Answers to Homework 3: Nonlinear Equations: Newton, Steffensen, and Others

1. Prove that the sequence

$$
\begin{equation*}
c_{0}=3 ; \quad c_{n+1}=c_{n}-\tan c_{n}, \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

converges. Find the convergence limit and the order of convergence.
Solution:
(a) To find a candidate for the convergence limit, we can take the limit of the both sides of the recursion, as follows:

$$
c=\lim _{n \rightarrow \infty} c_{n+1}=\lim _{n \rightarrow \infty}\left(c_{n}-\tan c_{n}\right)=c-\tan c .
$$

Therefore,

$$
\tan c=0 .
$$

The root of $\tan x$ closest to $c_{0}=3$ is $c=\pi$.
(b) To prove that the iteration actually converges to π, we need to look at the derivative of $g(x)=x-\tan x:$

$$
g^{\prime}(x)=1-\frac{1}{\cos ^{2} x}=-\tan ^{2} x
$$

In the interval $\frac{3}{4} \pi+\epsilon \leq x \leq \frac{5}{4} \pi-\epsilon$, (for some small $\epsilon>0$)

$$
\left|g^{\prime}(x)\right|=\tan ^{2} x \leq \tan ^{2}\left(\frac{3}{4} \pi+\epsilon\right)<1
$$

Since the starting point $c_{0}=3$ belongs to the specified interval, the fixed-point iteration (1) converges according to the fixed-point theorem.
To show this in more detail, note that by the mean-value theorem,

$$
\tan c_{n}=\tan c+\frac{1}{\cos ^{2} \xi_{n}}\left(c_{n}-c\right)=\tan \pi+\frac{1}{\cos ^{2} \xi_{n}}\left(c_{n}-\pi\right)=\frac{1}{\cos ^{2} \xi_{n}}\left(c_{n}-\pi\right),
$$

where ξ_{n} is some point between c_{n} and c. Therefore,

$$
c-c_{n+1}=c-c_{n}+\tan c_{n}=\left(c-c_{n}\right)\left(1-\frac{1}{\cos ^{2} \xi_{n}}\right)=-\tan ^{2} \xi_{n}\left(c-c_{n}\right)
$$

We know that the starting point $c_{0}=3$ belongs to the interval $\frac{3}{4} \pi+\epsilon \leq x \leq \frac{5}{4} \pi-\epsilon$ where $\tan ^{2}(x) \leq \tan ^{2}\left(\frac{3}{4} \pi+\epsilon\right)=M<1$. The point ξ_{0} should be in the same interval, therefore

$$
\left|c-c_{1}\right|=\left|\tan ^{2} \xi_{0}\right|\left|c-c_{0}\right| \leq M\left|c-c_{0}\right|<\left|c-c_{0}\right|,
$$

and we see that c_{1} is also in the specified interval. By induction, this will be true for all c_{n}, and

$$
\left|c-c_{n+1}\right| \leq M\left|c-c_{n}\right| \leq M^{2}\left|c-c_{n-1}\right| \leq \ldots \leq M^{n+1}\left|c-c_{0}\right| .
$$

Taking the limit,

$$
\lim _{n \rightarrow \infty}\left|c-c_{n+1}\right| \leq \lim _{n \rightarrow \infty} M^{n+1}\left|c-c_{0}\right|=0
$$

and the convergence is proved.
(c) The convergence order is 3 (cubic convergence). To show that, we can expand $\tan c_{n}$ in a Taylor series around $c=\pi$:

$$
\tan c_{n}=\tan c+\frac{\left(c_{n}-c\right)}{\cos ^{2} c}+\frac{\tan c}{\cos ^{2} c}\left(c_{n}-c\right)^{2}+\frac{3-2 \cos ^{2} \xi_{n}}{3 \cos ^{2} \xi_{n}}\left(c_{n}-c\right)^{3}
$$

Since $\tan \pi=0$, the first and the third term are zero, and

$$
\tan c_{n}=\left(c_{n}-c\right)+\frac{3-2 \cos ^{2} \xi_{n}}{3 \cos ^{2} \xi_{n}}\left(c_{n}-c\right)^{3}
$$

