Chebyshev Polynomials (Mathematica notebook:

http://math.lbl.gov/~fomel/128A/Chebyshev.nb)

Polynomial Shape

Chebyshev polynomials can be defined by the explicit formula

$$
T_{n}(x)=\cos (n \arccos x)
$$

or by the recursive relationship

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
$$

The first three polynomials are

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x \\
& T_{2}(x)=2 x^{2}-1
\end{aligned}
$$

The next six polynomials are

$$
\begin{aligned}
& T_{3}(x)=4 x^{3}-3 x \\
& T_{4}(x)=8 x^{4}-8 x^{2}+1 \\
& T_{5}(x)=16 x^{5}-20 x^{3}+5 x \\
& T_{6}(x)=32 x^{6}-48 x^{4}+18 x^{2}-1 \\
& T_{7}(x)=64 x^{7}-112 x^{5}+56 x^{3}-7 x \\
& T_{8}(x)=128 x^{8}-256 x^{6}+160 x^{4}-32 x^{2}+1
\end{aligned}
$$

The extremum points of every Chebyshev polynomial alternate between -1 and 1 .

Zeros of the Chebyshev polynomials

Polynomial of degree 21:

The zeros of $T_{n}(x)$ are distributed denser near the ends of the interval and sparser in the middle.
The explicit formula for k-th zero is

$$
\hat{x}_{k}=\cos \left(\frac{2 k-1}{2 n} \pi\right), \quad k=1,2, \ldots, n .
$$

Interpolation

In 1901, Runge demonstrated the pitfalls of equidistant polynomial interpolation using the function

$$
f(x)=\frac{1}{1+25 x^{2}}
$$

Interpolation with 21 equidistant (regularly spaced) nodes:

Interpolation with 21 Chebyshev nodes:

