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Answers to Homework 9: Numerical Integration

1. (a) Suppose that the function

f (x)=
2

1+ x2
(1)

is known at three points:x1 = −1, x2 = 0, andx3 = 1. Interpolate the function with a
natural cubic spline and approximate the integral

1∫
−1

2dx

1+ x2
= π (2)

by the integral of the spline. Is the result more accurate than the result of Simpson’s rule?

Answer:

Let the spline on the second intervalx ∈ [0,1] be

S2(x)= 2+b x+c x2
+d x3 .

By the symmetry of the boundary conditions, the corresponding spline on the first interval
is

S1(x)= S2(−x)= 2−b x+c x2
−d x3 .

The interpolation conditions require

S1(−1)= S2(1)= 2+b+c+d = 1 .

The natural spline boundary conditions require

S′′1(−1)= S′′2(1)= 2c+6d = 0 .

The continuity conditions require

−b= S′1(0)= S′2(0)= b ,

which leads tob= 0. The condition

2c= S′′1(0)= S′′2(0)

is satisfied automatically. Solving the linear equations forc andd, we obtainc= −3/2
andd = 1/2. Therefore

S2(x)= 2−
3

2
x2
+

1

2
x3

The integral approximation is then

1∫
−1

2dx

1+ x2
≈ 2

1∫
0

S2(x)dx= 2

(
2−

1

2
+

1

8

)
=

13

4
= 3.25

This value is more accurate that Simpson’s result (10/3= 3.3333. . .)
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(b) Let Sp[ f ] be the approximation of the integral

b∫
a

f (x)dx (3)

by the integral of the natural cubic spline defined at the knotsa= x1 < x2 < .. . < xn = b.

Prove that

Sp[ f ] = CT[ f ]−
n−1∑
k=2

ck
h3

k−1+h3
k

12
, (4)

wherehk = xk+1− xk, ck are the coefficients in the spline equation

Sk(x)= f (xk)+bk (x− xk)+ck (x− xk)2
+dk (x− xk)3 for xk ≤ x < xk+1 , (5)

andCT[ f ] is the composite trapezoidal rule.

Answer:

The integral of the spline is the sum of the local integrals:

Sp[ f ] =

b∫
a

S(x)dx=
n−1∑
k=1

xk+1∫
xk

Sk(x)dx .

Integrating the natural cubic spline (5) on the interval [xk,xk+1], we obtain
xk+1∫
xk

Sk(x)dx= fk hk+bk
h2

k

2
+ck

h3
k

3
+dk

h4
k

4
.

With the help of the recursive relationships

dk =
ck+1−ck

3hk

and

bk =
fk+1− fk

hk
−

hk

3
(2ck+ck+1) ,

the integral transforms to
xk+1∫
xk

Sk(x)dx = fk hk+
hk

2
( fk+1− fk)−

h3
k

6
(2ck+ck+1)+ck

h3
k

3
+

h3
k

12
(ck+1−ck)

=
hk

2
( fk+1+ fk)−

h3
k

12
(ck+ck+1) .

The first term in the last expression is exactly the trapezoidal rule on the interval [xk,xk+1].
Therefore,

Sp[ f ] = CT[ f ]−
n−1∑
k=1

h3
k

12
(ck+ck+1) .

Recalling that the natural cubic spline hasc1= cn= 0, we can transform the last sum as follows:

n−1∑
k=1

h3
k

12
(ck+ck+1)=

n−1∑
k=1

h3
k

12
ck+

n−1∑
k=1

h3
k

12
ck+1=

n−1∑
k=2

h3
k

12
ck+

n−1∑
k=2

h3
k−1

12
ck =

n−1∑
k=2

ck
h3

k−1+h3
k

12
.

The final expression takes the form (4).
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2. (a) Suppose that function (1) is known at three points:x1 =−1, x2 = 0, andx3 = 1 together
with its derivatives. Interpolate the function using Hermite interpolation and approximate
integral (2) by the integral of the interpolation polynomial. Is the result more accurate
than the result of Simpson’s rule?

Answer:

The derivative off (x) is

f ′(x)=−
4x

(1+ x2)2
.

