. Find:
a. The machine epsilon (the smallest positive ϵ such that $1+\epsilon$ has a computer representation and $1+\epsilon>1$) in the double-extended format.
b. The largest positive double-extended floating-point number. You can express your answer with a formula. Do not use binary in your final answer.
2. (8 points) Some computers do not have a hardware operation for division.
a. Show that one can approximate the inverse square root $c=\frac{1}{\sqrt{a}}$ without doing any divisions by applying Newton's method for solving the equation $f(x)=0$ with an appropriately selected function $f(x)$.
b. Starting with $c_{0}=1$, find the next two iterations for approximating $c=\frac{1}{\sqrt{2}} \approx 0.707$.

3. (4 points)

a. The figure shows a function $f(x)$ and the initial interval $[a, b]$. Sketch the first two iterations of the regula falsi method.

b. The figure shows a function $f(x)$ and the initial root estimates c_{0} and c_{1}. Sketch the next two iterations of the secant method.

4. (10 points) The goal of the Hermite polynomial interpolation is to construct a polynomial $H(x)$ of order $2 n-1$ that satisfies the conditions $H\left(x_{k}\right)=f\left(x_{k}\right)$ and $H^{\prime}\left(x_{k}\right)=f^{\prime}\left(x_{k}\right)$ for $k=1,2, \ldots, n$. Prove that you can solve the Hermite interpolation problem for two nodes x_{1} and x_{2} by Newton's interpolation with the divided difference table, where each interpolation node is entered twice:

x	$f[]$	$f[]$,	$f[,]$,	$f[,]$,
x_{1}	f_{1}			
x_{1}	f_{1}	$f\left[x_{1}, x_{1}\right]=f^{\prime}\left(x_{1}\right)$		
x_{2}	f_{2}	$f\left[x_{1}, x_{2}\right]$	$f\left[x_{1}, x_{1}, x_{2}\right]$	
x_{2}	f_{2}	$f\left[x_{2}, x_{2}\right]=f^{\prime}\left(x_{2}\right)$	$f\left[x_{1}, x_{2}, x_{2}\right]$	$f\left[x_{1}, x_{1}, x_{2}, x_{2}\right]$

$$
H(x)=f_{1}+f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)+f\left[x_{1}, x_{1}, x_{2}\right]\left(x-x_{1}\right)^{2}+f\left[x_{1}, x_{1}, x_{2}, x_{2}\right]\left(x-x_{1}\right)^{2}\left(x-x_{2}\right)
$$

5. (8 points) Interpolate the function $f(x)=\cos (\pi x)$ at the nodes $x_{1}=0$ and $x_{2}=1$ with the cubic Hermite polynomial $H(x)$ (see the previous problem for the definition of the Hermite interpolation). Find the absolute error of $H(1 / 2)$ and $H^{\prime}(1 / 2)$.
6. (4 points) A function $S(x)$ defined on the interval $[a, b]$ is a spline of order m if $S(x)$ and all its derivatives up to the order $m-1$ are continuous $\left(S(x) \in C^{m-1}[a, b]\right)$ and the portion of $S(x)$ on each of the subintervals $\left[x_{k}, x_{k+1}\right]$ is a polynomial of order $m(k=1,2, \ldots, n-1$ and $a=x_{1}<x_{2}<\cdots<x_{n}=b$). How many boundary conditions are necessary for specifying the spline of order m that interpolates $f(x)$ at the nodes $x_{1}, x_{2}, \ldots, x_{n}$?
