Homework 7: Approximation: Polynomial Approximation (due on March 21)

1. (a) Is the collection of functions $\phi_1(x) = 1$, $\phi_2(x) = x$, and $\phi_3(x) = \sin x$ orthogonal with respect to the inner product

$$\langle f,g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx \quad ? \tag{1}$$

If not, find the corresponding orthogonal functions using the Gram-Schmidt orthogonalization process

$$\hat{\phi}_1(x) = \phi_1(x);$$
 (2)

$$\hat{\phi}_k(x) = \phi_k(x) - \sum_{i=1}^{k-1} \frac{\langle \phi_k, \hat{\phi}_i \rangle}{\langle \hat{\phi}_i, \hat{\phi}_i \rangle} \hat{\phi}_i(x), \quad k = 2, 3, \dots$$
(3)

(b) Using the Gram-Schmidt process, find the first three orthogonal polynomials with respect to the inner product

$$\langle f,g \rangle = \int_{0}^{\infty} w(x) f(x) g(x) dx , \qquad (4)$$

where $w(x) = e^{-ax}$ (*a* > 0).

Hint: Use the equality (for integer *n*)

$$\int_{0}^{\infty} x^n e^{-ax} dx = \frac{n!}{a^{n+1}} \,.$$

2. (a) Prove that the constant function f(x) = a that fits inconsistent measurements f_1, f_2, \ldots, f_n in the least-squares sense corresponds to the mean value

$$a = \frac{1}{n} \sum_{k=1}^{n} f_k \,. \tag{5}$$

(b) Prove that, if the measurements $f_1, f_2, ..., f_n$ are taken at the integer values $x_k = k$, k = 1, 2, ..., n, the linear function f(x) = ax + b that fits the data in the least-squares sense corresponds to the values

$$a = \frac{6}{n(n^2 - 1)} \left[2 \sum_{k=1}^{n} k f_k - (n+1) \sum_{k=1}^{n} f_k \right];$$
(6)

$$b = \frac{2}{n(n-1)} \left[(2n+1) \sum_{k=1}^{n} f_k - 3 \sum_{k=1}^{n} k f_k \right].$$
(7)

3. Chebyshev polynomials $T_k(x)$ can be defined by the recursive relationship

$$T_0(x) = 1 \tag{8}$$

$$T_1(x) = x \tag{9}$$

$$T_{k+1}(x) = 2x T_k(x) - T_{k-1}(x), \quad k = 1, 2, \dots$$
 (10)

One can evaluate the Chebyshev polynomial representation

$$f(x) = \sum_{k=0}^{n} c_k T_k(x)$$
(11)

efficiently with the algorithm

CHEBYSHEV SUM $(x, c_0, c_1, \dots, c_n)$ 1 $\hat{c}_1 \leftarrow 0$ 2 $\hat{c}_0 \leftarrow c_n$ 3 for $k \leftarrow n-1, n-2, \dots, 0$ 4 do 5 $t \leftarrow \hat{c}_1$ 6 $\hat{c}_1 \leftarrow \hat{c}_0$ 7 $\hat{c}_0 \leftarrow c_k + 2x \hat{c}_0 - t$ 8 return $(\hat{c}_0 - x \hat{c}_1)$

Design an analogous algorithm for the Hermite polynomial representation

$$f(x) = \sum_{k=0}^{n} c_k H_k(x) .$$
(12)

Hermite polynomials $H_k(x)$ satisfy the recursive relationship

$$H_0(x) = 1$$
 (13)

$$H_1(x) = 2x \tag{14}$$

$$H_{k+1}(x) = 2x H_k(x) - 2k H_{k-1}(x), \quad k = 1, 2, \dots$$
(15)

4. (Programming)

(a) Write a program for evaluating Chebyshev polynomial representation using the algorithm above. Test your program by approximating the infinite sum

$$\frac{1-tx}{1-2tx+t^2} = \sum_{k=0}^{\infty} t^k T_k(x)$$
(16)

with the finite sum

$$\sum_{k=0}^{n} t^{k} T_{k}(x) .$$
(17)

Plot (or tabulate) the absolute error on the interval $-1 \le x \le 1$ for t = 1/2 and n = 5, 10, 15.

(b) Write a program for evaluating Hermite polynomial representation using your algorithm from problem 3. Test your program by approximating the infinite sum

$$e^{t(2x-t)} = \sum_{k=0}^{\infty} \frac{t^k}{k!} H_k(x)$$
(18)

with the finite sum

$$\sum_{k=0}^{n} \frac{t^{k}}{k!} H_{k}(x) .$$
(19)

Plot (or tabulate) the absolute error on the interval $0 \le x \le 1$ for t = 1/2 and n = 5, 10, 15.

5. (Programming) The following table contains the number of medals won by the United States at the winter Olympic games:

Year	Location	Gold	Silver	Bronze	Total	Points
1924	CHAMONIX	1	2	1	4	8
1928	SAINT MORITZ	3	2	2	7	15
1932	LAKE PLACID	6	4	2	12	28
1936	GARMISH PARTENKIRCHEN	1	0	3	4	6
1948	SAINT MORITZ	3	5	2	10	21
1952	OSLO	4	6	1	11	25
1956	CORTINA D'AMPEZZO	2	3	2	7	14
1960	SQUAW VALLEY	3	4	3	10	20
1964	INNSBRUCK	1	2	4	7	11
1968	GRENOBLE	1	4	1	6	12
1972	SAPPORO	3	2	3	8	16
1976	INNSBRUCK	3	3	4	10	19
1980	LAKE PLACID	6	4	2	12	28
1984	SARAJEVO	4	4	0	8	20
1988	CALGARY	2	1	3	6	11
1992	ALBERTVILLE	5	4	2	11	25
1994	LILLEHAMMER	6	5	2	13	30
1998	NAGANO	6	3	4	13	28
2002	SALT LAKE CITY	10	13	11	34	67

The points are computed with the formula

Points = $3 \times \text{Gold} + 2 \times \text{Silver} + \text{Bronze}$.

Using the method of least squares, find linear trends of the form f(x) = a + bx for the functions

- (a) Points(Year)
- (b) Points(Gold)

In each case, find *a*, *b* and the Olympic games with the largest and smallest least-squares errors.