The divided-difference table for Hermite interpolation is then

x f [ ] f [ , ] f [ , , ] f [ , , ] f [ , , , ] f [ , , , , ]
−1 1
−1 1 f ′(−1)= 1

0 2 1 0
0 2 f ′(0)= 0 −1 −1
1 1 −1 −1 0 1/2
1 1 f ′(1)=−1 0 1 1/2 0

which leads to the Hermite interpolation polynomial

P(x) = 1+ (x+1)+0× (x+1)2− (x+1)2 x+
1

2
(x+1)2 x2

+0× (x+1)2 x2 (x−1)

= 2−
3

2
x2
+

1

2
x4

Integrating this polynomial, we obtain

1∫
−1

P(x)dx= 2

1∫
0

P(x)dx= 2(2−
1

2
+

1

10
)=

16

5
= 3.2

This result is more accurate than the result of Simpson’s integration (10/3= 3.3333. . .)

(b) Let C H[ f ] be the approximation of integral (3) by the integral of the piece-wise cubic
polynomial defined by applying Hermite interpolation at each of the intervals [xk,xk+1],
a= x1 < x2 < .. . < xn = b.

Prove that

C H[ f ] = CT[ f ]+b1
h2

1

12
−bn

h2
n−1

12
+

n−1∑
k=2

bk
h2

k−h2
k−1

12
, (6)

wherehk = xk+1− xk, bk = f ′(xk), andCT[ f ] is the composite trapezoidal rule.
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Answer:

The cubic Hermite interpolation in the interval [xk,xk+1] follows from the divided-difference
table

x f [ ] f [ , ] f [ , , ] f [ , , ]
xk fk
xk fk bk

xk+1 fk+1
fk+1− fk

hk

(
fk+1− fk

hk
−bk

)
1
hk

xk+1 fk+1 bk+1

(
bk+1−

fk+1− fk
hk

)
1
hk

(
bk+1+bk−2 fk+1− fk

hk

)
1
h2

k

which leads to the cubic interpolation polynomial

Pk(x) = fk+bk (x− xk)+

(
fk+1− fk

hk
−bk

)
(x− xk)2

hk

+

(
bk+1+bk−2

fk+1− fk
hk

)
(x− xk)2 (x− xk+1)

h2
k

.

Integrating on the interval [xk,xk+1], we obtain

xk+1∫
xk

Pk(x)dx =

hk∫
0

Pk(t+ xk)dt

= fk+bk

hk∫
0

t dt+

(
fk+1− fk

hk
−bk

)
1

hk

hk∫
0

t dt

+

(
bk+1+bk−2

fk+1− fk
hk

)
1

h2
k

hk∫
0

t2 (t−hk)dt

= fk+bk
h2

k

2
+

(
fk+1− fk

hk
−bk

)
h2

k

3
−

(
bk+1+bk−2

fk+1− fk
hk

)
h2

k

12

=
hk

2
( fk+1+ fk)+

h2
k

12
(bk−bk+1) .

The first term in the last expression is exactly the trapezoidal rule on the interval [xk,xk+1].
The total integral is, therefore,

C H[ f ] =
n−1∑
k=1

xk+1∫
xk

Pk(x)dx= CT[ f ]+
n−1∑
k=1

h2
k

12
(bk−bk+1) .

The last sum transforms as follows:

n−1∑
k=1

h2
k

12
(bk−bk+1) =

n−1∑
k=1

h2
k

12
bk−

n−1∑
k=1

h2
k

12
bk+1=

h2
1

12
b1+

n−1∑
k=2

h2
k

12
bk−

n−2∑
k=1

h2
k

12
bk+1−

h2
n−1

12
bn

= b1
h2

1

12
−bn

h2
n−1

12
+

n−1∑
k=2

bk
h2

k−h2
k−1

12
.

The final expression takes the form (6).
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3. (a) TheGauss-Lobattoquadrature rule has the form

1∫
−1

f (x)dx≈ w1 f (−1)+wn f (1)+
n−1∑
k=2

wk f (xk)= Lo[ f ] , (7)

where the abscissasxk and weightswk are chosen so thatf (x) is integrated exactly if it is
a polynomial of order 2n−3 or less.

Derive the abscissas and weights forn= 3 andn= 4 and apply the Gauss-Lobatto rule to
integral (2). Are the results more accurate than the result of Simpson’s rule?

Hint: Use the symmetry of the interval to constrain the abscissas and weights.