Therefore,

$$
c-c_{n+1}=c-c_{n}+c_{n}-c-\frac{3-2 \cos ^{2} \xi_{n}}{3 \cos ^{2} \xi_{n}}\left(c_{n}-c\right)^{3}=-\frac{3-2 \cos ^{2} \xi_{n}}{3 \cos ^{2} \xi_{n}}\left(c_{n}-c\right)^{3}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\left|c-c_{n+1}\right|}{\left|c-c_{n}\right|^{3}}=\lim _{n \rightarrow \infty} \frac{3-2 \cos ^{2} \xi_{n}}{3 \cos ^{2} \xi_{n}}=\frac{3-2 \cos ^{2} \pi}{3 \cos ^{2} \pi}=\frac{1}{3} .
$$

This can also be proved using the result of problem two.
2. Prove that if $g(x) \in C^{m}$ for some $m>1$ (continuous together with its derivatives to the order $m), g(c)=c, g^{\prime}(c)=g^{\prime \prime}(c)=\ldots=g^{(m-1)}(c)=0, g^{(m)}(c) \neq 0$, and the fixed-point iteration

$$
\begin{equation*}
c_{n+1}=g\left(c_{n}\right) \tag{2}
\end{equation*}
$$

converges to c, then the order of convergence is m.
Hint: Use the Taylor series of $g(x)$ around $x=c$.
Solution: The Taylor series takes the form

$$
g\left(c_{n}\right)=g(c)+g^{\prime}(c)\left(c_{n}-c\right)+\ldots+\frac{g^{(m-1)}(c)}{(m-1)!}\left(c_{n}-c\right)^{m-1}+\frac{g^{(m)}\left(\xi_{n}\right)}{m!}\left(c_{n}-c\right)^{m}
$$

where only two terms can be different from zero:

$$
g\left(c_{n}\right)=g(c)+\frac{g^{(m)}\left(\xi_{n}\right)}{m!}\left(c_{n}-c\right)^{m},
$$

where ξ_{n} is some point between c and c_{n}. Taking the difference $c-c_{n+1}$, we see that

$$
c-c_{n+1}=g(c)-g\left(c_{n}\right)=-\frac{g^{(m)}\left(\xi_{n}\right)}{m!}\left(c_{n}-c\right)^{m}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \frac{\left|c-c_{n+1}\right|}{\left|c-c_{n}\right|^{m}}=\lim _{n \rightarrow \infty} \frac{\left|g^{(m)}\left(\xi_{n}\right)\right|}{m!}=\frac{\left|g^{(m)}(c)\right|}{m!} \neq 0
$$

By definition, this means that the order of convergence is m.
3. Determine the order of convergence for the following methods:
(a) The modified Newton's method

$$
\begin{equation*}
c_{n+1}=c_{n}-m \frac{f\left(c_{n}\right)}{f^{\prime}\left(c_{n}\right)} \tag{3}
\end{equation*}
$$

under the conditions $f(x) \in C^{m+1}(m \geq 1), f(c)=f^{\prime}(c)=f^{\prime \prime}(c)=\ldots=f^{(m-1)}(c)=0$, and $f^{(m)}(c) \neq 0$.
Solution: The order of convergence is at least 2. The Taylor series of $f\left(c_{n}\right)$ around c is

$$
f\left(c_{n}\right)=f(c)+f^{\prime}(c)\left(c_{n}-c\right)+\ldots+\frac{f^{(m)}(c)}{m!}\left(c_{n}-c\right)^{m}+\frac{f^{(m+1)}\left(\xi_{n}\right)}{(m+1)!}\left(c_{n}-c\right)^{m+1}
$$

where ξ_{n} is a point between c and c_{n}, and only two terms can be different from zero:

$$
f\left(c_{n}\right)=\frac{f^{(m)}(c)}{m!}\left(c_{n}-c\right)^{m}+\frac{f^{(m+1)}\left(\xi_{n}\right)}{(m+1)!}\left(c_{n}-c\right)^{m+1}
$$

Analogously, from the Taylor series for $f^{\prime}\left(c_{n}\right)$, we obtain

$$
f^{\prime}\left(c_{n}\right)=\frac{f^{(m)}(c)}{(m-1)!}\left(c_{n}-c\right)^{m-1}+\frac{f^{(m+1)}\left(\xi_{n}^{\star}\right)}{m!}\left(c_{n}-c\right)^{m}
$$

Here ξ_{n} and ξ_{n}^{\star} are points between c and c_{n}, not necessarily equal to each other. Forming the difference $c-c_{n+1}$, we get

$$
c-c_{n+1}=c-c_{n}+m \frac{f\left(c_{n}\right)}{f^{\prime}\left(c_{n}\right)}=\frac{f^{\prime}\left(c_{n}\right)\left(c-c_{n}\right)+m f\left(c_{n}\right)}{f^{\prime}\left(c_{n}\right)}
$$

Using the expressions above,
$c-c_{n+1}=\frac{-\frac{f^{(m)}(c)}{(m-1)!}\left(c_{n}-c\right)^{m}-\frac{f^{(m+1)}\left(\xi_{n}^{\star}\right)}{m!}\left(c_{n}-c\right)^{m+1}+m \frac{f^{(m)}(c)}{m!}\left(c_{n}-c\right)^{m}+m \frac{f^{(m+1)}\left(\xi_{n}\right)}{(m+1)!}\left(c_{n}-c\right)^{m+1}}{\frac{f^{(m)}(c)}{(m-1)!}\left(c_{n}-c\right)^{m-1}+\frac{f^{(m+1)}\left(\xi_{n}^{\star}\right)}{m!}\left(c_{n}-c\right)^{m}}$.
Collecting terms in the numerator,

$$
c-c_{n+1}=\frac{-\frac{f^{(m+1)}\left(\xi_{n}^{\star}\right)}{m!}\left(c_{n}-c\right)^{2}+m \frac{f^{(m+1)}\left(\xi_{n}\right)}{(m+1)!}\left(c_{n}-c\right)^{2}}{\frac{f^{(m)}(c)}{(m-1)!}+\frac{f^{(m+1)}\left(\xi_{n}^{*}\right)}{m!}\left(c_{n}-c\right)}
$$

In the limit,

$$
\lim _{n \rightarrow \infty} \frac{\left|c-c_{n+1}\right|}{\left|c-c_{n}\right|^{2}}=\lim _{n \rightarrow \infty}\left|\frac{-\frac{f^{(m+1)}\left(\xi_{n}^{\star}\right)}{m!}+m \frac{f^{(m+1)}\left(\xi_{n}\right)}{(m+1)!}}{\frac{f^{(m)}(c)}{(m-1)!}+\frac{f^{(m+1)}\left(\xi_{n}^{\star}\right)}{m!}\left(c_{n}-c\right)}\right|
$$

By assumption, c_{n} converges to c as n approaches infinity. So do ξ_{n} and ξ_{n}^{\star}. Using the continuity of $f^{(m)}(x)$ and $f^{(m+1)}(x)$, we get

$$
\lim _{n \rightarrow \infty} \frac{\left|c-c_{n+1}\right|}{\left|c-c_{n}\right|^{2}}=\frac{\frac{(m-1)!}{m!}\left(1-\frac{m}{m+1}\right)\left|f^{(m+1)}(c)\right|}{\left|f^{(m)}(c)\right|}=\frac{1}{m(m+1)}\left|\frac{f^{(m+1)}(c)}{f^{(m)}(c)}\right| .
$$

(b) Olver's method

$$
\begin{equation*}
c_{n+1}=c_{n}-\frac{f\left(c_{n}\right)}{f^{\prime}\left(c_{n}\right)}-\frac{1}{2} \frac{f^{\prime \prime}\left(c_{n}\right) f\left(c_{n}\right)^{2}}{\left[f^{\prime}\left(c_{n}\right)\right]^{3}} \tag{4}
\end{equation*}
$$

under the conditions $f(x) \in C^{4}, f(c)=0$, and $f^{\prime}(c) \neq 0$.
Solution: The order of convergence is at least 3. To prove that, let us differentiate the function $g(x)=x-\frac{f(x)}{f^{\prime}(x)}-\frac{1}{2} \frac{f^{\prime \prime}(x) f(x)^{2}}{\left[f^{\prime}(x)\right]^{3}}$. For convenience, let us write it in the form

$$
g(x)=x+f(x) h_{1}(x)+f(x)^{2} h_{2}(x),
$$

where $h_{1}(x)=-\frac{1}{f^{\prime}(x)}$, and $h_{2}(x)=-\frac{1}{2} \frac{f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{3}}$. The first three derivatives are

