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Least�squares separation of signal and noise with
multidimensional �lters

Raymond Lee Abma� Ph�D�

Stanford University� ����

ABSTRACT

Multidimensional �lters are used to characterize and separate seismic signal and noise�

This separation may be achieved with either simple �ltering or by an inversion process

that involves solving a system of regressions� The system of regressions describes the

expected properties of the noise and signal by using �lters and weights�

Signal and noise separation by �ltering may be done by either f	x prediction or t	x

prediction� Both these techniques are prediction	error �lters that de�ne the noise as the

prediction error� The f	x prediction is shown to be equivalent to a t	x prediction with a

very long �lter length in time� While �ltering is simple� it can produce spurious events

and attenuate the amplitude of the signal� A technique that separates signal and noise

with an inversion can eliminate these weaknesses of simple �ltering�

An important issue in signal and noise separation is the removal of high	amplitude

noise before �ltering or inversion� since high	amplitude noise corrupts the estimation of

prediction	error �lters and impairs least	squares inversion techniques� To detect auto	

matically these high	amplitude noises� trace	to	trace predictions are examined for large

residuals that correspond to bad samples� After the bad samples are eliminated� the

inversions are arranged to predict the missing data simultaneously with the signal and

noise separation� The missing data may be data that has been removed because of the

high	amplitude noise removal� or it may be data missing because it was not recorded�

Two general forms of inversion are used� One form requires only a �lter that describes

the signal� This form of inversion is useful in removing noise that is unpredictable from

trace to trace� The other form requires �lters that describe both the signal and the noise�

This second form allows high	amplitude and coherent noise to be well separated from the

signal� but it often requires a more complicated weighting function to properly distribute

the data between noise and signal�
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These techniques are applied to synthetic and real seismic data to demonstrate the

weaknesses and strengths of the various approaches�
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Preface

Most of the �gures in this thesis show the result of programs applied to seismic data� In

the interest of providing research that is reproducible� a CD	ROM version of this thesis is

available containing the input seismic data and the programs used to create most of the

�gures�

All of the �gures in this thesis are marked with one of three labels� 
R� 
NR� or 
CR��

These de�ne whether the �gure is reproducible from the information provided on the

CD	ROM version of this thesis�

If a �gure is marked with an 
R� it is fully reproducible� All of the input data and source

�les required to create the �gure are provided on the CD� The postscript �le containing

the �gure can be removed and the cake�le rules provided on the CD will rebuild the �gure

on any of the supported computer architectures�

If a �gure is marked with a 
CR� it is conditionally reproducible� All the data and

source �les needed to recreate the �gure are provided on the CD� but the �gure will require

a fairly long time to recreate�

If a �gure is marked with an 
NR� it is not reproducible� It cannot be recreated

automatically from the data on the CD� In this thesis� a �gure marked 
NR� will generally

be a hand drawn �gure� In this case� if you remove the postscript �le for that �gure� there

is no way to recreate it�

All of the �gures have a button in the caption� For the reproducible and conditionally

reproducible �gures� clicking with the center mouse key on the button will bring up a panel

that lets you interact with the �gure� You can display the �gure in a separate window or

destroy and rebuild the �gure� If the �gure is conditionally reproducible you can view the

warning message that tells you the conditions under which the �gure can be rebuilt�

The advantages of making the research fully reproducible go beyond just the interest

in con�rming my results� It is my hope that the computer codes available on the CD	ROM
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version of this thesis will be useful to those who face the problems addressed here�

To follow the conventions used by the journal Geophysics� in this thesis� vectors are in

bold print such as v� and matrices are in bold with a tilde underneath like A
�
�

For the convenience of the reader� a list of the commonly used symbols is given here�

y � indicates the transpose conjugate operation

� � indicates convolution

�k � the delta function� or one when k is zero and zero otherwise

D
�
� a matrix in which the data is organized so that matrix multiplication appears as a

convolution to a �lter vector on which D
�

d � data vector

e � error vector

E � expectation

� � scaling factor� generally for balancing parts of an inversion

F
�
s � multidimensional signal annihilation �lter

F
�
n � multidimensional noise annihilation �lter

f � a �lter

I
�
� the identity matrix� a square matrix with ones on the diagonal and zeros elsewhere

K
�
� known data mask

k � known data

L
�
� a lower triangular matrix

L
�
U
�
decomposition � the decomposition of a matrix into upper and lower triangular ma	

trices

M
�
� missing data mask

m � missing data vector� or as in chapter 
 this indicates a model vector

N
�
� noise annihilation �lter

n � noise vector

��x� � probability density as a function of x

pxi � probability function of xi

r � a residual vector

SEP � Stanford Exploration Project

S
�
� signal annihilation �lter

s � signal vector

U
�
� an upper triangular matrix
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V
�
� covariance matrix

� � angular frequency

W
�
� a weighting matrix
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Chapter �

Introduction

Separating noise from signal is an old problem in geophysics� Most geophysical work

involves some separation of the desired information from the information that is not of

interest� that is� noise� Many seismic data� especially those acquired on land� are seriously

contaminated with noise that impedes interpretation and interferes with further processing

and analysis�

Noise may be either random or coherent� Random noise� as it is considered here� is

a noise that has no predictability from one sample to the next� Seismic data often has

a background of this random noise� This random noise is recognized by its dissimilarity

from trace to trace� Seismic signals� on the other hand� are recognized by their lateral

continuity� and this continuity is used to distinguish events of interest from the background

random noise� Much of this continuity results from the sedimentary character of the data

being considered� Coherent noise may be considered as undesired signal� Examples of

coherent noise are ground roll� near	surface scatterers� refracted arrivals� and out	of	plane

re�ectors� While coherent noise may often be signal in some other context� these noises

interfere with the primary use of the data� Eliminating background noise from a seismic

section makes re�ections signi�cantly easier to recognize� especially when noise is strong�

��� Background

In the past� single trace deconvolution and NMO stacking have been the most e�ective

noise attenuation advances� Single trace deconvolution can be thought of as removing

the reverberation of the re�ection� a coherent noise� from the data� NMO stacking is

���



���

an e�ective noise attenuator of both coherent noise that does not follow the speci�ed

hyperbolic trajectory and of random noise� Even today� these two techniques provide

the greatest improvement to our seismic records� Unfortunately� these techniques do not

always provide su�cient noise attenuation�

When noise has properties that allow it to be distinguished from signal� it may be

removed by taking advantage of these properties� Early noise	attenuation techniques were

limited to the grouping of geophones to cancel coherent noise �Dobrin and Savit� �����

Kanasewich� ����� Stone� ������ since sophisticated post	acquisition processing was un	

available� Later� along with digital data recording and processing� multichannel techniques

such as velocity �lters and F	K �ltering �Yilmaz� ����� were used to eliminate noise such

as ground roll and air blasts�

For attenuating random noise� a number of techniques involving �ltering or mixing

adjacent traces were used before the introduction of the prediction technique of Canales

������� Canales divided the two	dimensional �ltering problem into many one	dimensional

�ltering problems in space� one for each frequency� Canales� idea was further developed

by Gulunay ������ and was referred to as FX	decon� These techniques have been very

successful� They were relatively easy to use� reliable� and did not harm re�ected events�

The f	x prediction techniques of Canales and Gulunay may also be implemented as t	

x prediction process� as is done in chapter �� A technique that is somewhat similar to

the t	x prediction process shown here was presented by Hornbostel ������� although the

emphasis in his work was handling time	 and space	varying signals� In this thesis� time	

and space	varying signals are treated by windowing the seismic data into smaller sections

as discussed in Claerbout �����b�� Unfortunately� these prediction techniques may be

only partially successful in the presence of strong noise� Furthermore� these techniques

can generate spurious events in seismic data� as I will show later in this thesis�

Bad traces in prestack seismic data may be manually removed or edited automatically

�Pokhriyal et al�� ����� Pokhriyal� ���
�� A similar approach to automatically remov	

ing samples with high	amplitude noise will be presented later in this thesis� Sinusoidal

noise may be separated from signal without �ltering out the signal of the same frequency

�Linville and Meek� ������ Various specialized methods are available to remove coherent

noise from prestack data� Along with velocity �ltering and F	K �ltering� multiple at	

tenuation� stacking� deconvolution� and dip �ltering are all e�orts to separate noise from

signal�



���

In this thesis� I assume that the signals of interest are linear� that is� signals are lines

in �	D data and planes in 
	D data� For nonlinear events� the data are subdivided� or

windowed� into smaller sections where the events of interest are approximately linear�

While the human eye recognizes the continuity of nonlinear events� the mathematical

tools available to us work best on linear problems� Windowing extends the applicability

of the techniques discussed here to data in areas of complex geology and to prestack data�

Complex geology requires that the windows be small enough to make the geology look

linear within the window� although this requirement may be relaxed somewhat because

of the smoothing e�ect of di�ractions� Prestack data generally appears as a series of

hyperbolas� which will be more linear at the far o�sets than at the near� Once again�

windowing these hyperbolas generally will allow them to be treated as linear events within

the window�

��� Outline of the thesis

This thesis covers two methods of separating noise and signal� The �rst method is remov	

ing noise by prediction �ltering� Examples of this method are the traditional predictive

deconvolution� Canales� and Gulunay�s fx	decon techniques� and the t	x prediction tech	

niques discussed in this thesis and in Hornbostel ������� The second method is to separate

the signal and noise using a least	squares inversion method to predict the signal or the

noise�

Additionally� a preprocessing step of removing high	amplitude noise is presented to

condition data in preparation for these two methods� Since high	amplitude noise corrupts

the calculation of a prediction �lter and can overwhelm the least	squares inversions used to

predict the signal or noise� this process is an important step in signal and noise separation�

As an extension to the signal and noise separation problem� missing data may be predicted

with a modi�cation of the inversion method� This prediction of missing data is useful� since

high	amplitude noise� which would otherwise overwhelm the least	squares calculations� can

be removed and later recovered by the inversion�

����� Automatic data editing for high�amplitude noise

Chapter � addresses the removal of high	amplitude noise� While this topic is somewhat

di�erent from the rest of the thesis� data editing is often a step needed before the other
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processes can be attempted� Removing these high	amplitude samples is done by compar	

ing a trace with its neighbors using small two	dimensional prediction	error �lters� Each

prediction is done against a single nearby trace� In the two	dimensional problem� two

predictions are done� one for each of a trace�s nearest neighbors� The best predictions

are taken from these two predictions� and if the best prediction exceeds some value� the

corresponding input sample is removed and marked as having been deleted� These muted

samples may be later restored as discussed in chapter ��

����� Noise removal by �ltering

Filtering is a common and e�ective method of removing noise� especially when the noise

has a spectrum ��	D� �	D� or 
	D� that is su�ciently di�erent from the signal� In the work

here� �lters are derived from the data to be used as predictors� Predictive deconvolution

is an example of this� where the signal is what remains after the predictable part of the

trace is removed by the prediction	error �lter� In contrast� f	x and t	x prediction treats

the predictable part of the data as the signal� and the unpredictable part is considered

noise�

Chapter � will compare the results of f	x and t	x predictions and extend the two	

dimensional results into three dimensions� One of the main results of chapter � is that f	x

prediction can be considered equivalent to a t	x prediction with a very long �lter length

in time� This long �lter length allows more random noise to remain in the signal and may

generate spurious events far from the original re�ections� Another important result is that

three	dimensional �ltering provides important advantages over two	dimensional �ltering�

especially in areas of complex geology�

The advantage of �ltering is that it is simple and easy to understand� The disadvan	

tages of �ltering� as shown in chapter �� are that the �lter response of the noise is left

in the signal� and because the calculation of the �lter is corrupted by the noise� spurious

events may be generated and signal amplitudes reduced� To reduce these undesired e�ects�

the signal and noise separation problem is posed as an inversion in the second part of this

thesis�

����� Noise removal by inversion

One problem with noise removal by �ltering is that the response of the noise to the �lter

is left in the signal� As an example� consider a model of the recorded data as the sum of
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signal and noise� or d � s� n� where d is the recorded data� s is signal� and n is noise� If

a signal	prediction �lter S
�
is calculated from the data d such that S

�
d � 
� and the noise

is assumed to be what is left after the �lter is applied� n � S
�
d� is inconsistent with the

original model of d � s� n� Instead the output of the �lter is S
�
n� since S

�
d � S

�
s� S

�
n�

assuming that S
�
s � 
�

An alternative to accepting this �ltering result is to set up the problem as a matrix

inversion� If the signal is predicted by a �lter S
�
� such that S

�
s � 
� the noise is predicted

by a �lter N
�
� such that N

�
n � 
� and the recorded data is a sum of the signal and noise�

d � s� n� then the signal may be predicted with a system of regressions such as�
� 