Answer:

First, let us consider the casen= 3. By the symmetry of the interval, the pointx2 has to
be in the center, and we can immediately setx2 = 0. Integrating polynomials of the first
four powers, we obtain

I [1] = 2= w1+w2+w3

I [x] = 0=−w1+w3

I [x2] =
2

3
= w1+w3

I [x3] = 0=−w1+w3

The last two equations definew1= w3= 1/3. From the first equation, we get

w2= 2−w1−w3= 4/3

The rule is then

Lo3[ f ] =
1

3

[
f (−1)+4 f (0)+ f (1)

]
,

which is equivalent to Simpson’s rule applied on the interval [−1,1]. In the example
problem, the result is equivalent to that of Simpson’s rule:Lo3[ f ] = 10

3 = 3.3333. . .

In the case ofn= 4, the symmetry suggestsx2=−x3= x andw2= w3= w. Integrating
polynomials of the first six powers, we obtain

I [1] = 2= w1+2w+w4

I [x] = 0=−w1+w4

I [x2] =
2

3
= w1+2w x2

+w4

I [x3] = 0=−w1+w4

I [x4] =
2

5
= w1+2w x4

+w4

I [x5] = 0=−w1+w4

Subtracting the third equation from the first one yields

2w (1− x2)= 2−
2

3
=

4

3
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Subtracting the fifth equation from the third one yields

2w x2 (1− x2)=
2

3
−

2

5
=

4

15

Dividing by the previously equation, we get

x2
=

1

5

Therefore,x2=−1/
√

5 andx3= 1/
√

5. Next,

2w (1− x2)=
2

5
w =

4

3

andw = 5/6. Solving the remaining equations forw1 andw4, we getw1 = w4 = 1/6.
The rule is then

Lo4[ f ] =
1

6

[
f (−1)+5 f

(
−

1
√

5

)
+5 f

(
1
√

5

)
+ f (1)

]
.

Applying it to the example problem yields

Lo4[ f ] =
1

3

[
1+5

2

1+ 1
5

]
=

28

9
= 3.1111. . .

This is more accurate than Simpson’s result.

(b) TheGauss-Laguerrequadrature rule has the form

∞∫
0

e−x f (x)dx≈
n∑

k=1

wk f (xk)= La[ f ] , (8)

where the abscissasxk and weightswk are chosen so thatf (x) is integrated exactly if it is
a polynomial of order 2n−1 or less.

Derive the abscissas and weights forn= 1 andn= 2. Test your formulas by approximat-
ing π with

π =
[
20(3/2)

]2
≈

(
2La[
√

x]
)2

, (9)

where

0(x)=

∞∫
0

t x−1e−t dt (10)

Answer:

First, let us consider the casen= 1. Integrating polynomials of the first two powers and applying
the general formula

I [xk] =

∞∫
0

e−x xk dx= k!
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we obtain

I [1] = 1= w1

I [x] = 1= w1 x1

The rule is then simply
La1[ f ] = f (1)

In the example problem, we get

π ≈
(
2La1[

√
x]

)2
= 4 .

In the casen= 2, we need to integrate the first four powers, obtaining

I [1] = 1= w1+w2

I [x] = 1= w1 x1+w2 x2

I [x2] = 2= w1 x2
1+w2 x2

2

I [x3] = 6= w1 x3
1+w2 x3

2

Manipulating these equations by multiplications and subtractions, we can simplify them as
follows:

(w1+w2) (w1 x3
1+w2 x3

2)− (w1 x1+w2 x2) (w1 x2
1+w2 x2

2) = w1w2 (x1− x2)2 (x1+ x2)= 4

(w1 x1+w2 x2) (w1 x3
1+w2 x3

2)− (w1 x2
1+w2 x2

2)2
= w1w2 x1 x2 (x1− x2)2

= 2

(w1+w2) (w1 x2
1+w2 x2

2)− (w1 x1+w2 x2)2
= w1w2 (x1− x2)2

= 1

Dividing the first and second equations by the last one yields the system of equations

x1+ x2 = 4

x1 x2 = 2

with the solutionx1= 2−
√

2,x2= 2+
√

2.

An easier way to get this solution is by considering polynomials orthogonal on the interval
[0,∞] with the weightw(x) = e−x (Laguerrepolynomials). We constructed a more general
case of these polynomials in Homework 7, Problem 1(b). The Laguerre polynomial of the
second order is (up to scaling by a constant)

P(x)= x2
−4x+2

and its zeroes arex1= 2−
√

2 andx2= 2+
√

2.

Equations for the unknowns weightsw1 andw2 are

w1+w2 = 1

w1

(
2−
√

2
)
+w2

(
2+
√

2
)
= 1

with the solution

w1 =
2+
√

2

4

w2 =
2−
√

2

4
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The rule is then

La2[ f ] =
2+
√

2

4
f
(
2−
√

2
)
+

2−
√

2

4
f
(
2+
√

2
)

.