$$
\begin{aligned}
g^{\prime}(x)= & 1+h_{1}(x) f^{\prime}(x)+2 f(x) h_{2}(x) f^{\prime}(x)+f(x) h_{1}^{\prime}(x)+f(x)^{2} h_{2}^{\prime}(x) \\
g^{\prime \prime}(x)= & 2 h_{2}(x)\left[f^{\prime}(x)\right]^{2}+2 f^{\prime}(x) h_{1}^{\prime}(x)+4 f(x) f^{\prime}(x) h_{2}^{\prime}(x)+h_{1}(x) f^{\prime \prime}(x)+ \\
& 2 f(x) h_{2}(x) f^{\prime \prime}(x)+f(x) h_{1}^{\prime \prime}(x)+f(x)^{2} h_{2}^{\prime \prime}(x) \\
g^{\prime \prime \prime}(x)= & 6\left[f^{\prime}(x)\right]^{2} h_{2}^{\prime}(x)+6 h_{2}(x) f^{\prime}(x) f^{\prime \prime}(x)+3 h_{1}^{\prime}(x) f^{\prime \prime}(x)+6 f(x) h_{2}^{\prime}(x) f^{\prime \prime}(x)+ \\
& 3 f^{\prime}(x) h_{1}^{\prime \prime}(x)+6 f(x) f^{\prime}(x) h_{2}^{\prime \prime}(x)+h_{1}(x) f^{\prime \prime \prime}(x)+2 f(x) h_{2}(x) f^{\prime \prime \prime}(x)+ \\
& f(x) h_{1}^{\prime \prime \prime}(x)+f(x)^{2} h_{2}^{\prime \prime \prime}(x)
\end{aligned}
$$

Evaluating them at the root c (such that $f(c)=0$) produces

$$
\begin{aligned}
g^{\prime}(c) & =1+h_{1}(c) f^{\prime}(c)=0 \\
g^{\prime \prime}(c) & =2 h_{2}(c)\left[f^{\prime}(c)\right]^{2}+2 f^{\prime}(c) h_{1}^{\prime}(c)+h_{1}(c) f^{\prime \prime}(c)=2 h_{2}(c)\left[f^{\prime}(c)\right]^{2}+\frac{f^{\prime \prime}(c)}{f^{\prime}(c)}=0 \\
g^{\prime \prime \prime}(c) & =6\left[f^{\prime}(c)\right]^{2} h_{2}^{\prime}(c)+6 h_{2}(c) f^{\prime}(c) f^{\prime \prime}(c)+3 h_{1}^{\prime}(c) f^{\prime \prime}(c)+3 f^{\prime}(c) h_{1}^{\prime \prime}(c)+h_{1}(c) f^{\prime \prime \prime}(c) \\
& =\frac{3\left[f^{\prime \prime}(c)\right]^{2}}{\left[f^{\prime}(c)\right]^{2}}-\frac{f^{\prime \prime \prime}(c)}{f^{\prime}(c)}
\end{aligned}
$$

According to the general theorem from the second problem, this shows that the iteration $c_{n+1}=g\left(c_{n}\right)$ converges at least cubically:

$$
\lim _{n \rightarrow \infty} \frac{\left|c-c_{n+1}\right|}{\left|c-c_{n}\right|^{3}}=\frac{\left|g^{\prime \prime \prime}(c)\right|}{3!}=\left|\frac{1}{2}\left(\frac{f^{\prime \prime}(c)}{f^{\prime}(c)}\right)^{2}-\frac{1}{6} \frac{f^{\prime \prime \prime}(c)}{f^{\prime}(c)}\right| .
$$

