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Chebyshev Polynomials(Mathematica notebook:
http://math.lbl.gov/~fomel/128A/Chebyshev.nb )

Polynomial Shape

Chebyshev polynomials can be defined by the explicit formula

Tn(x) = cos(n arccosx)

or by the recursive relationship

Tn+1(x) = 2x Tn(x)− Tn−1(x) .

The first three polynomials are

T0(x) = 1

T1(x) = x

T2(x) = 2x2
−1
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The next six polynomials are

T3(x) = 4x3
−3x

T4(x) = 8x4
−8x2

+1

T5(x) = 16x5
−20x3

+5x

T6(x) = 32x6
−48x4

+18x2
−1

T7(x) = 64x7
−112x5

+56x3
−7x

T8(x) = 128x8
−256x6

+160x4
−32x2

+1
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The extremum points of every Chebyshev polynomial alternate between -1 and 1.
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Zeros of the Chebyshev polynomials

Polynomial of degree 21:
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The zeros ofTn(x) are distributed denser near the ends of the interval and sparser in the middle.

The explicit formula fork-th zero is

x̂k = cos

(
2k−1

2n
π

)
, k = 1,2,. . . ,n .
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Interpolation

In 1901, Runge demonstrated the pitfalls of equidistant polynomial interpolation using the function

f (x) =
1

1+25x2
.

Interpolation with 21 equidistant (regularly spaced) nodes:
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Interpolation with 21 Chebyshev nodes:
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