In the example problem, we get

La2[
√

x] =
2+
√

2

4

√
2−
√

2+
2−
√

2

4

√
2+
√

2

=

√
2+
√

2

4

√
2+
√

2

√
2−
√

2+
2−
√

2

4

√
2+
√

2=

√
2+
√

2

2

and
π ≈

(
2La2[

√
x]

)2
= 2+

√
2≈ 3.41421

4. (Programming) Implement the adaptive quadrature method. Test your program by computing
integral (2) with the precision of six significant decimal digits. Plot or tabulate the values ofx
and f (x) that were involved in the computation.

The algorithm of adaptive integration can be defined either recursively

ADAPTIVE RECURSIVE( f (x),a,b,h, I )
1 if h < xtol
2 then
3 WARNING( ’did not converge’ )
4 return I
5 c← a+h/2
6 I1← R( f ,a,c)
7 I2← R( f ,c,b)
8 D← I2+ I1− I
9 if |D|< i tol

10 then J← I +α D
11 else J← ADAPTIVE RECURSIVE( f ,a,c,h/2, I1)+ADAPTIVE RECURSIVE( f ,c,b,h/2, I2)
12 return J
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or sequentially

ADAPTIVE NONRECURSIVE( f (x),a,b,h, I )
1 J← 0
2 PUSH( f ,a,b,h, I )
3 while POP( f ,a,b,h, I )
4 do
5 if h < xtol
6 then
7 WARNING( ’did not converge’ )
8 return I
9 c← a+h/2

10 I1← R( f ,a,c)
11 I2← R( f ,c,b)
12 D← I2+ I1− I
13 if |D|< i tol
14 then J← J+ I +α D
15 else
16 PUSH( f ,a,c,h/2, I1)
17 PUSH( f ,c,b,h/2, I2)
18 return J

Both algorithms involve the ruleR( f ,a,b) for computing integral (3), the minimum allowed
interval xtol and the requested precisioni tol . They are initialized withI = R( f ,a,b) and
h = b− a. The sequential algorithm operates a queue of intervals using a pair of functions
PUSH and POP.

Run your program takingR to be the trapezoidal rule. What is the appropriate value of constant
α?

Answer:

An appropriate value forα follows from Richardson’s extrapolation. The error of the trapezoidal
rule is

I [ f ]−T [ f ] = Ah3
+O(h5)

whereA does not depend onh. The composite trapezoidal rule applied on two intervals has the
error

I [ f ]−CT[ f ] = 2 A(h/2)3+O(h5)= A
h3

4
+O(h5)

Multiplying the second equation byα and the first equation by 1−α and adding them together,
we get

I [ f ]− R[ f ] = (1−α) Ah3
+α A

h3

4
+O(h5) ,

where
R[ f ] = (1−α)T [ f ]+αCT[ f ] = T [ f ]+α (CT[ f ]−T [ f ]) .

The error is minimized if
1−α+

α

4
= 0
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or

α =
4

3
The combination

R[ f ] = T [ f ]+
4

3
(CT[ f ]−T [ f ])

is equivalent to Simpson’s rule.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

2

5. (Programming) The length of a parametric curve{x(t), y(t)} is given by the integral

b∫
a

√
[x′(t)]2

+
[
y′(t)

]2
dt (11)

The curve that you interpolated in Homework 6 is close to thehypotrochoid

x(t) =
3

2
cost+cos3t ; (12)

y(t) =
3

2
sint−sin3t , (13)

defined on the interval 0≤ t ≤ 2π .

Estimate the length of this curve to six significant decimal digits applying a numerical method
of your choice.

Identify the method and plot the{x, y} points involved in the computation.

Answer:
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The integrand simplifies as follows:

f (t)=
√

[x′(t)]2
+

[
y′(t)

]2
=

√
3

2

2

+1+3 (cost cos3t−sint sin3t)=
3

2

√
5−4 cos4t

This function is periodic with the period ofπ/2. Therefore, we can integrate it on the interval
[0,π/2] and multiply the result by four:

2π∫
0

f (t)dt = 4

π/2∫
0

f (t)dt

Applying the adaptive integration method of the previous problem leads to the following distri-
bution of points:

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1

0

1

2

The estimated length of the curve is 20.0473
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Solution:

C program:

#include <math.h> /* for math functions */

#include <stdio.h> /* for output */

#include <stdlib.h> /* for malloc */

#include <assert.h> /* for assertion */

static const double xtol=1.e-8; /* x tolerance */

static const double itol=1.e-4; /* integral computation tolerance */

static const double pi=3.1415926535897932384626433832795;

/* Function: adaptive_recursive

----------------------------

Adaptive integration by the recursive algorithm.