We could also obtain this result directly by using the Taylor series expansions.
(c) Steffensen's method

$$
\begin{equation*}
c_{n+1}=c_{n}-\frac{f\left(c_{n}\right)^{2}}{f\left[c_{n}+f\left(c_{n}\right)\right]-f\left(c_{n}\right)} \tag{5}
\end{equation*}
$$

under the conditions $f(x) \in C^{2}, f(c)=0$, and $f^{\prime}(c) \neq 0$.
Solution: The convergence is at least quadratic.
To prove it, consider the Taylor series of $f\left[c_{n}+f\left(c_{n}\right)\right]$ around c_{n} :

$$
f\left[c_{n}+f\left(c_{n}\right)\right]=f\left(c_{n}\right)+f^{\prime}\left(c_{n}\right) f\left(c_{n}\right)+\frac{f^{\prime \prime}\left(\xi_{n}\right)}{2} f\left(c_{n}\right)^{2}
$$

where ξ_{n} is a point between c_{n} and $c_{n}+f\left(c_{n}\right)$. Therefore,

$$
\frac{f\left(c_{n}\right)^{2}}{f\left[c_{n}+f\left(c_{n}\right)\right]-f\left(c_{n}\right)}=\frac{f\left(c_{n}\right)}{f^{\prime}\left(c_{n}\right)+\frac{f^{\prime \prime}\left(\xi_{n}\right)}{2} f\left(c_{n}\right)} .
$$

Forming the difference $c-c_{n+1}$, we obtain

$$
c-c_{n+1}=c-c_{n}+\frac{f\left(c_{n}\right)}{f^{\prime}\left(c_{n}\right)+\frac{f^{\prime \prime}\left(\xi_{n}\right)}{2} f\left(c_{n}\right)}=\frac{f\left(c_{n}\right)+f^{\prime}\left(c_{n}\right)\left(c-c_{n}\right)+\frac{f^{\prime \prime}\left(\xi_{n}\right)}{2} f\left(c_{n}\right)\left(c-c_{n}\right)}{f^{\prime}\left(c_{n}\right)+\frac{f^{\prime \prime}\left(\xi_{n}\right)}{2} f\left(c_{n}\right)} .
$$

The Taylor series of $f(c)$ around c_{n} gives us

$$
0=f(c)=f\left(c_{n}\right)+f^{\prime}\left(c_{n}\right)\left(c-c_{n}\right)+\frac{f^{\prime \prime}\left(\xi_{n}^{\star}\right)}{2}\left(c-c_{n}\right)^{2},
$$

where ξ_{n}^{\star} is a point between c_{n} and c, not necessarily equal to ξ_{n}. Additionally,

$$
0=f(c)=f\left(c_{n}\right)+f^{\prime}\left(\xi_{n}^{\dagger}\right)\left(c-c_{n}\right),
$$

where ξ_{n}^{\dagger} is another point between c_{n} and c, not necessarily equal to ξ_{n} or ξ_{n}^{\star}.
Putting it all together,

$$
c-c_{n+1}=-\frac{\frac{f^{\prime \prime}\left(\xi_{n}^{\star}\right)}{2}\left(c-c_{n}\right)^{2}+\frac{f^{\prime \prime}\left(\xi_{n}\right)}{2} f^{\prime}\left(\xi_{n}^{\dagger}\right)\left(c-c_{n}\right)^{2}}{f^{\prime}\left(c_{n}\right)+\frac{f^{\prime \prime}\left(\xi_{n}\right)}{2} f\left(c_{n}\right)} .
$$

In the limit of n approaching infinity, we utilize the continuity of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ to get

$$
\lim _{n \rightarrow \infty} \frac{\left|c-c_{n+1}\right|}{\left|c-c_{n}\right|^{2}}=\lim _{n \rightarrow \infty}\left|\frac{\frac{f^{\prime \prime}\left(\xi_{n}^{\star}\right)}{2}+\frac{f^{\prime \prime}\left(\xi_{n}\right)}{2} f^{\prime}\left(\xi_{n}^{\dagger}\right)}{f^{\prime}\left(c_{n}\right)+\frac{f^{\prime \prime}\left(\xi_{n}\right)}{2} f\left(c_{n}\right)}\right|=\frac{1}{2}\left|\frac{f^{\prime \prime}(c)}{f^{\prime}(c)}\right|\left|1+f^{\prime}(c)\right|
$$

