Fixed Point Iteration

Example Function

We will study fixed-point iteration using the function

$$
f(x)=x^{2}-x-e^{-x}
$$

Figure 1: Plotting the function $f(x)$ shows that it has a root around 1.25
There are several ways to transform the equation $f(x)=0$ to the form $x=g(x)$ suitable for the fixed-point iteration:

$$
\begin{aligned}
& g_{1}(x)=-e^{-x}+x^{2} \\
& g_{2}(x)=\sqrt{e^{-x}+x} \\
& g_{3}(x)=-\ln \left(-x+x^{2}\right) \\
& g_{4}(x)=1+\frac{e^{-x}}{x}
\end{aligned}
$$

Which of these functions cause the fixed-point iteration to converge? Let us study this graphically.

Figure 2: The function $g_{1}(x)$ clearly causes the iteration to diverge away from the root.

Convergence Analysis

Newton's iteration

Newton's iteration can be defined with the help of the function

$$
g_{5}(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

Figure 3: The function $g_{2}(x)$ leads to convergence, although the rate of convergence is slow.

Figure 4: In the case of $g_{3}(x)$, the iteration diverges, spiraling away from the root.

Figure 5: In the case of $g_{4}(x)$, the iteration converges, spiraling towards the root.

Figure 6: The iteration convergence very fast due to the fact that the function $g_{5}(x)$ has zero slope around the root.

Figure 7: Another way to display the Newton iteration is by using tangent lines.

