Homework 4: Interpolation: Polynomial Interpolation (due on February 21)

1. Prove that the sum of the Lagrange interpolating polynomials

$$
\begin{equation*}
L_{k}(x)=\prod_{i \neq k} \frac{x-x_{i}}{x_{k}-x_{i}} \tag{1}
\end{equation*}
$$

is one:

$$
\begin{equation*}
\sum_{k=1}^{n} L_{k}(x)=1 \tag{2}
\end{equation*}
$$

for any real x, integer n, and any set of distinct points $x_{1}, x_{2}, \ldots, x_{n}$.
2. Let $f(x)=x^{n-1}$ for some $n \geq 1$. Find the divided differences
$f\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $f\left[x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right]$,
where $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}$ are distinct numbers.
3. (a) Consider a set of regularly spaced nodes on interval $[a, b]$:

$$
\begin{equation*}
h=\frac{b-a}{n}, \quad x_{k}=a+(k-1) h, \quad k=1,2, \ldots, n+1 . \tag{3}
\end{equation*}
$$

Prove that the polynomial

$$
\begin{equation*}
N(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n+1}\right) \tag{4}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
|N(x)| \leq n!h^{n+1}, \quad a \leq x \leq b \tag{5}
\end{equation*}
$$

(b) Using the result of problem (a), prove that if $f(x)=e^{x}$ and $P_{n}(x)$ is the interpolating polynomial of order n defined at the $n+1$ regularly spaced nodes

$$
\begin{equation*}
x_{k}=\frac{k-1}{n}, \quad k=1,2, \ldots, n+1 \tag{6}
\end{equation*}
$$

then the interpolation error

$$
\begin{equation*}
e_{n}=\max _{0 \leq x \leq 1}\left|f(x)-P_{n}(x)\right| \tag{7}
\end{equation*}
$$

goes to zero as n goes to infinity:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} e_{n}=0 \tag{8}
\end{equation*}
$$

4. (Programming) Implement one of the algorithms for polynomial interpolation and interpolate
(a) hyperbola $f(x)=\sqrt{1+x^{2}}$

(b) Runge's function $f(x)=\frac{1}{1+25 x^{2}}$

using a set of $n+1$ regularly spaced nodes

$$
x_{k}=-1+\frac{2(k-1)}{n}, \quad k=1,2, \ldots, n+1 .
$$

Take $n=5,10,20$ and compute the interpolation polynomial $P_{n}(x)$ and the error $f(x)-P_{n}(x)$ at 41 regularly spaced points. You can either plot the error or output it in a table. Does the interpolation accuracy increase with the order n ?
5. (Programming) Repeat the experiments of the previous problem replacing the regularly spaced nodes with nodes

$$
x_{k}=\cos \left(\frac{\pi(k-1)}{n}\right), \quad k=1,2, \ldots, n+1 .
$$

Compare the accuracy.