4. (Programming) In this assignment, you will study the convergence of different methods experimentally using graphical tools. Note that the convergence limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|c-c_{n+1}\right|}{\left|c-c_{n}\right|^{p}}=z \tag{6}
\end{equation*}
$$

corresponds to the linear function

$$
\begin{equation*}
y=\log z+p x \tag{7}
\end{equation*}
$$

in logarithmic coordinates $x_{n}=\log \left|c-c_{n}\right|, y_{n}=\left|c-c_{n+1}\right|$. Plotting the points $\left\{x_{n}, y_{n}\right\}$ against the theoretical line verifies experimentally the order of convergence.
In the previous homework, we found that the equation

$$
\begin{equation*}
x+e^{x}=0 \tag{8}
\end{equation*}
$$

has the root at $c \approx-0.567143$ (accurate to six significant digits).
The figure shows the logarithmic plot of bisection iterations $\left\{x_{n}, y_{n}\right\}$ plotted against the line $y=\log (1 / 2)+x$. We can see that the iterations oscillate chaotically around the line. You will investigate whether the convergence behavior of other methods is more predictable.

Implement and apply the following methods:
(a) Fixed-point iteration. Apply it to $g(x)=-e^{x}$ starting with $c_{0}=-1$.
(b) Newton's method. Apply it to $f(x)=x+e^{x}$ starting with $c_{0}=-1$.
(c) Secant method. Apply it to $f(x)=x+e^{x}$ starting with $c_{0}=0$ and $c_{1}=-1$.

In each case, find the root with the accuracy of six significant digits and plot the points x_{n}, y_{n} and the theoretical convergence line. Since some methods converge faster than others, you will need to use different number of points. Use at least 19 points for (a), 2 points for (b), and 3 points for (c).
Answer:
(a)

(b)

(c)

Solution: C program

```
#include <stdio.h> /* for output */
#include <math.h> /* for mathematical functions */
#include <assert.h> /* for assertion */
/* function: fixed
```

```
    Implements fixed-point iteration
    func - a pointer to function g(x)
    cO - initial value
    tol - tolerance in position and value
    nmax - maximum number of iterations
*/
double fixed(double (*func)(double),
            double c0, double tol, int nmax)
{
    int n;
    double g, c;
    c = c0;
    for (n=0; n < nmax; n++) {
        g = func(c);
        /* print out the table */
        printf("n=%d c=%f |f(c)|=%e\n",n,c,fabs(g));
        /* return if the root is located to the tolerance */
        if (fabs(g-c) <= tol) return g;
        c = g;
    }
    fprintf(stderr,"Warning: Exact root is not found after %d iterations\n",
    nmax);
    return g;
}
/* function: newton
    Implements Newton's method
    func - a pointer to a function
    der - a pointer to the function derivative
    cO - initial value
    xtol, ftol - tolerance in position and value
    nmax - maximum number of iterations
*/
double newton(double (*func)(double),
        double (*der)(double),
        double c0,
        double xtol, double ftol, int nmax)
{
    int n;
    double f, fp, c, d;
    c = c0;
    for (n=0; n < nmax; n++) {
        f = func(c);
        fp = der(c);
        assert(fp != 0.); /* avoid division by zero */
        d = f/fp;
        /* print out the table */
        printf("n=%d c=%f |f(c)|=%e\n",n,c,fabs(f));
```

```
        /* return if the root is located to the tolerance */
        if (fabs(d) <= xtol && fabs(f) <= ftol) return c;
        c -= d;
    }
    fprintf(stderr,"Warning: Exact root is not found after %d iterations\n",
    nmax);
    return c;
}
/* function: secant
    Implements Secant method
    func - a pointer to a function
    c0, c1 - initial values
    xtol, ftol - tolerance in position and value
    nmax - maximum number of iterations
*/
double secant(double (*func) (double),
            double c0, double c1,
            double xtol, double ftol, int nmax)
{
    int n;
    double f0, f1, c;
    f0 = func(c0);
    for (n=0; n < nmax; n++) {
        f1 = func(c1);
        /* print out the table */
        printf("n=%d c=%f |f(c)|=%e\n",n,c1,fabs(f1));
        /* return if the root is located to the tolerance */
        if (fabs(c1-c0) <= xtol && fabs(f1) <= ftol) return c1;
        if (c0 == c1 || f0 == f1) {
            fprintf(stderr,"Error: The line is degenerate\n");
            return c1;
        }
        c = c1 - f1*(c1-c0)/(f1-f0);
        c0 = c1;
        c1 = c;
        f0 = f1;
        f1 = func(c);
    }
    fprintf(stderr,"Warning: Exact root is not found after %d iterations\n",
    nmax);
    return c1;
}
```

```
/* test function */
static double function (double x)
{
    return (x + exp(x));
}
/* test function */
static double gfunction (double x)
{
    return (-exp(x));
}
/* derivative of the test function */
static double derivative (double x)
{
    return (1. + exp(x));
}
int main (void)
{
    int nmax=20; /* maximum number of iterations */
    double xtol=1.e-7, ftol=1.e-15, c0=-1., c1=0., c;
    c = fixed(&gfunction, c0, xtol, nmax);
    c = newton(&function, &derivative, c0, xtol, ftol, nmax);
    c = secant(&function, c1, c0, xtol, ftol, nmax);
    return 0;
}
```