Uses the trapezoidal rule, upgraded to Simpson’s

by one step of Richardson’s extrapolation.

f(x) - integrand function

a,b - integration limits

fa = f(a)

fb = f(b)

h = b-a

I - the trapezoidal estimate of the integral

*/

double adaptive_recursive(double (*f)(double x),

double a, double b,

double fa, double fb,

double h, double I)

{

double c, fc, I1, I2, D;

h /= 2;

if (h < xtol) {

fprintf(stderr,"Adaptive integration did not converge.\n");

return I;

}

c = a + h; /* midpoint */

fc = f(c);

I1 = 0.5*h*(fa+fc); /* trapezoidal from a to c */

I2 = 0.5*h*(fc+fb); /* trapezoidal from c to b */

D = 4.*(I1 + I2 - I)/3.;

if (fabs(D) < itol) {

I += D;

} else {

I = adaptive_recursive(f,a,c,fa,fc,h,I1) +

adaptive_recursive(f,c,b,fc,fb,h,I2);

}

return I;

}

/* Function: adaptive_nonrecursive

-------------------------------

Adaptive integration by the non-recursive algorithm.

Uses the trapezoidal rule, upgraded to Simpson’s

by one step of Richardson’s extrapolation.

f(x) - integrand function

a,b - integration limits
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fa = f(a)

fb = f(b)

h = b-a

I - the trapezoidal estimate of the integral

*/

double adaptive_nonrecursive(double (*f)(double x),

double a, double b,

double fa, double fb,

double h, double I)

{

double c, fc, I1, I2, D, J;

/* Stack is implemented with a linked list */

struct Stack {

double a,b,fa,fb,h,I;

struct Stack* next;

} *p, *first;

J = 0.;

/* allocate and PUSH the first entry to the stack */

assert(first = (struct Stack*) malloc(sizeof(*first)));

first->a = a; first->fa = fa;

first->b = b; first->fb = fb;

first->h = h; first->I = I;

first->next = NULL;

while ((p = first) != NULL) { /* POP from the stack */

first = p->next;

a = p->a; fa = p->fa;

b = p->b; fb = p->fb;

h = p->h/2; I = p->I;

if (h < xtol) {

fprintf(stderr,"Adaptive integration did not converge.\n");

return I;

}

c = a+h;

fc = f(c);

I1 = 0.5*h*(fa+fc); /* trapezoidal from a to c */

I2 = 0.5*h*(fc+fb); /* trapezoidal from c to b */

D = 4.*(I1 + I2 - I)/3.;

if (fabs(D) < itol) {

J += (I+D);

free (p);

} else {

p->b = c; p->fb = fc;

p->h = h; p->I = I1;

/* allocate and PUSH the first entry to the stack */

assert(first = (struct Stack*) malloc(sizeof(*p)));

first->a = c; first->fa = fc;

first->b = b; first->fb = fb;

first->h = h; first->I = I2;

first->next = p;

}

}
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return J;

}

/* example function: problem 4 */

static double func4(double x) {

double y;

y = 2./(1.+x*x);

printf("%f %f\n",x,y);

return y;

}

/* example function: problem 5 */

static double func5(double t) {

double x, y, f;

int k;

f = sqrt(5.-4.*cos(4.*t));

for (k=0; k < 4; k++) {

/* account for periodicity */

x = 1.5*cos(t) + cos(3.*t);

y = 1.5*sin(t) - sin(3.*t);

printf("%f %f\n",x,y);

t += 0.5*pi;

}

return f;

}

/* main program */

int main(void) {

double a, b, fa, fb, h;

double I;

a = -1.; fa=func4(a);

b = 1.; fb=func4(b);

h = b-a; I = 0.5*h*(fa+fb);

I = adaptive_nonrecursive(func4, a, b, fa, fb, h, I);

fprintf(stderr,"Integral=%f\n",I);

a = 0.; fa=func5(a);

b = 0.5*pi; fb=func5(b); /* integrate to p/2 due to periodicity */

h = b-a; I = 0.5*h*(fa+fb);

I = 6.*adaptive_recursive(func5, a, b, fa, fb, h, I);

fprintf(stderr,"Integral=%f\n",I);

return 0;

}
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