Homework 7: Approximation: Polynomial Approximation (due on March 21)

1. (a) Is the collection of functions $\phi_{1}(x)=1, \phi_{2}(x)=x$, and $\phi_{3}(x)=\sin x$ orthogonal with respect to the inner product

$$
\begin{equation*}
<f, g>=\int_{-\pi}^{\pi} f(x) g(x) d x \quad ? \tag{1}
\end{equation*}
$$

If not, find the corresponding orthogonal functions using the Gram-Schmidt orthogonalization process

$$
\begin{align*}
& \hat{\phi}_{1}(x)=\phi_{1}(x) \tag{2}\\
& \hat{\phi}_{k}(x)=\phi_{k}(x)-\sum_{i=1}^{k-1} \frac{<\phi_{k}, \hat{\phi}_{i}>}{<\hat{\phi}_{i}, \hat{\phi}_{i}>} \hat{\phi}_{i}(x), \quad k=2,3, \ldots \tag{3}
\end{align*}
$$

(b) Using the Gram-Schmidt process, find the first three orthogonal polynomials with respect to the inner product

$$
\begin{equation*}
<f, g>=\int_{0}^{\infty} w(x) f(x) g(x) d x \tag{4}
\end{equation*}
$$

where $w(x)=e^{-a x}(a>0)$.
Hint: Use the equality (for integer n)

$$
\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}
$$

2. (a) Prove that the constant function $f(x)=a$ that fits inconsistent measurements $f_{1}, f_{2}, \ldots, f_{n}$ in the least-squares sense corresponds to the mean value

$$
\begin{equation*}
a=\frac{1}{n} \sum_{k=1}^{n} f_{k} \tag{5}
\end{equation*}
$$

(b) Prove that, if the measurements $f_{1}, f_{2}, \ldots, f_{n}$ are taken at the integer values $x_{k}=k$,
$k=1,2, \ldots, n$, the linear function $f(x)=a x+b$ that fits the data in the least-squares sense corresponds to the values

$$
\begin{align*}
a & =\frac{6}{n\left(n^{2}-1\right)}\left[2 \sum_{k=1}^{n} k f_{k}-(n+1) \sum_{k=1}^{n} f_{k}\right] \tag{6}\\
b & =\frac{2}{n(n-1)}\left[(2 n+1) \sum_{k=1}^{n} f_{k}-3 \sum_{k=1}^{n} k f_{k}\right] . \tag{7}
\end{align*}
$$

3. Chebyshev polynomials $T_{k}(x)$ can be defined by the recursive relationship

$$
\begin{align*}
T_{0}(x) & =1 \tag{8}\\
T_{1}(x) & =x \tag{9}\\
T_{k+1}(x) & =2 x T_{k}(x)-T_{k-1}(x), \quad k=1,2, \ldots \tag{10}
\end{align*}
$$

One can evaluate the Chebyshev polynomial representation

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} c_{k} T_{k}(x) \tag{11}
\end{equation*}
$$

efficiently with the algorithm

```
\(\operatorname{Chebyshev} \operatorname{Sum}\left(x, c_{0}, c_{1}, \ldots, c_{n}\right)\)
\(\hat{c}_{1} \leftarrow 0\)
\(\hat{c}_{0} \leftarrow c_{n}\)
for \(k \leftarrow n-1, n-2, \ldots, 0\)
do
    \(t \leftarrow \hat{c}_{1}\)
    \(\hat{c}_{1} \leftarrow \hat{c}_{0}\)
    \(\hat{c}_{0} \leftarrow c_{k}+2 x \hat{c}_{0}-t\)
return \(\left(\hat{c}_{0}-x \hat{c}_{1}\right)\)
```

Design an analogous algorithm for the Hermite polynomial representation

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} c_{k} H_{k}(x) . \tag{12}
\end{equation*}
$$

Hermite polynomials $H_{k}(x)$ satisfy the recursive relationship

$$
\begin{align*}
H_{0}(x) & =1 \tag{13}\\
H_{1}(x) & =2 x \tag{14}\\
H_{k+1}(x) & =2 x H_{k}(x)-2 k H_{k-1}(x), \quad k=1,2, \ldots \tag{15}
\end{align*}
$$

4. (Programming)
(a) Write a program for evaluating Chebyshev polynomial representation using the algorithm above. Test your program by approximating the infinite sum

$$
\begin{equation*}
\frac{1-t x}{1-2 t x+t^{2}}=\sum_{k=0}^{\infty} t^{k} T_{k}(x) \tag{16}
\end{equation*}
$$

with the finite sum

$$
\begin{equation*}
\sum_{k=0}^{n} t^{k} T_{k}(x) \tag{17}
\end{equation*}
$$

Plot (or tabulate) the absolute error on the interval $-1 \leq x \leq 1$ for $t=1 / 2$ and $n=5,10,15$.
(b) Write a program for evaluating Hermite polynomial representation using your algorithm from problem 3. Test your program by approximating the infinite sum

$$
\begin{equation*}
e^{t(2 x-t)}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} H_{k}(x) \tag{18}
\end{equation*}
$$

with the finite sum

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{t^{k}}{k!} H_{k}(x) \tag{19}
\end{equation*}
$$

Plot (or tabulate) the absolute error on the interval $0 \leq x \leq 1$ for $t=1 / 2$ and $n=5,10,15$.
5. (Programming) The following table contains the number of medals won by the United States at the winter Olympic games:

Year	Location	Gold	Silver	Bronze	Total	Points
1924	CHAMONIX	1	2	1	4	8
1928	SAINT MORITZ	3	2	2	7	15
1932	LAKE PLACID	6	4	2	12	28
1936	GARMISH PARTENKIRCHEN	1	0	3	4	6
1948	SAINT MORITZ	3	5	2	10	21
1952	OSLO	4	6	1	11	25
1956	CORTINA D'AMPEZZO	2	3	2	7	14
1960	SQUAW VALLEY	3	4	3	10	20
1964	INNSBRUCK	1	2	4	7	11
1968	GRENOBLE	1	4	1	6	12
1972	SAPPORO	3	2	3	8	16
1976	INNSBRUCK	3	3	4	10	19
1980	LAKE PLACID	6	4	2	12	28
1984	SARAJEVO	4	4	0	8	20
1988	CALGARY	2	1	3	6	11
1992	ALBERTVILLE	5	4	2	11	25
1994	LILLEHAMMER	6	5	2	13	30
1998	NAGANO	6	3	4	13	28
2002	SALT LAKE CITY	10	13	11	34	67

The points are computed with the formula

$$
\text { Points }=3 \times \text { Gold }+2 \times \text { Silver }+ \text { Bronze } .
$$

Using the method of least squares, find linear trends of the form $f(x)=a+b x$ for the functions
(a) Points(Year)
(b) Points(Gold)

In each case, find a, b and the Olympic games with the largest and smallest least-squares errors.