5. (Programming) In this assignment, you will compute the motion of a planet according to Kepler's equation - one of the most famous nonlinear equations in the history of science. Kepler's equation has the form

$$
\begin{equation*}
\omega t=\psi-\epsilon \sin \psi, \tag{9}
\end{equation*}
$$

where t is time, ω is angular frequency, ϵ is the orbit eccentricity, and ψ is the angle coordinate. To find the planet location at time t, we need to solve equation (9) for ψ. The planet coordinates x and y are then given by

$$
\begin{align*}
& x=a(\cos \psi-\epsilon) \tag{10}\\
& y=a \sqrt{1-\epsilon^{2}} \sin \psi, \tag{11}
\end{align*}
$$

where a is the major semi-axis of the elliptical orbit. For our planet, we will take $a=1 \mathrm{AU}$ (astronomical unit), and the eccentricity $\epsilon=0.6$ (which is much larger than the orbit eccentricity of the Earth and other big planets in the Solar system). The picture shows the orbit and the planet positions in January $(\psi=\pi)$ and July $(\psi=0)$.

Your task is to find the planet location in the other ten months, assuming that each month takes $1 / 12$ of the rotation period. Solve Kepler's equation (9) for $\omega t=0, \pi / 6,2 \cdot \pi / 6, \ldots, 11 \cdot \pi / 6$. You can use any numerical method to do that (either your own program or a library program). The result should be computed with the precision of 1 second $\left(1 / 3600\right.$ of $\left.1^{\circ}\right)$. Output a table of the form

ωt	ψ	x	y

and then use a graphics program to plot the planet locations.

Answer:

ωt	ψ	x	y
0.000000	0.000000	0.400000	0.000000
0.523599	1.041495	-0.095069	0.690528
1.047198	1.645523	-0.674657	0.797767
1.570796	2.091329	-1.097343	0.694043
2.094395	2.468459	-1.381872	0.498751
2.617994	2.812121	-1.546213	0.258835
3.141593	3.141593	-1.600000	0.000000
3.665191	3.471064	-1.546213	-0.258835
4.188790	3.814727	-1.381872	-0.498751
4.712389	4.191856	-1.097343	-0.694043
5.235988	4.637662	-0.674657	-0.797767
5.759587	5.241691	-0.095069	-0.690528

Solution: C program

```
#include <stdio.h> /* for output */
#include <math.h> /* for mathematical functions */
int main (void)
{
    double x, y, t, a=1.0, c, f, fp, e=0.6, pi, tol;
    int n, iter, niter=100;
    pi = acos(-1.0); /* number pi */
    tol = pi/180./3600.; /* accuracy */
    for (n=0; n < 13; n++) {
        t = n*2.*pi/12;
        c = t; /* the initial estimate */
        for (iter=0; iter < niter; iter++) { /* Nonlinear solver */
            /* Kepler's equation */
            f = c - e*sin(c) - t; /* function */
            fp = 1. - e*cos(c); /* derivative */
            if (fabs(f) < tol && fabs(f) < tol*fabs(fp)) break;
            c -= f/fp; /* Newton's iteration */
        }
        if (iter >= niter) {
            fprintf(stderr,
            "Newton's method failed to converge after %d iterations\n",
            iter);
            return 1;
        }
        /* compute coordinates */
        x = a*(cos(c) - e);
        y = a*sqrt(1-e*e)*sin(c);
        /* output table */
        printf("%d t=%f psi=%f x=%f y=%f\n", n, t, c, x, y);
    }
    return 0;
}
```

