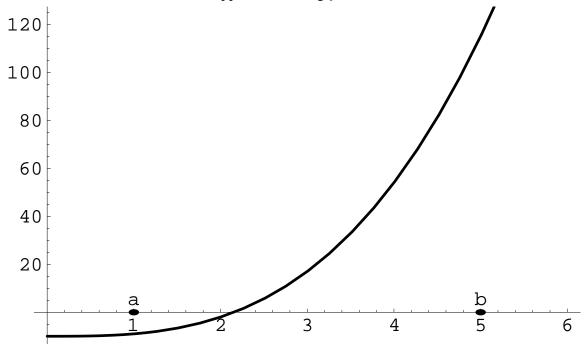
Midterm Exam: Sample Questions

Math 128A Spring 2002 Sergey Fomel

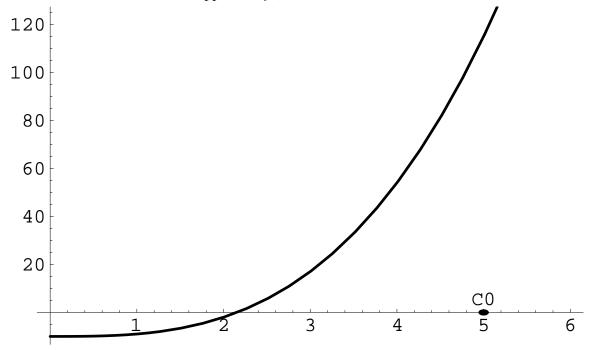
March 7, 2002

Your Name:		

- Time: 75 minutes.
- Answer ALL questions.
- Please read carefully every question before answering it.
- If you need extra space, use the other side of the page.


1. (4 points) An important characteristic of computer precision is the <i>machine epsilon</i> . It is defined as the smallest number ϵ such that $1 + \epsilon$ has a computer representation and $1 + \epsilon > 1$. Find the machine epsilon for the IEEE double precision standard (11-bit exponent and 52-bit mantissa)

- **2.** (10 points) Some computers do not have a hardware operation for division.
 - a. Show that one can approximate $c = \frac{1}{a}$ without doing any divisions by applying Newton's method for solving the equation f(x) = 0 with an appropriately selected f(x).


b. Starting with $c_0 = \frac{1}{2}$, find the next two iterations for approximating $c = \frac{1}{3}$.

3. (4 points)

a. The figure shows a function f(x) and the initial interval [a,b]. Sketch the first three iterations of the bisection method applied to solving f(x) = 0.

b. The figure shows a function f(x) and the initial root estimate c_0 . Sketch the next two iterations of Newton's method applied to f(x) = 0.

4. (10 points) Prove that, if f(x) is continuously differentiable, $f[x,x] = \lim_{y \to x} f[x,y] = f'(x)$ and, if f(x) is twice continuously differentiable, $f[x,x,x] = \lim_{y \to x} \lim_{z \to x} f[x,y,z] = \frac{f''(x)}{2}$.

5. (8 points) Interpolate the function $f(x) = \sqrt{25 - x^2}$ at the nodes $x_1 = 0$, $x_2 = 4$ and $x_3 = 5$ with a quadratic polynomial P(x). Find the relative error of P(3).

6. (**4 points**) A function S(x) defined on the interval [a,b] is a quadratic spline if it is continuous together with the first derivative $(S(x) \in C^1[a,b])$ and the portion of S(x) on each of the subintervals $[x_k, x_{k+1}]$ is a quadratic polynomial $(k = 1, 2, ..., n-1 \text{ and } a = x_1 < x_2 < \cdots < x_n = b)$. How many boundary conditions are necessary for specifying the quadratic spline that interpolates f(x) at the nodes $x_1, x_2, ..., x_n$?