N
�
d

�
A �

�
� S

�
N
�

�
A s� �����

In this expression� the assumption has been made that S
�
and N

�
have been previously

calculated� Since s and n are not available before system ����� is solved� S
�
and N

�
must be

approximated somehow from the available data� In most of the cases in this thesis� S
�
can

be calculated by assuming the noise is unpredictable laterally or that S
�
may be calculated

from some subset of the full dataset� N
�
may be calculated from some subset of the full

dataset where the noise is expected to dominate�

If N
�
is di�cult to estimate� or if the noise is unpredictable� an alternative to the

previous system of regressions is �
� S

�
d

�S
�
d

�
A �

�
� S
�
�

�
An� �����

This system will be examined in greater detail in chapter �� The calculated signal in this

case is s � d� n� Here the assumption is made that the actual noise is close to the noise

predicted by the prediction �ltering process�

����� Noise removal with missing data

A common problem in solving the previous systems is that high	amplitude noise over	

whelms least	squares inversion techniques� Removing the worst of the noise before calcu	

lating a signal �lter and before attempting to separate signal and noise can signi�cantly

improve the results� When doing the inversion after removing data� the samples that have

been removed must be accounted for� otherwise the zeroed samples will be just another

noise contaminating the process�
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To allow for the zeroed samples� the previous inversions are recast to predict missing

data while separating signal from the noise� This prediction of missing data is implemented

by de�ning the data d as the sum of the known data k and the missing data m� or

d � k�m� The missing data m is then calculated along with the signal s and noise n�

These substitutions change the previous systems to�
� 


N
�
K
�
d

�
A �

�
� S

�



N
�

�N
�
M
�

�
A
�
� s

m

�
A ���
�

and �
� S

�
K
�
d

�S
�
K
�
d

�
A �

�
� S
�

�S
�
M
�

� ��S
�
M
�

�
A
�
� n

m

�
A � �����

where K
�
d � k and M

�
d � m� K

�
and M

�
being masks for the data describing the known

and missing data positions such that K
�
�M
�
� I
�
� where I

�
is the identity matrix�

An important additional advantage of this extension to the previous inversions is that

data missing because of acquisition problems may also be estimated� Prediction �ltering

techniques have long been attempted in prestack data but have often failed because of

missing data� Using the predictions from systems ���
� and ����� allows these missing

traces to be predicted while producing results that are not a�ected by missing traces that

are otherwise treated as valid data�

����� Noise removal by characterizing both signal and noise

Noise often has a distinctive spectrum and amplitude� These can be used to characterize

the noise in an inversion process� Chapters � and �� show how inversion may be used to

separate signal and noise using �lters and amplitude characteristics of both the signal and

noise� This can be especially useful when the noise is coherent and is predictable from

trace to trace� One of the challenging issues is to avoid an overlap in the characterization

of the noise and the signal� and if the overlap occurs� to control it�
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Data editing

This chapter addresses an issue that is somewhat di�erent than the topics covered by the

rest of this thesis� This issue is data editing� or the removal of bad data by muting� one

of the simplest methods of removing noise� The emphasis in this chapter is eliminating

isolated high	amplitude unpredictable events� These events are unpredictable in the sense

that they leave high	amplitude residuals when predictable events are removed� This is in

contrast to the low	amplitude residuals normally expected as prediction errors�

Data editing was one of the original methods of controlling noise in seismic data� When

a seismic trace was dominated by noise� it was simply removed� For prestack data that

would only be stacked� removing an o�ending trace would not signi�cantly a�ect the stack

as long as the stack fold was signi�cant� Even then� only traces completely overwhelmed

by high	amplitude noise needed attention� since moderately bad traces generally would

not a�ect the stacked result�

In modern data processing� manual editing of traces is no longer practical since the

volume of data is so large that a processor cannot examine all the data in a reasonable

time� Automatic editing is especially important for three	dimensional surveys because of

the huge data volumes involved� These large data volumes have led to other e�orts to edit

data automatically �Pokhriyal et al�� ����� Pokhriyal� ���
��

With modern acquisition systems� the dynamic range of the recorded data is much

larger than that available with older systems� While this large dynamic range allows more

accurate recording of the desired signals� higher amplitude noise is also allowed into the

data� This noise may be caused either by recording unwanted signals� such as ground

roll� or it may be caused by imperfections in the recording instruments� Modern data

���
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processing techniques preserve these high amplitudes� where some older data processing

methods would have limited the highest amplitudes to some �reasonable� limit�

Another problem is that data is no longer simply stacked� clean prestack data is needed

for processes such as velocity determination� prestack migration� and AVO measurements�

The processes discussed later in this thesis will also be impacted by high	amplitude noise

in the data� High	amplitude noise is a special problem when least	squares methods are

being used� since the square of a high	amplitude error is likely to overwhelm the smaller

errors that are of more interest�

The goal of this chapter is to locate� eliminate� and mark the position of high	amplitude

noise so that it will not contaminate the least	squares techniques presented in the following

chapters� Marking the locations of bad data is done for two reasons� The �rst is to avoid

mistaking the data that was zeroed for good data� The second reason is to allow restoration

of the data that has been removed with an estimate derived from an inversion processes�

The unpredictable noise will be detected when the residual of a prediction	error �lter

exceeds a limit that is de�ned from the data� This technique will be demonstrated on real

data with a variety of noises�

��� Data continuity assumptions

To eliminate noise� some description of the signal is needed� In this case� signal is assumed

to be anything that is predictable from trace to trace� while noise is unpredictable between

traces� While this predictability might be re�ned to specify as signal anything outside the

evanescent zone �Claerbout� ������ for the sake of simplicity I will stay with the assumption

that signal is the only part of the data that is predictable between traces� Although later

I will show an example where some coherent noise was removed� the process described in

this chapter is not designed to attack coherent noises such as ground roll� The emphasis

here is on removing isolated noise rather than coherent noise�

Another assumption made here is that good data may be predicted using �lters� To

allow a valid prediction �lter to be computed� the number of samples that can be missing

must be only a fraction of the original samples available� otherwise there will not be enough

data to compute the �lter reliably� A related assumption is that there will be enough good

data to allow a valid prediction �lter to be computed� If the data is completely dominated

by noise� calculating a meaningful �lter is di�cult�



�	�

��� Algorithm

����� Editing in one�dimensional data

As an example of editing one	dimensional data� consider a time series such as the following�

� � � � � � � � � 
 � � � � � � �� �����

It is obvious that one sample does not follow the pattern of the majority of the samples�

A prediction may be made on these samples by applying the �lter

� �� �����

to the data� giving a result of

� � � � � � � � � � �� � � � � �� ���
�

While the exception is more visible� the residual is now spread over two samples� Applying

the same �lter in the reverse direction produces

� � � � � � � � �� � � � � � � �� �����

Much the same residual has been obtained as in ���
�� but it has now been smeared in

the other direction� To �nd the sample that has caused the residual� the maximum of the

absolute values of corresponding samples from both �ltered series can be taken� For the

�ltered series in ���
� and ������ the result is

� � � � � � � � � � � � � � � �� �����

The troublesome sample is now easy to distinguish� To detect it automatically� a

quantitative criteria for the expected size of the residuals must be used� A number of

criteria are available� including some multiple of the average� the median� or the RMS�

For the cases likely to appear in seismic data� a multiple of the median of the residuals

is likely to produce the most robust measure� This measure will be used as the threshold

value indicating a noisy sample in the discussions that follow�



��
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����� Editing in two�dimensional data

Two	dimensional data provides a more challenging problem� but also a more useful one�

Consider the following as an example of two	dimensional data with noise�

� � � � � � �

� � � � � � �

� � � � � � �

� � � � �� � �

� � � � � � �

� � � � � � �

� � � � � � �

� �����

Assume that the vertical axis of ����� corresponds to the time axis� and that the horizontal

axis corresponds to the space axis� This dataset has a horizontal event plus a noise spike�

An obvious method of removing the noise is to apply the one	dimensional �lter ����� to

either the rows or the columns of ������ Applying �lter ����� to the rows would be making

the assumption that re�ection events are �at� This approach would be valid for the dataset

in ����� since the signal is �at� Applying �lter ����� to the columns� or along the time

axis� would generally not be valid� since re�ections are assumed to be unpredictable� and

predictable events within a trace indicate undesirable noise�

For a dataset such as
� � � � � � �

� � � � � � �

� � � � � � �

� � � � �� � �

� � � � � � �

� � � � � � �

� � � � � � �

� �����

two	dimensional �lters are needed to predict the sloping event� One such �lter is

� ��

� �

� �

� �����

In the case of real seismic data� the �lters are computed from the data� While the

�lters could be calculated over several traces� I limit the prediction of a trace to include
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only its immediate neighbors� These �lters have the form

� a�

� a�

� a�

� a�

� a�

�����

to predict a trace from the right� and the form

b� �

b� �

b� �

b� �

b� �

������

to predict a trace from the left� In these �lters� the output point is under the � coe�cient�

The vertical axis of this �lter is time� the bs cover the trace used for the prediction� and

the column with the single � coe�cient covers the trace being predicted� Both these �lters

are calculated as annihilation �lters as described in chapter 
� so that if the trace is well

predicted� the residual will be almost zero� A small residual indicates that the trace is

dominated by signal�

Two �lter calculations are done for each trace� one for each �lter shown above� When

these �lters are applied� two sets of residuals are created� These two sets of residuals

are combined into a single set of residuals by taking a sample	by	sample minimum of the

absolute values of the two residuals� This single residual is then used as the diagnostic for

noise� The single residual allows a sample to be predicted from either the right or from

the left by taking the best of the two original predictions�

Once the set of minima of the absolute values of the residuals is created� the median of

all the minima within a window is calculated� Although measures other than the median�

such as the RMS of a window� could be used� the median is likely to provide a better

diagnostic of a typical value within a window� Zero values are ignored when calculating

the median� so that traces that were not present or muted on the input to the process do

not contribute to the value of the median� Any value greater than w times the median

value calculated is considered to be caused by high	amplitude noise� The value of w is

determined by examining the data processed with a range of ws� In the examples shown
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here� a w of �ve was used� although the process seems to be somewhat insensitive to the

exact values of w� as can be seen with Figure ��
 in the electronic version of this thesis�

Samples in the original data are eliminated when the corresponding values in the single

residual are greater than w times the median within a window� A �owchart describing the

entire process is shown in �gure ����

FIG� ���� A �owchart of the sample
deletion process� dataedit��owchart


NR�

Input

Annihilation filter
from the right

Annihilation filter
from the left

Absolute value Absolute value

Minimum

Mute input when
minimum > 5 * median

��� Examples

Figure ��� shows a shot gather with some obvious bad traces� The data here and in the

following plots have been scaled by time squared to show the signal better� Figures ��


and ��� shows the separation of the shot gather shown in Figure ��� into the rejected and

the accepted samples with a w of �ve� In the electronic version of this thesis� pushing the

button under Figure ��
 shows a movie of the data in this �gure with a range of values

of w� For small values of w� for example � to 
� the result of the process changed quickly

from one value of w to another� As w increased� the changes in the results for di�erent

values of w decreased� An example of a small portion of Figure ��� processed with values

of w varying from � to � is shown in Figure ����

The result of this process appears to do a good job of removing bad traces� Figure ��


shows very little coherent signal in the rejected samples� The little coherent noise left in

Figure ��
 appears on the near traces� which have anomalous amplitudes�

Figure ��� shows another shot gather with some bad traces and some coherent noise�

Once again� the data here and in the following plots have been scaled by time squared�
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FIG� ���� The original data showing some bad traces and other noise� dataedit�original


R�

FIG� ��
� The rejected samples from the data in the previous �gure� The value of w was �
for this result� Push the button to see a movie showing the rejected and accepted samples
corresponding to various values of w� dataedit�mpatchn 
R�
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FIG� ���� The accepted samples from the data in the previous �gure� The value of w was
� for this result� dataedit�mpatchs 
R�

Figures ��� and ��� show that much of the coherent noise between � and 
 seconds

is removed� This e�ect is seen here because the �lters used to make the trace	to	trace

predictions are short� in this case �ve samples� and cannot predict much of the steeply

dipping energy� While eliminating this particular event is desirable� care must be taken

to make the �lters long enough to predict all events that are to be preserved� Events such

as the di�ractions from complex events or overturned rays might not be predicted by very

short �lters� although generally these events will not be strong enough to be thrown out�

In many cases� coherent noise is not as localized as it is in this example and so will not be

eliminated�

One advantage of this technique over similar methods is that� since predictions are done

from single neighboring traces� static shifts do not a�ect the predictions� Both examples

shown here have traces with static shifts that are passed without problems�

��� Extensions

The methods used above appear to work reasonably well� but improvements may be made

to take advantage of the type of data or the character of the noise� While these extensions

are speculative� it is possible that some of these could produce signi�cant improvements
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FIG� ���� A subsection of the seismic data processed with values of w varying from � to
�� dataedit�wplot 
R�
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FIG� ���� The original data showing some bad traces and other noise� dataedit�original�


R�

FIG� ���� The rejected samples from the data in the previous �gure� The value of w was
� for this result� In the electronic version of this document� push the button to see a
movie showing the rejected and accepted samples corresponding to various values of w�
dataedit�mpatch�n 
R�
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FIG� ���� The accepted samples from the data in the previous �gure� The value of w was
� for this result� dataedit�mpatch�s 
R�

to the previous method�

����� Two�dimensional extensions

The algorithm described in the previous sections will work well in the cases where there

are few bad traces� In the cases where many traces are bad� this method will fail� One

example of a failure would be where a single good trace falls between two bad traces�

For a shot gather with many bad traces� comparing more than just adjacent traces

may provide more information than comparing only neighboring traces� For example�

comparing each trace to the four nearest traces would allow a single trace between two

bad traces to be marked as good� provided at least one of the four nearest traces is good

enough to be used to predict the trace being considered�

Although a good trace might be better predicted from more than one or two neigh	

boring traces� as more adjacent traces are used in the comparisons� the possibility of

producing spurious good predictions increases� Even for the examples presented in the

previous section� some samples in the bad traces remain� not because the samples are

good� but because the bad trace happened to have a fairly low amplitude where a low am	

plitude was predicted� While these small errors are less harmful than the high	amplitude
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noise removed from the rest of the trace� removing them would be desirable� An obvious

means of eliminating these spurious predictions would be to mute out a range of samples

around any bad samples found� This approach is also appealing from a physical point

of view� since any high	amplitude noise passing through the recording system is likely

to have an lower	amplitude impulse response associated with it� Removing samples near

high	amplitude noise could be considered as removing the impulse response of the noise�

Another approach to removing spurious predictions is to modify the comparisons of

the residuals� For example� if four predictions are done� and three of the predictions

indicate a sample is bad� the sample could be muted� In the previous work� any single

good prediction is accepted� This idea of using the majority of the predictions to decide if

a sample is eliminated will make the process more complicated and more time consuming

than the previous methods� but may produce better editing in case where many of the

traces are good� In the cases where many traces are bad� this method would require many

more predictions than the technique demonstrated above�

Another alternative to the technique shown in the previous section would be extending

the �lters from
b� �

b� �

b� �

b� �

b� �

������

to include more traces to create �lters such as

b��� b��� �

b��� b��� �

b��� b��� �

b��� b��� �

b��� b��� �

� ������

This �lter allows two traces to be used to predict a trace� The neighboring trace that

predicts the trace being considered best would automatically be weighted higher by the

�lter calculation� Although this would reduce the number of calculations in the median

comparisons� this technique would have no obvious advantage in speed because the �lter

would be more expensive to calculate The cost of using this larger �lter could be reduced

by using the same �lter over a range of traces� This extension then produces predictions
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similar to the predictions of the noise to be done in chapter �� A disadvantage of this

approach would be that the traces must be fairly clean before a good prediction is made�

The advantage of this approach is that it can be used to remove noise with lower amplitudes

and to remove traces with static shifts�

����� Multi�dimensional extensions

So far� I have only discussed predictions done within a single shot gather� Applying the

same process demonstrated previously to other gather types� especially common	midpoint

gathers and common	receiver gathers� would be easy and would also allow bad shots to

be deleted�

With only slight modi�cations� these techniques can be extended to multiple dimen	

sions� Consider� for example� the gathers in Figure ���� The circled trace may be predicted

from nearby traces in the shot� receiver� or midpoint gathers� but there is no reason that

all the traces in the box around the circled trace cannot be used to predict that trace�

This box may also be expanded to include as many traces as are needed�

shot axis

receiver axis

offset axis

midpoint axis

common midpoint gather

common shot gather

common 
receiver
gather

common offset gather

FIG� ���� Various gathers used in two	dimensional seismic data� dataedit�gathers 
NR�

For three	dimensional acquisition� the predictions done from the nearby traces shown

in Figure ��� can be extended to include traces in nearby crosslines� Eventually� all traces
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within a given distance of a point can be used to predict a trace at that point�

The multiple dimensions available in prestack data allows other uses for these ideas�

For example� the cable noise example discussed in Larner et al�� ����
� shows the noise

is unpredictable in CMP gathers� but is predictable in shot or receiver gathers� The

unpredictability in the CMP gathers would allow the trace	to	trace predictions done there

to remove this noise� A similar case would be cable noise such as that of crab pots caught

in a marine cable� Such noise may be predictable over several traces in a given shot

gather� since each hydrophone is being excited with the same noise source� Predictions

in CMP gathers or receiver gathers would not see this noise as predictable� Bad or weak

shots would also be unpredictable in both the CMP gathers and in the receiver gathers�

Noise at a particular receiver position would also often be unpredictable in both the CMP

gathers and in the shot gathers�

So far the extensions to multiple dimensions only involve multiple comparisons using

two traces� This could be considered as two	dimensional prediction done in multiple

directions� These predictions could also be extended to multiple traces within the two	

dimensional predictions or be extended to multiple traces in multiple dimensions� This

predictions could be seen as generalizing Claerbout�s steep	dip deconvolution �Claerbout�

���
� to allow lateral predictions�

These multiple	dimensional predictions could be used in two manners� The �rst is to

calculate a separate �lter for every trace to be predicted� The second is to calculate one

�lter for all traces in a window� then predicting each traces from its neighbors with the �l	

ter� The �rst option is considerably more expensive than the second� since in the �rst case�

one �lter is calculated for every trace� while in the second case� a single �lter is calculated

for all the traces� The �rst option relaxes the assumptions of stationarity somewhat� since

the �lter can change from trace to trace� but the second option is likely to characterize the

signal better because more traces go into the �lter calculation� As in the two	dimensional

case� it is not clear what advantages a single prediction with a multiple	dimensional �lter

has over multiple predictions with the simple two	trace �lters� Nevertheless� using a single

multi	dimensional �lter may allow the prediction of low	amplitude noises since the �lter

constrains the signal better than the many two	dimensional �lters�
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����� Extensions for earthquake seismology

In cases where there is no natural ordering of the traces� such as the global arrays of

seismometers used to study earthquakes� the arrangement of the traces is arbitrary� and

comparing neighboring traces does not have much meaning� For these earthquake seismo	

graphs� a given trace could be compared to all the other traces in the array� Naturally�

the prediction �lters will be longer in this case than for the examples shown here because

larger delays are expected between events� but the same basic algorithm would be used�

Although many more comparisons would be made within this array than would be required

in a typical exploration seismic gather� the earthquake seismograph array would generally

have to be processed only once� while many gathers must be processed in a typical line

gathered for exploration seismology�

��� Conclusions

Data editing to remove the high	amplitude noise is the �rst step in more re�ned signal

and noise separation processes� as well as for other data processing� This step will often

be required� since high	amplitude noise corrupts the least	squares calculations used in the

more sensitive processes presented in later chapters� The technique shown here appears

robust enough as a standard processing tool�

While removing high	amplitude noise is necessary for the techniques discussed in this

thesis� there will be advantages in removing high	amplitude noise before other processes�

even if the samples removed are not accounted for in the processes that follow� While

zeroed samples may be considered as noise� this noise may be preferable to the higher	

amplitude noise that sometimes occur in real data� One example of where this noise

removal is desirable� would be standard single trace deconvolution in the presence of noise

spikes� If these spikes have amplitudes that are high enough� the deconvolution operators

will be ine�ective� since the spikes give the data a white spectrum� Another example would

be velocity analysis� where a high	amplitude spike in the input may generate curved noise

trains in the velocity analysis�

While the method presented in this chapter appears useful enough� it is not the only ap	

proach that could be taken to remove high	amplitude noise� In particular� high	amplitude

coherent noise may be simply muted out of a data record� The �nal editing method will

depend on the nature of the noise and on the data� For small data volumes� manual muting
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by the processor may be the most e�ective� The important issue is that high	amplitude

noise is removed and that the edited data be marked so it will not be treated as good

data and can be restored later� In chapter �� an inversion to restore the edited data while

separating noise and signal will be demonstrated�



Chapter �

Inverse theory and statistical

signal processing

In this chapter� I give some background to inversion techniques� especially as they relate

to geophysical signal processing� Although the literature concerning inversion and signal

processing is vast� some common references to inversion as applied to geophysical signal

processing may be found in Webster ������� Robinson and Treitel ������� Kanasewich

������� Tarantola ������� Menke ������� Claerbout �����a�� Parker ������� and Claerbout

������� Some more general references on inversion of linear systems may be found in

Strang ������� Strang ������� and Golub and Van Loan ������� Another goal of this

chapter is to give the reader a feeling for the calculation and use of prediction	error �lters

both in standard �ltering applications and in inversion for signal and noise separation�

where the prediction	error �lters� also referred to here as annihilation �lters� characterize

signal and noise�

��� Background and de�nitions

����� Inversion and statistics

From a purely mathematical viewpoint� inversion of a linear system is solving for a vector

m when a matrix A
�
and a vector d are supplied in an expression A

�
m � d� From an

applied point of view� we are generally attempting to derive some information about a

physical system when� from this system� a quantitative description of the system is built

����
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by choosing a set of parameters of interest �Tarantola� ������ This description of the

physical system is referred to as the model m and is represented by a vector of numbers

that parameterize the physical model� Also available is a set of measurements� or data

d� collected in the e�ort to derive some information about model m� The relationship

between the data d and the model m is assumed here to be linear and described by the

matrix A
�
� where A

�
m � d� The problem of taking a model m and deriving the expected

data d is referred to as the forward problem� This forward problem assumes that the

relevant physics of the problem is described in the matrixA
�
� The inverse problem involves

calculating the modelm from a given set of data d� As an example of the use of an inverse

system in geophysics� a description of the earth is derived from measurements taken at the

surface� The measurements from the surface correspond to d� and the desired description

of the earth corresponds to m� Given A
�
and d� the description of the earth m is to be

calculated by inversion�

The measured data d are likely to include some uncertainty� which is generally due to

e�ects not included in the model� For example� when trying to derive an earth model using

seismic data� the relevant physical laws to be taken into account would be those governing

the propagation of seismic energy through the earth� Noise� or e�ects not included in the

model� would be� for example� wind� local tra�c� animals� Brownian motion� and so on�

While most extraneous e�ects are unpredictable� or at least very di�cult to predict� these

noises can often be assumed to be random� Allowing for these unpredictable e�ects may

then be left to statistical methods where the data d are considered realizations of random

variables� Since the data are random variables� the estimates of the model are also random

variables�

In the inversion of the expression A
�
m � d� the noise is considered undesirable and

is eliminated as far as possible when calculating the desired m� Much of the work here

involves a di�erent system in which the noise� or the unpredictable part of the data is

of interest� This system is r � f � d� where d is a recorded data series� f is a �lter to

be calculated� � indicates convolution� and r is the unpredictable re�ection series� This

can be expressed in terms of the matrix equations r � F
�
d or r � D

�
f � where F

�
is the

�lter f expressed as a �lter convolution matrix� and D
�
is the data d expressed as a data

convolution matrix� The next section addresses the assumptions made about r and d�
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����� Assumptions about the data and the errors

In this thesis� the emphasis will be on signal processing aspects of inversion� The problems

to be dealt with will be time series or collections of time series� A single time series� referred

to as a trace� generates a one	dimensional problem� A collection of traces generates multi	

dimensional problems� The data recorded d will be analyzed to produce some information

about the re�ection series r� The series r may also be considered to be the error in the

expression 
 � F
�
d� where F

�
is a �lter that is designed to remove predictable information�

Therefore� the re�ection series r is assumed to be the unpredictable part of the series d�

The data is assumed to be stationary� Gaussian� and have a zero mean� Stationarity means

that the the statistical character of the data does not change in time� This means that any

statistical measure is expected to be unchanged if the trace is shifted� This assumption

can be enforced by windowing the data so there are no large character changes within a

window� The assumption of a Gaussian distribution might be more di�cult to con�rm

but is still reasonable� since errors that are the result of some kind of summation tend to

have Gaussian distributions� The zero mean is generally not a problem� since seismic data

normally have had some kind of �lter applied� and there is no reason to assume that the

errors have a bias�

The re�ection series� or error r� produced from the �ltering operation is also assumed

to be stationary� Gaussian� and have a zero mean� but in addition� the samples of the

errors are assumed to be independent from the other samples in r� These assumptions

may be better described by expectations�

The errors may be considered to be realizations of a random process drawn from a

population� or ensemble� The expectation of a function of a random variable x is expressed

as

E
f�x�� �

Z �

��
f�x���x�dx �
���

in the continuous case� where ��x�dx is the probability density �Korn and Korn� ������

In the discrete case

E
f�xi�� �
X
i

f�xi�pxi� �
���

where pxi is the probability function of xi� The summation is over all xi� and pxi sums

to unity� For Gaussian distributions with zero mean� the expectation may considered to

be an average as the number of samples goes to in�nity� so that the expectation of the

sample values is zero�



����

For the errors r and the data d� the assumption of a zero mean is expressed as E
r� � �

and E
d� � �� The assumption that the samples of r are uncorrelated becomes E
rry� �

��rI
�
� where I

�
is the identity matrix� and y indicates the conjugate transpose� or adjoint�

The dependence of the data values on each other is expressed as E
ddy� � V
�
� where

V
�
is the covariance matrix� The Gaussian distribution of r and d may be expressed as

p�r� � e�r
y���

r I
�
r�� and p�d� � e�d

yV
�

��d��� where �r is a scalar and I
�
is the identity

matrix� Notice that these probability functions are distributions that satisfy the zero

mean assumption� Also note that the independence of the samples in the errors is seen in

the ���r I
�
factor in p�r�� whereas the dependence of the data samples is seen in the inverse

covariance matrix V
�

�� in p�d��

����� Least�squares solutions to inverse problems

When solving an inverse problem� the e�ects not accounted for in the model may make

the problem impossible to solve exactly� For example� if some component of d is in the

left null space of A
�
� no model m can perfectly predict d �Strang� ������ In such cases� a

solution that is close to the actual model is the best solution that can be obtained� For

least	squares methods� the sum of the squares of the errors between the data recorded and

the data that the model should have produced is taken as the measure of closeness�

In the problems considered here� it is assumed that a large number of measurements

have been made and that the solution to the inversion problem is either over	determined

or mixed	determined �Menke� ������ An over	determined problem is one in which all the

components of the solution are over	determined� so that there will be some inconsistency�

or error� in the data� A mixed	determined problem is one in which some of the components

in the solution are over	determined� while other components are under	determined� so the

problem has errors due to inconsistent measurements and model parameters that cannot

be determined from the data� Since the problem is at least partially over	determined�

there will generally be some error between the data calculated from a model dcalc � A
�
m

and the data recorded d�

In the case of a systemA
�
m � d� the least	squares solution is the one with the smallest

sum of the squares of the di�erence between the actual data and the data derived from

the model to be calculated� This di�erence to be minimized� the vector of errors e� is

de�ned as e � A
�
m�d� where m is the model and d is the data� The sum of the squares

of the error is eye� where y indicates the conjugate transpose� or adjoint� �For purely real
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e� y just indicates the transpose��

While A
�
will later be considered as a matrix operation� for the moment� A

�
may be

considered to be any linear operator relating m to d� To derive a model m� the squared

error eye is minimized� Expressed in terms of A
�
� d� and m� this becomes

eye � �A
�
m� d�y�A

�
m� d�� �
�
�

Expanding this produces

eye �myA
�

yA
�
m� dyd� dyA

�
m�myA

�

yd� �
���

To minimize eye with respect to m� we can �nd where the derivative is zero for either my

or m� butmy is more convenient� The derivative of the previous expression then becomes

�

�my
�eye� �

�

�my
�myA

�

yA
�
m� dyd� dyA

�
m�myA

�

yd� � A
�

yA
�
m�A

�

yd � �� �
���

producing A
�

yA
�
m � A

�

yd� The value of m that minimizes eye is then m � �A
�

yA
�
���A

�

yd�

For the r � f � d system� there is an interesting connection between taking the

minimum of the sum of the squares and the assumption that the errors are independent

of each other� It can be shown that the two approaches are equivalent� The least	squares

solution can be seen to be the solution that best �ts the Gaussian distribution of the

error p�r� � e�r
y���

r I
�
r seen above� where the samples of r are independent� Maximizing

p�r� is equivalent to minimizing � log�p�r�� or ry���r I
�
r� This becomes the minimization

of ryr� which is just the least	squares result for r � F
�
d� While I will continue with

the least	squares approach� the independence of the errors will be emphasized more in

section 
�����

If A
�
is a matrix and d and m are vectors� we get the minimum of eye by minimizing

�A
�
m� d�y�A

�
m� d�� Once again this minimum occurs when �A

�

yA
�
�m � A

�

yd� which is

the expression for the least	squares inverse referred to as the normal equations �Strang�

������ To �nd m� the inverse of �A
�

yA
�
� must be taken to get m � �A

�

yA
�
���A

�

yd� This

leaves the somewhat simpler problem of calculating �A
�

yA
�
����

����� Solving �AyA��� � methods and problems

In geophysical �ltering applications� the matrixA
�

yA
�
is often� although not always� Toeplitz�

�A Toeplitz matrix is a matrix in which each row is a shifted version of the others and has

constant diagonals�� In general� if the type of �lter application is transient convolution�
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convolution with the data sequence padded with zeros� A
�

yA
�
is Toeplitz� but if the �lter

application is internal �unpadded convolution� or truncated	transient �transient convolu	

tion truncated to the input length��A
�

yA
�
is no longer in a Toeplitz form �Claerbout� ������

When A
�

yA
�
is Toeplitz� the matrix can be represented by a single row of the matrix� since

a Toeplitz matrix is made up of a single row shifted so that a particular element is always

on the diagonal� This makes the matrix easy to store in a computer memory� and easy to

solve� since an e�cient algorithm for solving Toeplitz systems� that of Levinson recursion�

exists �Kanasewich� ������

In the cases where A
�

yA
�
is not Toeplitz� it is still symmetric� and this symmetry can

be useful in calculating �A
�

yA
�
���� Another useful feature of A

�

yA
�
is that it is generally

positive de�nite� Although A
�

yA
�
is guaranteed to only be positive semide�nite� in practice

a small stabilizer �I
�
is added to A

�

yA
�
to force it to be positive de�nite� The idea of adding

�I
�
can be viewed as forcing all the eigenvalues to be greater than � and eliminating any

zero eigenvalues� ThatA
�

yA
�
is positive de�nite can be seen from the de�nition of a positive

de�nite matrix� where B
�
is positive de�nite if xyB

�
x is always positive �Strang� ������ If

B
�
� A

�

yA
�
and A

�
is full rank� then xyA

�

yA
�
x � �A

�
x�y�A

�
x�� which is always positive for

non	zero x� Since A
�

yA
�
is positive de�nite� it can be solved by Cholesky factorization

�Strang� ������ Cholesky factorization allows a positive de�nite matrix B
�
to be factored

as B
�
� L
�
L
�

y� where L
�
is a lower triangular matrix and L

�

y is the corresponding upper

triangular matrix� The cost of solving a system with Cholesky factorization is about half

that of a general linear system solver� and the method is generally accurate �Makhoul

������ in Childers �������� E�cient methods for Cholesky factorization to solve such

systems are given in LINPACK �Dongarra et al�� ����� and in Tarantola �������

For a Toeplitz matrix� the storage requirements are small� since only one row of the

matrix needs to be stored� In the more general case� where A
�

yA
�
is symmetric positive

de�nite� half the matrix needs to be stored for Cholesky factorization� When the inversion

requires a fairly small matrixA
�
� Levinson recursion or Cholesky factorization methods are

su�cient� Later in this thesis� larger problems than those that can be practically solved

with these methods will be addressed� but it can be seen that even for �lter calculations�

these computations may become di�cult because of their size� For example� when cal	

culating a one	dimensional �lter� the number of elements in the matrix A
�

yA
�
is required

to be the square of the number of elements in the �lter� If the type of �lter application

is transient convolution� only one column of A
�

yA
�
needs to be stored� but if the �lter



��	�

application is internal or truncated	transient convolution� A
�

yA
�
is no longer Toeplitz and

half of the elements in the matrix need to be stored� For a short one	dimensional �lter�

this is generally a reasonable requirement�

For two	 or three	dimensional �lters� the �lters could be calculated by getting the

inverse of A
�

yA
�
� but the size of this matrix will tend to be very large� Consider� for

example� a small two	dimensional problem� where the �lter is�
� f�� f��

f�� f��

�
A � �
���

and the data with which the �lter will be convolved is�
BBBBB�

x�� x�� x�� x��

x�� x�� x�� x��

x�� x�� x�� x��

x�� x�� x�� x��

�
CCCCCA � �
���

By unwrapping and padding the data into a one	dimensional vector��
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

x��

x��

x��

x��

�

�

x��

x��

�

�

�

x��

�

�

x��

x��

x��

x��

�
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

� �
���
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then unwrapping and padding the �lter into a one	dimensional vector��
BBBBBBBBBBBBBBBBB�

f��

f��

�

�

�

�

f��

f��

�
CCCCCCCCCCCCCCCCCA

� �
���

the two	dimensional convolution may be expressed as a one	dimensional convolution� To

unwrap the �lter into one dimension� the �lter has been internally padded with zeros to �ll

out the �rst dimension of the data so the �ltering does not overlap between columns� This

padding will generally make the size of a two	dimensional �lter much larger than a typical

one	dimensional �lter� although some space could be saved since the A
�

yA
�
matrix will be

block diagonal� For three	dimensional �lters� the �rst two dimensions must be �lled out

with zeros� forming an extremely long one	dimensional �lter� In spite of the advantages of

Levinson recursion� since the size of the matrix A
�

yA
�
depends on the square of the length

of the one	dimensional �lter formed by the padding� the A
�

yA
�
matrix will soon become so

large that it becomes impractical to solve for multi	dimensional problems�

In addition to the large size of the A
�

yA
�
matrix� multi	dimensional �lters tend to

have many more coe�cients than one	dimensional �lters because of the higher number of

dimensions involved� This increases the cost of solving for the �lter by either the square or

the cube of the number of coe�cients� depending on the solution method� When internal

convolutions with multi	dimensional �lters are desired� A
�

yA
�
is no longer Toeplitz� and

half of the huge A
�

yA
�
matrix must be stored and solved�

When inversions need to be done to predict full seismic datasets rather than just small

�lters� the number of elements to be calculated may be in the thousands or millions�

making the number of elements in the matrix A
�

yA
�
in the millions or billions� Solving� or

even storing� such large matrices will generally be impractical�

Later I will discuss the conjugate	gradient technique� which allows an iterative solution

to these inversion problems� The conjugate	gradient technique has the advantage that the

matrix A
�

yA
�
does not need to be stored� and a good approximation to the answer may be

had by limiting the number of iterations� thus reducing the cost� Also� the programming
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of the problem tends to be simpler� since the conjugate	gradient technique requires just

the coding of the convolution and its conjugate	transpose� or adjoint�

����� Prediction�error or annihilation �lters

One of the most common geophysical applications of inversion is the calculation of prediction	

error �lters� A prediction	error r is de�ned as

rj �
nX

i��

fidj�i� �
����

where f is the prediction	error �lter of length n� and d is an input data series� The �ltering

operation may also be expressed as f � d � r� where � indicates convolution� For the sake

of the discussion here� d is an in�nitely long time series� As in the previous discussion� the

error r and the data d will be assumed to be stationary and have a Gaussian distribution

with a zero mean� The error r will also be assumed to be uncorrelated so that E
rry� � ��rI
�
�

Application of a prediction	error �lter removes the predictable information from a

dataset� leaving the unpredictable information� that is� the prediction error� A typical

use of prediction	error �lters is seen in the deconvolution problem� where the predictable

parts of a seismic trace� such as the source wavelet and multiples� are removed� leaving

the unpredictable re�ections�

The condition that r contains no predictable information may be expressed in several

ways� One method is by minimizing ryr� where ry is the conjugate transpose of r� by

calculating a �lter that minimizes �f � d�y�f � d�� This minimization reduces r to have

the least energy possible� where the smallest r is assumed to contain only unpredictable

information�

Another equivalent expression of unpredictability is that the non	zero lags of the nor	

malized autocorrelation are zero� or that

�P
i���

riri	k

�P
i���

riri

� �k� �
����

where �k is one when k is zero and is zero otherwise� This approximation may also be

expressed as E
riri	k� � ��r��k�� where �
�
r is a scale factor that may be ignored� These

two methods of expressing unpredictability are the basis for the sample calculations of the

prediction	error presented in the next section�
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The prediction	error �lter may also be de�ned in the frequency domain using the

condition that the expectation E
rirj� � � for i �� j� Transforming the autocorrelation

into the frequency domain gives E
r���r���� � �� where r��� is the complex conjugate of

r���� Since r is the convolution of f and d� r��� � f���d����

E
r���r���� � � � E
f���d���f���d����� �
����

Since the �lter f is a linear operator� it can be taken outside of the expectation �Papoulis�

����� to make the previous expression become

�

f���f���
� E
d���d����� �
��
�

Thus� the power spectrum of f is the inverse of the power spectrum of d� Although the

phase of the data d is lost when creating the cross	correlation of d to get d���d���� the

phase of the �lter is generally unimportant when the �lter is being used as an annihi	

lation �lter in an inversion� For applications where a minimum phase �lter is required�

Kolmogoro� spectral factorization �Claerbout� ����a� may be used�

Another way of expressing the unpredictability of r is E
rry� � I
�
� that is� the expec	

tation of rry is the identity matrix� This states that the expectation of the cross	terms of

the errors are zero� that is� the errors are uncorrelated� This also states that the variances

of the errors have equal weights� To make the matrices factor with an L
�
U
�
decomposition

�Strang� ������ the expression f � d � r needs to be posed as a matrix operation F
�
d � r�

with F
�
as an upper triangular matrix� To do this� the indices of d and r are reversed from

the usual order in their vector representations� A small example of F
�
d � r is

�
BBBBB�

f� f� f� f�

� f� f� f�

� � f� f�

� � � f�

�
CCCCCA

�
BBBBB�

d�

d�

d�

d�

�
CCCCCA �

�
BBBBB�

r�

r�

r�

r�

�
CCCCCA �
����

Building one small realization of rry gives

�
BBBBB�

r�r� r�r� r�r� r�r�

r�r� r�r� r�r� r�r�

r�r� r�r� r�r� r�r�

r�r� r�r� r�r� r�r�

�
CCCCCA � �
����
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To get an estimate of the expectation of this expression� it must be remembered that the

data series is stationary� and the error will also be stationary� Only the di�erences in the

indices are important� the locations are not� It can be seen that the elements of �
����

are the elements of the autocorrelation at various lags� Using equation �
���� makes the

expectation of �
���� become the identity matrix �rI
�
� where the �r may be dropped� since

it is only a scale factor that may be incorporated into the �lter or as a normalization of

the autocorrelation�

Starting from the expression E
rry� � I
�
and substituting F

�
d for r gives

E
�F
�
d��F

�
d�y� � I

�
�
����

or

E
F
�
ddyF

�

y� � I
�
� �
����

Once again� since F
�
and F

�

y are linear operators� they can be taken outside of the expec	

tation �Papoulis� �����

F
�
E
ddy�F

�

y � I
�
� �
����

Moving the F
�
s to the right	hand side gives

E
ddy� � F
�

���F
�

y��� � �F
�

yF
�
���� �
����

Expanding one realization of a small example of E
ddy� gives

�
BBBBB�

d�d� d�d� d�d� d�d�

d�d� d�d� d�d� d�d�

d�d� d�d� d�d� d�d�

d�d� d�d� d�d� d�d�

�
CCCCCA � �
����

Once again� to get an estimate of the expectation of this expression� it should be re	

membered that d is stationary� and only the di�erences in the indices are important� It

can then be seen that E
didi�j� are elements of the autocorrelation� and E
ddy� is the

autocorrelation matrix of d� Setting A
�
� E
ddy� gives

F
�

yF
�
� A
�

��� �
����

Generally� E
ddy� will be invertible and positive de�nite for real data� There are some

special cases where E
ddy� is not invertible and positive de�nite� for example� when d
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contains a single sine wave� To avoid these problems� the stabilizer �I
�
is often added to

the autocorrelation matrix� where � is a small number and I
�
is the identity matrix� In the

geophysical industry� this is referred to as adding white noise� or whitening� since adding

�I
�
to the autocorrelation matrix is equivalent to adding noise to the data d�

The matrix F
�
may be obtained from the matrixF

�

yF
�
by Cholesky factorization �Strang�

������ since F
�

yF
�
is symmetric positive de�nite� Cholesky factorization factors a matrix

into L
�
L
�

y� where L
�
looks like

�
BBBBB�

l��� � � �

l��� l��� � �

l��� l��� l��� �

l��� l��� l��� l���

�
CCCCCA � �
����

The matrix F
�
obtained from this factorization will be upper triangular� as seen in �
�����

so the �lter is seen to predict a given sample of d from the past samples� and the maximum

�lter length is the length of the window� This matrix could be considered as four �lters

of increasing length� The longest �lter� assuming it is the most e�ective �lter� could be

taken as the prediction	error �lter�

Another way of looking at this de�nition of a prediction	error �lter is to consider the

�lter as a set of weightsW
�
producing a weighted least	squares solution� Following Strang

������� the weighted error �e is W
�
e� where W

�
is to be determined� and e is the error of

the original system� The best �e will make

E
�e�ey� � I
�
� �
��
�

Since �e �W
�
e�

E
W
�
e�W
�
e�y� �W

�
E
eey�W

�

y� �
����

where E
eey� is the covariance matrix of e� Strang� quoting Gauss� says the best W
�

yW
�

is the inverse of the covariance matrix of e� Setting F
�
�W

�
and d � e makes the weight

W
�
become the prediction	error �lter seen in equation �
�����

While I�ve neglected a number of issues� such as the invertability of ddy� the �nite

length of d� and the quality of the estimations of the expectations� in practice the explicit

solution to �
���� will not be used to calculate a prediction	error �lter� Most practical

prediction	error �lters will be calculated using other� more e�cient� methods� A traditional

method for calculating a short prediction	error �lter using Levinson recursion will be shown
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in the next section� In this thesis� most of the �lters are calculated using a conjugate	

gradient technique such as that shown in Claerbout �����a��

Most prediction	error �lters are used as simple �lters� and the desired output is just

the error r from the application of the �lter F
�
d � r� Another use for these prediction	

error �lters is to describe some class of information in an inversion� such as signal or noise�

In this case� these �lters are better described as annihilation �lters� since the inversion

depends on the condition that the �lter applied to some data annihilates� or zeros� a

particular class of information to a good approximation� For example� a signal s may

be characterized by a signal annihilation �lter expressed as a matrix S
�
� so that S

�
s � 


which may be expressed as S
�
s � r� where r is small compared to s� A noise n may be

characterized by a noise annihilation �lter N
�
� so that N

�
n � 
� Examples of annihilation

�lters used to characterize signal and noise will be shown in chapters �� �� �� and ���

In this thesis� prediction	error �lters will be referred to as annihilation �lters when used

in an inversion context� While prediction	error �lters and annihilation �lters are used in

di�erent manners� they are calculated in the same way� In spite of the similarities in

calculating the �lters involved� the use of these �lters in simple �ltering and in inversion is

quite di�erent� Simple �ltering� whether one	� two	� or three	dimensional� involves samples

that are relatively close to the output point and makes some simplifying assumptions� An

important assumption is that the prediction error is not a�ected by the application of the

�lter� Inversion requires that the �lters describe the data� and the characterization of the

data is less local than it is with simple �ltering� The assumption that the prediction error

is not a�ected by the �lter can be relaxed in inversion� a topic to be further considered in

chapters � and ��

����	 An example of calculating a prediction�error �lter

The problem of calculating a prediction	error �lter f can be set up by describing the

convolution process as a matrix multiplication A
�
f � The matrix A

�
is made up of shifted

versions of the signal x to be multiplied by the �lter vector f as shown below� If x is

perfectly predictable� a �lter f will be calculated to give a result of zero� A
�
f � 
� With

most real data� x will not be perfectly predictable� and the result of A
�
f will not be zero�

but A
�
f � r� where r is the error or unpredictable part� This error is minimized to get

the desired f � The idea of an imperfect prediction may also be expressed as a system of

regressions� where A
�
f � 
�
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Here� I will show the traditional method of setting up a one	dimensional prediction	

error �lter calculation problem� The linear systemA
�
f � 
� expanded to show its elements�

is �
BBBBBBBBBBBBBBBBBBBBBBBBBB�

x� � � �

x� x� � �

x� x� x� �

x� x� x� x�

� � � �

� � � �

� � � �

xn xn�� xn�� xn��

� xn xn�� xn��

� � xn xn��

� � � xn

�
CCCCCCCCCCCCCCCCCCCCCCCCCCA

�
BBBBB�

f�

f�

f�

f�

�
CCCCCA �

�
BBBBBBBBBBBBBBBBBBBBBBBBBB�

�

�

�

�

�

�

�

�

�

�

�

�
CCCCCCCCCCCCCCCCCCCCCCCCCCA

� �
����

Notice how the matrixA
�
is made up of the vector x shifted against the �lter to produce

the convolution of x and f � At least one element of f is constrained to be non	zero to

prevent the trivial solution where all elements of f are zero� In this case� f� is constrained

to be one so we can modify the equation above to move the constrained portion to the

right	hand side to get�
BBBBBBBBBBBBBBBBBBBBBBBBBB�

� � �

x� � �

x� x� �

x� x� x�

� � �

� � �

� � �

xn�� xn�� xn��

xn xn�� xn��

� xn xn��

� � xn

�
CCCCCCCCCCCCCCCCCCCCCCCCCCA

�
BBB�

f�

f�

f�

�
CCCA �

�
BBBBBBBBBBBBBBBBBBBBBBBBBB�

�x�

�x�

�x�

�x�

�

�

�

�xn

�

�

�

�
CCCCCCCCCCCCCCCCCCCCCCCCCCA

� �
����

The new matrix without the �rst row will be referred to as B
�
� and the set of �lter coef	

�cients without f� will be referred to as f
�� The system to be solved is then B

�
f � � �x�

Using the normal equations� the solution for f � becomes f � � �B
�

yB
�
���B

�

y��x��
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B
�

yB
�
is the autocorrelation matrix� which is also referred to as the inverse covariance

matrix� The reason for calling B
�

yB
�
an autocorrelation matrix is obvious� since the rows

of the matrix are the shifted autocorrelation of x� The description of �B
�

yB
�
��� as a

covariance matrix comes from the idea that x is a function of random variables� The

relationship between the values of x at various lags are described by the expectation E

of the dependence of the values of x with di�erent delays� This is expressed as E�xixj��

where i and j are indices into the series x� If the expectation E�xixj� is zero when i �� j�

the spectrum of x would be white� and the sample values of x would be unrelated to each

other� The autocorrelation would be zero except at zero lag�

The solution for f requires storing only the autocorrelation of x and can be solved

quickly and e�ciently using Levinson recursion� Once again� the e�ciency of this tech	

nique depends on B
�

yB
�
being Toeplitz� which in turn depends on the type of convolution

being transient� rather than internal or truncated	transient� When B
�

yB
�
is not Toeplitz�

it can still be solved using techniques such as Cholesky factorization� but at a higher cost

of storage and calculation�

����
 Prediction�error �ltering in the frequency domain

If the convolution f � d � r is expressed in matrix form as D
�
f � r� where D

�
is the

convolution matrix of d� the �lter f can be solved for to get the least	squares minimum

of r� The normal equations expression for the least	squares inverse is �D
�

yD
�
�f � D

�

yr�

or f � �D
�

yD
�
���D

�

yr� This expression for f may be decomposed into simpler expressions

in the frequency domain since f � d � r may be expressed as f���d��� � r���� The

expression f � �D
�

yD
�
���D

�

yr may be transformed into the frequency domain as f��� �

�d���d������d���r��� or f��� � d���r���	�d���d����� �Here d��� indicates a component

of the Fourier transform of the data� and d��� indicates the complex conjugate of d�����

Canceling out d��� gives f��� � r���	d���� Thus in the frequency domain� where �ltering

is described as a multiplication such as f���d��� � r���� inversion is simply division� or

f��� � r���	d���� The values of f���� d���� and r��� are scalars �although they are

complex numbers��

The d���d��� term in the denominator is the Fourier transform of the autocorrelation

of d� If dyd is the identity matrix I
�
� d���d��� will be constant� This corresponds to an

input with a white spectrum� If all the terms of dyd are constant� d���d��� will be non	

zero only at � � �� and the inversion will be unstable� This corresponds to a data series
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d containing a constant� It can be seen that d���A��� is a measure of the information

available at �� and �d���d������ is a function of the uncertainty� or variance� at �� The

original autocorrelation matrix dyd is the information matrix� and its inverse �dyd��� is

the covariance matrix �Strang� ������

The expression f��� � d���r���	�d���d���� will generally have a stabilizer in the

denominator to avoid having m��� approach in�nity when d���d��� gets small� Adding

this stabilizer in the frequency domain corresponds to adding a small value to the diagonal

of the autocorrelation matrix� In the cases discussed here� the stabilizer will seldom be

needed since random noise in the data generally keeps d���d��� from going to zero�

��� Inverse Theory for signal and noise separation

����� Systems describing signal and noise separation

Claerbout ������ provides a geophysical linear inverse structure of


 �W
�
�L
�
m� d� �
����


 � �A
�
m� �
����

where W
�
� L
�
� and A

�
are linear operators� m and d correspond to a model and to the

data� and � is a scale factor determining the relative weights of these two systems� The

�rst regression involves how well the model �ts the data� The second regression involves

limitations on what the model is expected to be� The matrixA
�
often enforces a smoothness

on the model�

These are systems of regressions� rather than systems of equations� It is not expected

that eitherW
�
�L
�
m� d� or �A

�
m should ever become exactly zero� but it is expected that

some minimum of these expressions can be found by adjusting the modelm� Alternatively�

the regressions in �
���� and �
���� can be expressed as the system of equations

e� �W
�
�L
�
m� d� �
����

e� � �A
�
m� �
�
��

where e� and e� are to be minimized�
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Paralleling the arguments in Claerbout ������� ifW
�
is replaced with a �ltering operator

S
�
that annihilates any signal s on which it operates so that S

�
s � 
� L

�
is replaced by the

identity matrix I
�
� A
�
is replaced by a �ltering operator N

�
that annihilates any noise n

on which it operates� so that N
�
n � 
� and m is replaced with the noise n that is to be

calculated and removed from the data d� equations �
���� and �
���� become

� � S
�
�n� d� �
�
��

� � �N
�
n� �
�
��

An alternative method of getting equations �
�
�� and �
�
�� would be to start from

the de�nitions of the signal annihilation �lter and the noise annihilation �lter�

� � S
�
s �
�

�

� � N
�
n� �
�
��

that is� the signal annihilation �lter S
�
applied to the signal s produces something that is

almost zero� and the noise annihilation �lter N
�
applied to the noise n produces something

that is almost zero� Since the data d is de�ned as the sum of the signal s and the noise

n� that is� d � s � n� s in equation �
�

� may be replaced with d � n� Making this

substitution and allowing for a scale factor � once more gives equations �
�
�� and �
�
���

Combining the systems shown in �
�
�� and �
�
�� into a single system gives


 �

�
� S

�
�S
�

�N
�




�
A
�
� n

d

�
A � �
�
��

Moving the expressions that depend on the data to the left	hand side and keeping those

that depend on the unknown noise on the right	hand side gives�
� S
�
d

�

�
A �

�
� S

�
�N
�

�
An� �
�
��

This system may be solved by either minimizing the error as in Claerbout ������ or by

substituting directly into the solution for the normal equations� In either case the solution

for n is

n �
�
S
�

yS
�
� �N

�

yN
�

���
S
�

yS
�
d� �
�
��

Once again� y indicates the conjugate	transpose� or adjoint� which is simply the transpose

when all values are real�
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Since the signal s may be expressed as d� n� the solution for the signal is

s �
�
S
�

yS
�
� �N

�

yN
�

���
�N
�

yN
�
d� �
�
��

����� Frequency�wavenumber domain expression of the systems

Just as the inverse �ltering expressions in frequency in 
���� are converted to simple scalar

systems� the expressions for the signal and noise are appealing when expressed in the

frequency or in the frequency	wavenumber domains� The expressions for noise can be

considered scalar expressions at a constant frequency in one dimension� and at a constant

frequency and a constant wavenumber in two	dimensions� For example� in one dimension�

equation �
�
�� becomes

n��� �

�
S���S���

S���S��� � �N���N���

�
d���� �
�
��

where S indicates the complex conjugate of S� and all values are scalars for a constant

�� For values of � where signal is not expected� the value of S���S��� rises and the

weighting of the data into the noise increases� For values of � where signal is expected�

S���S��� falls and the weighting of the data into the noise decreases� Equation �
�
��

can be recognized as an optimal or Wiener �lter �Press et al�� ������

In the frequency	wavenumber� or �	k� domain� the same idea applies� except that each

value of n��� k� is evaluated for points in the �	k plane instead of at points of constant

frequency� The � in equation �
�
�� becomes ��� k�� and the expressions are separated into

samples of constant wavenumber �k� and constant frequency ���� This can be extended

into more dimensions by specifying k�� k�� etc�� for all the spatial directions considered�

The inversion to separate signal and noise may then be thought of as decomposing the

data into frequency and dip components� then distributing these components between

the signal and noise as determined by the frequency and dip components of S
�
and N

�
�

The advantage of having more dimensions is that the noise and signal may be better

distinguished as they are spread over �� k�� k�� and so on� Even if some overlap in the

characterization of noise and signal remains� the overlap should tend to decrease as the

number of dimensions increase�

Although viewing the separation of signal and noise in the frequency domains may be

enlightening� for the work done in this thesis the inversions will generally be done in the
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time and space domain which provides the advantages of simplicity of coding� control of

the �lter shape� and easy windowing of data to account for non	stationarity�

����� Incorporating gain into inversion

In the inversions considered so far� the signal s and noise n have been characterized only by

the �lters S
�
and N

�
� limiting the description of the data by the �lters to the spectrum� For

some applications� more information must be speci�ed� In particular� the amplitudes of

the seismic data should be considered� Recordings of seismic data show rapid weakening of

the signal with time caused by a combination of wavefront spreading and the attenuation

of the earth� If this weakening of the signal is not compensated for when an inversion is

attempted� most of the inversion�s e�ort will be expended on the strong shallow portion of

the records� The weaker deeper portion of the records� which appears small in the least	

squares sense� will be almost ignored by a least	squares solver� To equalize the treatments

of the shallow and deep portions of the seismic records� this amplitude di�erence must be

accounted for�

Another reason to account for the amplitudes is to take advantage of the extra infor	

mation contained in the di�erences of the expected amplitudes of the noise and signal�

Much noise originates from the surface and will either be of constant amplitude or weaken

at a slower rate than does the signal� For example� in chapter �� the noise is expected

to be of constant amplitude� whereas the signal is expected to weaken as t�� where t is

sample time�

One method of accounting for the weakening of the signal would be to gain the input

by t�� but this would strengthen the noise at depth� A better method would be to account

for the amplitude di�erences in the inversion itself� These amplitude di�erences may be

taken advantage of by using them as part of the characterization of the signal and noise�

As an example� suppose the noise amplitude falls o� as t and the signal amplitude falls

o� as t�� Systems �
�

� and �
�
�� may be modi�ed to become

� � S
�
t�s �
����

� � N
�
tn� �
����

then by substituting d� n for s� system �
�
�� becomes�
� S
�
t�d

�

�
A �

�
� S

�
t�

�N
�
t

�
An� �
����
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The factors t and t� might be considered as weights that control the distribution of the

expected signal and noise� as well as being factors that equalize the contributions of the

signal and noise to the output� The factors t and t� in system �
���� are in fact matrices

that have the values of t and t� along the diagonal that correspond to the time values of

the samples of n and s� For simplicity� I will represent these matrices with t and t� here

and later in this thesis�

Notice that the assumption of stationarity for s and n has been violated somewhat by

the time scaling� This is not necessarily a problem since the �lters S
�
and N

�
involve only

the spectrum of the signal and noise� This spectrum could be assumed to be constant� The

functions t and t� that balance the contributions of S
�
and N

�
in �
���� would presumably

be applied to the data from which S
�
and N

�
are calculated so the scaled s and n would

be stationary� In system �
���� it is assumed that the �lters S
�
and N

�
are small enough

to ignore the variation of s and n within the �lter caused by the t and t� scaling� If this

is not true� there will be a di�erence between applying the scaling before the �lters and

applying the scaling after the �lters�



Chapter �

Multi�dimensional �lter design

��� Filter shapes and dimensionality

One	dimensional �lters have been used on seismic data practically as long as seismic data

have been collected� As a step beyond simple bandpass �lters� adaptive �ltering techniques

have been applied successfully to seismic data for years �Webster� ������ In particular�

predictive deconvolution has been especially useful in areas such as the Gulf of Mexico

to remove short period multiples �Dobrin and Savit� ����� Robinson and Treitel� �����

Kanasewich� ������ This thesis addresses some aspects of the multi	dimensional extensions

to the previous one	dimensional techniques�

����� Filter dimensionality

Since the phenomena measured by seismic techniques are multi	dimensional� the manip	

ulation of the measurements of these phenomena will generally require multi	dimensional

�lters� While in the case of deconvolution in time� the reverberation e�ect is approxi	

mately contained in one dimension� this one	dimensional approximation breaks down for

long	period reverberations� In the case of f	x prediction� two	dimensional �ltering is done

by decomposing the problem into a large set of one	dimensional complex �lters� The

emphasis in this thesis is on the more general case of both calculating and applying multi	

dimensional �lters directly with multi	dimensional convolutions�

One characteristic of multi	dimensional �lters is that the number of samples contribut	

ing to an output point increases rapidly with the dimensionality of the data� This is an

advantage since much more information is available to predict an output point� or� from

����
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a di�erent point of view� given a constant number of samples from which to predict� more

dimensions allow the predictions to be done from smaller distances� A disadvantage of

using many dimensions is that the cost of computation also rises quickly with the dimen	

sionality of the data� Fortunately� the complexity of the programs needed for applying and

calculating multi	dimensional �lters rises slowly with the number of dimensions� especially

when the �lters are calculated with Claerbout�s conjugate	gradient methods �Claerbout�

����a� Claerbout� ������ The relative simplicity of this approach is important� since cal	

culating even two	dimensional �lters using the traditional techniques used to calculate

one	dimensional �lters appears to be a formidable task� and the problem becomes more

complex as the dimensionality increases� Almost all of the �lters used in this thesis have

been calculated with the conjugate	gradient methods�

����� Filter shapes

Claerbout�����a� presented a proof attributed to John Burg that shows a one	sided� or

Burg� �lter� when calculated to minimize the energy of a signal� will have a spectrum that

is the inverse of the signal� Thus� when the �lter is applied to the signal� the result is

white� Claerbout extends this proof to a one	sided two	dimensional �lter in his later work

�Claerbout� ������ These properties are useful in predicting the behavior of a �lter� so it

is with a certain reluctance that shapes other than the one	sided� or Burg� �lters are used�

Nevertheless� other shapes have particular advantages� Claerbout�s steep	dip decon	

volution �Claerbout� ���
� uses �lters that allow the prediction and removal of steeply

dipping events such as ground roll� but preserves re�ections� The �lter used in this case
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is a two	dimensional �lter similar to the following�

a a a a a a a a a

a a a a a a a a a

� a a a a a a a �

� a a a a a a a �

� a a a a a a a �

� � a a a a a � �

� � a a a a a � �

� � a a a a a � �

� � � a a a � � �

� � � a a a � � �

� � � a a a � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

�����

where the � is the output position and each a denotes a �di�erent� adjustable �lter coef	

�cient that is chosen to minimize the power output� The corresponding one	dimensional

�lter would appear as�

a

a

a

a

a

a

a

a

a

�

�

�

�

�����
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which is simply a standard deconvolution �lter� Claerbout�s steep	dip decon is then a two	

dimensional extension to standard deconvolution which allows predictions from samples in

traces near the output trace� The cost of this process is high� since a new two	dimensional

�lter is calculated for each trace� but the bene�ts may be worth the extra computation�

Another example of a shaped �lter is one that is often used in this thesis� This is that

of a purely lateral prediction �lter� Burg�s two	dimensional �lter

� a���� a���� a���� a����

� a���� a���� a���� a����

� a��� a��� a��� a���

a��� a��� a��� a��� a���

a��� a��� a��� a��� a���

���
�

may be modi�ed to make a purely lateral prediction �lter� To make the �lter purely lateral

requires that predictions not be done from within the trace which hold the output sample�

No predictions are done in the vertical direction� The purely lateral version of the �lter

shown in ���
� is�

� a���� a���� a���� a����

� a���� a���� a���� a����

� a��� a��� a��� a���

� a��� a��� a��� a���

� a��� a��� a��� a���

� �����

Note that only the �rst column has changed� The output point� under the � coe�cient� is

the only non	zero coe�cient in that column� This eliminates any predictions done within

a trace�

Eliminating predictions from within a trace is important because the �lter coe�cients

corresponding to prediction within a trace tend to overwhelm the predictions done from

trace to trace� Also� since the assumption that signal is consistent from trace to trace

has been made� only the trace	to	trace predictions are wanted� When doing these trace	

to	trace� or purely lateral predictions� these intra	trace predictions are undesired� and so

should be eliminated�

A three	dimensional version of Burg�s �lter appears in Figure ���� The corresponding

purely	lateral �lter is shown in Figure ���� Once again� the coe�cients within the trace

are eliminated�
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FIG� ���� The Burg 
	D �lter� �After Claerbout������� The vertical direction is time� and
the other directions are in space� 
lters�burg�D 
NR�

FIG� ���� The purely	lateral 
	D �lter� The vertical direction is time� and the other
directions are in space� 
lters�lateral�d 
NR�
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Filtering with purely	lateral �lters also brings up a fundamental di�erence between

how the time axis and how the spatial axes are treated in seismic processing� Along the

time axis� the unpredictable information is important� so predictable information� such as

source wavelets and reverberations from multiple re�ections are eliminated� Traditionally�

this has been done by prediction	error �ltering� or deconvolution� Along the spatial axes�

the important information consists of predictable events� and unpredictable information is

generally assumed to be noise� This di�erence comes from both the sedimentary character

of most of the geology considered in seismic exploration and from the geometry of surface	

seismic recording� where both the sources and detectors are at the surface� Any energy

recorded that appears above a certain angle is evanescent �Claerbout� ����� and does not

contain information about the desired re�ection events�

Changes to the �lter shapes allows events to be predicted to be separated better� As an

example� in chapter �� noise which is expected to be con�ned to a single trace is predicted

by one	dimensional �lters� The signal� on the other hand� is predicted by a purely	lateral

two	 or three	dimensional �lter� The success of the inversion depends on how well these

di�erently shaped �lters predict the di�erent phenomena�

��� The calculation of a �lter

����� Least�squares methods

While measures of the residuals other than the L	� norm may be used� the least	squares

method is used here� Norms between one and two may be obtained with the iteratively

re	weighted least	squares �IRLS� method �Nichols� ����b� Darche� ����� Green� ������

Norms other than L	�� especially L	�� may be used in cases where the presence of high	

amplitude events overwhelm the least	squares residuals�

In this thesis� two di�erent approaches to high	amplitude errors are taken� In chapter ��

the problem of high	amplitude noise corrupting the �lter calculation is solved by iteratively

solving for a signal and a signal annihilation �lter� Another approach is taken in chapter ��

where samples that produce large residuals are removed before the inversion� then� in

chapter �� the signal and noise are separated simultaneously with the prediction of the

missing data caused by the sample removal� It is hoped that these techniques will solve

most practical problems�

The calculation of a �lter is done by solving 
 � D
�
f � whereD

�
is a matrix made up of the
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given data and f is the �lter to be solved for� Claerbout�����a� shows how to solve for this

�lter f by expressing the convolution of the �lter f and the dataD
�
as matrix operators and

their adjoints� If the operator and its adjoint are available� a conjugate	gradient routine

may be used to calculate a least	squares minimization of a system �Luenburger� ������

This approach to computing the �lter simpli�es the problem considerably� Two	 and

three	dimensional �lters may be calculated as simply as a one	dimensional �lter� provided

the �lter operation and its adjoint are available�

����� Methods of using a �lter

As stated in the introduction� the �lters calculated here will be used in two techniques�

in simple �ltering and in inversions�

For signal and noise separation by �ltering� the noise is expected to be whatever

remains after a signal	annihilation �lter is applied to the data� This can be expressed as

npef � S
�
d� where S

�
is the signal	annihilation �lter� d is the data� and npef is the prediction	

error �lter estimate of the noise� While the desired action of the �lter is 
 � S
�
s� where

s is the signal� the signal s is not available for calculating S
�
� In the case where the noise

is considered to be unpredictable� the �lter S
�
can be calculated by minimizing S

�
d� This

makes S
�
d the prediction error� and the result for npef is the prediction	error �ltering

estimate of the noise� The t	x and f	x prediction �ltering discussed in chapters � and �

calculates the prediction	error �ltering estimate of the noise npef with the �ltering S
�
d

done in two and three dimensions�

As pointed out by Soubaras������� the noise as de�ned by prediction	error �ltering is

inconsistent with the de�nition that the data is the sum of the signal and noise� d � s�n�

even though s is calculated as s � d�npef � If the signal s is perfectly predicted by �lter S
�
�

the signal will be completely annihilated by the �lter so that S
�
s � 
� When S

�
is applied

to d � s� n� the result is S
�
d � S

�
n� as opposed to S

�
d � npef � the de�nition of noise by

prediction	error �ltering� Thus� to avoid a con�ict of these de�nitions� prediction	error

�ltering requires a �lter that removes the signal s without disturbing the noise n� which

is expressed as S
�
n � n� If the prediction	error �ltering result S

�
d or S

�
n is not close to the

actual noise n� the accuracy of the signal calculated from d� npef will be compromised�

In short� a prediction	error �lter must not distort the noise� This requirement will always

be violated to some extent�

If the �lters are used in an inversion� the assumption that S
�
n � n is not required� The



��
�

inversion only requires that 
 � S
�
s� The form of S

�
n is less important� S

�
n may be� for

example� reversed in polarity or time	shifted when compared to n� and the inversion will

still function well� This might be understood as making the phase of the �lter unimportant�

since the spectral power is the main concern�

One advantage of using a �lter in an inversion is that more freedom is allowed for

correcting the results to account for missing data� as described in the previous chapter

and examined in more detail in chapter �� While the application prediction	error �lters

can be modi�ed to treat some missing data problems by predicting in only one direction�

inversion gives a more natural method of allowing for missing data� as well as predicting

and restoring the missing data�



Chapter �

Noise removal by �ltering

This chapter discusses two approaches to predicting linear events� a frequency	space� or f	

x� prediction technique� and a time	space� or t	x� prediction technique� The f	x prediction

technique was introduced by Canales ������ and further developed by Gulunay �������

based on Treitel�s complex series prediction work �Treitel� ������ This technique divides

the two	dimensional �ltering problem into many one	dimensional �ltering problems in

space� one for each frequency� These f	x prediction techniques were signi�cant improve	

ments over the other noise attenuation methods available at that time� The name Gulunay

used for this process was FXDECON� which stood for frequency	space domain predictive

deconvolution� The reference to deconvolution is something of a misnomer� since deconvo	

lution refers to the removal of predictable information� whereas in this chapter� the data

of interest are the predictable parts of the input� After a transformation of the data from

the time	space domain into the frequency	space domain� the process of predicting a linear

event can be divided into many smaller problems of predicting periodic events within a

frequency� The t	x prediction process presented in this chapter is done with a single pre	

diction �lter calculated in the time	space domain using a conjugate	gradient method� The

conjugate	gradient method and programs for �lter calculations similar to the ones used

here are discussed in Claerbout �����a��

While the two methods generally produce similar results� t	x prediction has several

advantages over the older f	x prediction� These advantages allow t	x prediction to pass

less random noise than the f	x prediction method� Most of the extra random noise is passed

because the f	x prediction technique� while dividing the prediction problem into separate

problems for each frequency� produces a �lter as long as the data series in time when the

����
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collection of �lters is transformed into a single �lter in the t	x domain� Because the f	x

prediction �lter is very long in the time direction� its many free �lter coe�cients allow

some random noise to be passed and spurious events to be generated� Since the length in

time of the t	x prediction �lter can be controlled� t	x prediction avoids the disadvantages

of f	x prediction�

In three dimensions� better results are expected for both techniques since more data

goes into every prediction and since some of the linearity assumptions can be relaxed

in three dimensions �Chase� ����� Abma� ���
� Gulunay et al�� ���
�� � I found that

extending these prediction techniques from two dimensions into three dimensions produces

better results than two passes of the �	dimensional processes in the inline and crossline

directions�

This chapter examines these two prediction techniques and compares the results in

both two and three dimensions� I also show some of the advantages that 
	dimensional

prediction has over the �	dimensional applications of these techniques�

��� Two�dimensional lateral prediction

Much seismic data� especially those acquired on land� are contaminated with random noise

that impedes interpretation and interferes with further processing and analysis� Random

noise is recognized by its dissimilarity from trace to trace� Signal� on the other hand� is

recognized by its lateral continuity� Much of this continuity results from the sedimentary

character of the data being considered�

The methods I consider here predict only linear events� While the human eye recog	

nizes the continuity of nonlinear events� the mathematical tools available work best on

linear problems� Even though many continuous seismic events are not linear� windowing

the image into smaller areas makes most of these events at least approximately linear�

Hornbostel ������ introduced a t	x prediction technique that allowed rapidly changing

data without requiring windowing� but in this chapter� I used the same windowing tech	

nique for both the f	x and t	x predictions�

����� Prediction of seismic signals in the t�x domain

The �	dimensional t	x technique predicts linear events with a �	dimensional time	space

domain �lter� This �lter is calculated to minimize the energy inside a design window using



����

a conjugate	gradient routine 
Claerbout �����a��� The �lters used in the examples in this

article have the form�
� a���� a���� a���� a����

� a���� a���� a���� a����

� a��� a��� a��� a���

� a��� a��� a��� a���

� a��� a��� a��� a���

� �����

The vertical axis is the time axis� and the horizontal axis is the space axis� The output

position is under the � coe�cient on the left side of the �lter� This �lter has no free

coe�cients in the column corresponding to the output trace� which forces whatever pre	

dictions are made to be lateral� Application of this �lter removes predictable energy from

the design window� leaving the unpredictable part� which is considered here to be noise�

Subtracting the unpredictable data from the original data produces the predictable data�

As an example of a calculated �lter� a �at event in a noiseless window produces a

�lter with all zeros except on the row containing the �� where each of the a��� a��� a���

and a�� coe�cients in the �lter above becomes ������ This �lter minimizes the energy of

the output by exactly predicting the �at event� Anything left after �ltering is considered

noise and removed from the input� Although making any one of the a��� a��� a��� or a��

coe�cients �� produces a �lter that exactly predicts an event� I set up the problem so

that the coe�cients tend to be equal for the best noise attenuation�

The choice of the �lter size depends on the size of the design window� the maximum

dip in the data� the number of dips within the window� and the desired strength of the

prediction e�ect� For t	x prediction� the choice of the �lter�s length in space is similar

to the choice of the �lter length in f	x prediction� Enough traces need to be included to

create a good estimate of the signal� I tend to use � to � traces on �	dimensional data�

while for 
	dimensional data� this number can be somewhat smaller in each direction� The

�lter length in time for the t	x �lter does not seem to be an especially sensitive parameter

unless very steep events exist� In the examples shown here� I used 
 to � samples� Events

that have a moveout greater than the �lter length in time are easily predicted� provided

the bandwidth of the data is not too high� To keep the application of the calculated �lter

symmetrical� the �lter is applied in both forward and reverse directions in space� with the

results averaged�

The process of applying t	x prediction� as well as the f	x prediction discussed next� is
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applied to windows small enough for events of interest to appear linear� After �ltering�

these windows are merged to produce the output image�

����� Prediction of seismic signals in the f�x domain

An f	x prediction like Gulunay�s ������ predicts linear events in the frequency	space do	

main� A linear event given by the expression r�x� t� � ��a� bx� t�� where x is the lateral

position and t is time� when Fourier transformed in time becomes r�x� �� � ei��a	bx� or

r�x� �� � ei�a�cos��bx�� i sin��bx�� �Bracewell� ����� Briggs and Henson� ����� Arfken�

������ For a simple linear event� this function is periodic in x� This periodicity can be

seen along any constant frequency line in the f	x domain display in Figure ����

FIG� ���� A single dip shown in the t	x domain and in the real part of the f	x domain� In
the f	x domain� the signal is periodic along any horizontal line� TXFX�sdip 
R�

To predict a linear event in x� where x is a sampled version of r�x� �� for a single



����

frequency� Gulunay ������ proposed calculating a least	squares prediction �lter f from

the system d � X
�
f � or� as expanded��
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The input to the prediction problem is the data from a single frequency over the width

of the window in space� This input is a set of complex numbers � x� x� x� � � � xn ��

The desired output d is � x� x� � � � xn xn	� �� a one	sample step	ahead prediction of

the input� While d can be built with a longer shift of the input data �Hornbostel� ������

a shift of one sample is generally used� Notice that the desired output d starts with x�

and ends with xn	�� Gulunay ������ set up the problem using this extra element from

the input to guarantee that the �lter would produce a result with the same amplitude as

the input regardless of the length of the �lter and of the data� The rows of the matrix X
�

are shifted versions of the input that produce a convolution with the desired �lter f � This

�lter f can be calculated using the normal equations f � �X
�

yX
�
���X

�

yd� where y indicates

the conjugate transpose� or adjoint� This is a standard solution to least	squares problems�

except that the sample values are complex numbers� so the adjoint operation y cannot

ignore taking the complex conjugate of the matrix elements on which it operates�

The f	x prediction is applied to small windows to ensure that events are locally linear�

just as in the t	x prediction case� and the data within each window are then Fourier

transformed� For the spatial series created at each frequency by the Fourier transform�

a prediction �lter is calculated as described in the preceding paragraph� Each calculated

�lter is �rst applied forward and then reversed in space� with the results averaged to

maintain a symmetrical application� as in the t	x prediction case� The inverse Fourier

transform is then applied to the result in each window� and the windows are merged to
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form the output image�

The calculation of the �lter for each frequency is independent of the calculations of

the �lters for other frequencies� While the �lters calculated at each frequency are a least	

squares solution� this multitude of least	squares solutions does not necessarily produce a

collective �ltering action that is the best result� In the next section� I discuss the e�ect

of this partitioning and the resulting di�erences between the actions of t	x prediction and

f	x prediction�

����� The relationship of f�x prediction to t�x prediction

When applied to data with relatively mild random noise problems� most of the cases where

t	x prediction was compared to f	x prediction showed practically identical results� In tests

on synthetics with simple �at or dipping events in the absence of noise� both techniques

passed events without distortion� These same simple cases with an added background

of relatively low	amplitude random noise also produced comparable results� The results

using real data with both techniques were also similar� Di�erences appeared only when

the signal	to	noise ratio is low�

These similarities and di�erences are explained by comparing the form of the t	x

prediction �lter and the form of the e�ective t	x domain �lter created by f	x prediction�

The individual �lters calculated by the f	x prediction have the form

� a� a� a� a� � ���
�

where a�� a�� a�� and a� are complex numbers� Collecting these �lters and presenting them
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in the frequency	space domain produces the following composite �lter�
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Transforming this �lter from the frequency	space domain into the time	space domain gives

the e�ective t	x domain �lter�
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where the number of rows is the number of time samples in the window being considered�

The Fourier transform has converted the �rst column of �s into a single � at the output

position� creating a time	space �lter with the same form as the t	x prediction �lter shown

in ������ but with the number of rows greatly increased�

For data with a high signal	to	noise ratio� the coe�cients of the �lter producing most

of the prediction are expected to lie close to the center of the �lter in time� since events far
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from the output point in time are unlikely to a�ect data at the output position� For data

with a low signal	to	noise ratio� correlations between random events widely separated in

time create undesirable lineups with signi�cant amplitudes in the f	x prediction results�

Since the f	x prediction produces a very long e�ective t	x �lter in time� its prediction is

contaminated with these random correlations� where the t	x prediction� with its smaller

�lter� is not� Examples showing that the f	x prediction passes more noise than the t	x

prediction are presented later in this chapter for both �	dimensional and 
	dimensional

cases�

The time	length problem of the f	x prediction �lter can be compared to the problem

of calculating a one	dimensional prediction �lter from a short time series� If a long one	

dimensional prediction �lter is calculated and applied to a short time series� practically

everything in the time series will be predicted because of the many degrees of freedom

allowed by the many �lter coe�cients� Having a �	dimensional �lter with a signi�cant

spatial width compensates for some of this over	prediction� but a t	x prediction �lter with

a short length in time is a more complete solution to the problem�

Another e�ect of having a long �lter length in time for f	x prediction is the generation

of false events� If parallel events are embedded in a background of random noise� f	

x prediction generates events parallel to the original events� While both t	x and f	x

techniques tend to line up noise with strong events� f	x prediction actually generates events

because of its long �lter length in time� These spurious events occur since parallel events

in a random noise background produce an f	x �lter where the prediction of one event

is in�uenced by the presence of the other events parallel to it in spite of being widely

separated in time� The t	x prediction is una�ected by the in�uence of widely separated

events because of its short �lter length in time�

An example of how f	x prediction generates spurious events can be seen in Figure ����

In this case� two �at events are immersed in noise on the left side of the displays� and the

right side of the display is left free from noise to show the response of the �lter� In both the

f	x and the t	x predictions just one design window is used� covering all the data� With f	x

prediction� events widely spaced in time can be used to predict an output point� For the f	x

prediction in Figure ���� the noise on the left side of the input allows the predictions to be

made using input from both events� so the equivalent t	x �lter has signi�cant coe�cients

far in time from the output point� When this �lter is applied to the clean data on the right

side� spurious events generated by these widely separated coe�cients are seen� In the f	x
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prediction result� strong events are generated above and below the two original events�

and weaker events can be seen lined up with the original events on the right side� The

t	x prediction results do not show these erroneous events� While the f	x prediction may

be modi�ed to eliminate this problem by constraining the �lter coe�cients to be smooth

in frequency� the t	x prediction did not generate spurious events since its length in time

is more naturally controlled�

The generation of spurious events will be considered in more detail in the next chapter�

Although in the examples in Figure ��� show that spurious events are not generated by

t	x prediction in this case� cases where events are closely spaced allow spurious events to

be generated by both f	x and t	x prediction�

A typical f	x prediction program has an advantage over a similar t	x prediction pro	

gram because the �lter length in time does not need to be speci�ed and therefore cannot

accidentally be made too short� The cost of not requiring this parameter is the risk of

generating false events and of passing more noise than a t	x prediction�

����� Comparison of two�dimensional f�x and t�x predictions

I compared the results of varying the time	extents for t	x prediction �lters in the presence

of high	amplitude noise against the results of f	x prediction� In a simple noise	only case�

when I used the same number of coe�cients in the lateral direction for both processes� f	x

prediction passed about twice the noise energy as a short time	length t	x prediction� As the

time	length of the t	x prediction �lter increased� the t	x prediction passed more random

noise� When �lters with a time	length comparable to the data time	length were used� I

found almost no di�erence between the �lters or between the results of t	x prediction and

f	x prediction� Thus� because of its ability to limit the �lter length in time� t	x prediction

has a de�nite advantage over f	x prediction in removing random noise�

This di�erence in passing random noise is shown in Figure ��
� where the results of

the t	x prediction and f	x prediction are applied to a �	dimensional stacked section� Here

I used a time length of �ve coe�cients for the t	x prediction result and a spatial length

of �ve coe�cients for both prediction methods� The window sizes in both cases were


� traces by 
�� time samples� or ��� seconds in this instance� This section contains a

moderate amount of noise and was one of the few non	synthetic cases showing recognizable

di�erences between t	x prediction and f	x prediction� While the results are similar� f	x

prediction passes somewhat more noise than t	x prediction� The noise is most apparent in
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FIG� ���� An example of the creation of false events with f	x prediction and the corre	
sponding result from t	x prediction� Notice that the f	x prediction has created a few strong
events and numerous weak events� while the t	x prediction is clean� TXFX�two 
R�
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the originally zeroed area above about ��
 seconds and in the deepest part of the section

below ��� seconds�

����� The biasing of f�x prediction toward the output point

Though less of a problem than the long time	length �lter� the tendency for the lateral

prediction coe�cients to be concentrated near the output trace position with Gulunay�s f	

x prediction ������ should cause slightly more noise to be passed than with t	x prediction�

The source of this biasing can be seen in the system describing the f	x prediction �ltering�
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where the vector d is the desired output� X
�
is the input data shifted with respect to the

�lter� and f is the �lter to be calculated� The zeros in the last few coe�cients of d tend to

reduce the f�� f�� and f� coe�cients of the �lter� The zeros at the top of theX
�
matrix have

a similar e�ect� The result of this tendency to weight the f	x prediction �lter coe�cients

toward the output point of the �lter may be appealing in terms of producing an output

trace made up of the nearest traces� but the noise in the nearest traces is also passed with

less attenuation� This increased weighting of the nearest traces produces a �lter that is

slightly less e�ective in rejecting noise�

The increased weighting of the nearest trace can be eliminated by setting up the
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FIG� ��
� �	dimensional t	x prediction and f	x prediction on a stacked line� The left
section is the input� the middle section the t	x prediction result� the right section the f	x
prediction result� The results of the two techniques are similar� but somewhat less noise
is passed with t	x prediction than with f	x prediction� TXFX�DDw 
R�
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problem di�erently� Removing the top and bottom rows of equation ����� produces

�
BBBBBBBBBBBBBBBBBBBB�

x�

x


x�

�

�

�

xn��

xn

xn	�

�
CCCCCCCCCCCCCCCCCCCCA

�

�
BBBBBBBBBBBBBBBBBBBB�

x� x� x� x�

x� x� x� x�

x
 x� x� x�

� � � �

� � � �

� � � �

xn�� xn�� xn�� xn��

xn�� xn�� xn�� xn��

xn xn�� xn�� xn��

�
CCCCCCCCCCCCCCCCCCCCA

�
BBBBB�

f�

f�

f�

f�

�
CCCCCA � �����

so the �lter is calculated only where nonzero data are available� It is interesting to note

that �X
�

yX
�
� does not necessarily have a unique inverse� For a �at event� all the coe�cients

in the X
�
matrix have equal values� and all the elements of X

�

yX
�
also have equal values�

making X
�

yX
�
singular�

Expanding equation ����� to add a damping condition to equally weight the �lter

coe�cients gives
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where � is a small number� Solving this set of equations avoids the tendency that I have

seen with Gulunay�s method for the largest coe�cients to cluster near the output position�
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Although these modi�cations should improve the noise attenuation properties of the

complex prediction �lter� the biasing e�ect on the noise attenuation is very small compared

to the improvement from using the shorter time	length �lter of a typical t	x prediction�

A feature of Gulunay�s method is� that for noiseless data� prediction is unneeded and

concentrating the strongest prediction coe�cients near the output has no e�ect on the

results� As the strength of the noise increases� the distribution of the amplitudes of the

�lter coe�cients becomes more even� since adding noise to the input provides the same

e�ect as adding a factor to the main diagonal of X
�

yX
�
�

It might be thought that this noise	dependent coe�cient weighting gives f	x prediction

a possible advantage over t	x prediction� However� if an irregularity such as a fault exists

in the input data� both t	x and f	x predictions will generate identical �lters in the noiseless

case� since the di�erence between the input and the predicted data will be smallest for a

�lter with strong �lter coe�cients adjacent to the output trace and producing the least

smearing of the irregularity� For perfectly regular data with noise added� the f	x prediction

�lter coe�cient distribution will approach that of the t	x prediction �lter as the strength

of the noise is increased� Thus� f	x prediction always has an e�ectiveness that is less than

or equal to the t	x prediction�s e�ectiveness�

����	 Computer time requirements

The number of �lter coe�cients controls the computer time required by both of these

techniques� Since the applications being considered here are post	stack and generally fast�

at least for �	dimensional cases� the computer time required is generally insigni�cant�

It is interesting to note that while the e�ective t	x prediction time	domain �lter has

more coe�cients than the individual �lters used in f	x prediction� because f	x prediction

produces a di�erent �lter for each frequency� the total number of �lter coe�cients is

much larger than the number for t	x prediction� Nevertheless� the computer time needed

to apply these two processes in the �	dimensional case is comparable� since each �lter

calculated by f	x prediction is smaller than the single �lter calculated by t	x prediction�

Since the time to calculate a �lter is proportional to n� with the routine I used� where

n is the number of �lter coe�cients� the calculation times used by the two approaches

become nearly equal� For the 
	dimensional case� the application of t	x prediction tends

to be more costly than f	x prediction� but not tremendously so� since the �lter sizes used

by t	x prediction can be smaller than those for a comparable f	x prediction� However� as



����

the size of the t	x prediction �lter increases� the processing time increases rapidly� On the

other hand� should cost be an issue� Claerbout �����a� pointed out that the number of

iterations in the conjugate	gradient routine used by my t	x prediction can be signi�cantly

reduced from its theoretical limit with good results�

��� Three�dimensional lateral prediction

Three	dimensional lateral prediction has two important advantages over two	dimensional

prediction� The �rst is that� in a 
	dimensional volume� any output sample is close to

more samples in the input than in the �	dimensional case� Having more nearby samples

allows better random noise attenuation� Second� the assumption that events are linear

within a �	dimensional window or 
	dimensional sub	volume can be relaxed� As pointed

out by Chase ������ and Gulunay et al� ����
�� events that are nonlinear in one direction

but linear in another are predicted exactly with a 
	dimensional �lter�

Prediction over a 
	dimensional volume can be done with two passes of a �	dimensional

process or with a true 
	dimensional technique� Since two passes of either the t	x or f	x �	

dimensional techniques do not allow processors to take full advantage of the opportunities


	dimensional data presents� I have extended the �	dimensional techniques to true 
	

dimensional techniques using 
	dimensional �lters�

����� The three�dimensional extension of t�x prediction

Extending the t	x prediction to three dimensions is a simple matter of de�ning the 
	

dimensional convolution and its adjoint� that is� its conjugate transpose� Instead of divid	

ing the input into �	dimensional windows� the input volume is broken into 
	dimensional

sub	volumes� Each of these sub	volumes is used in a separate least	squares problem for

calculating a 
	dimensional �lter� which is a straightforward extension of the calculation

of a �	dimensional t	x �lter� Figure ��� shows the con�guration of the 
	dimensional �lter

I used� This con�guration is a modi�cation of the more general 
	dimensional �lter shown

in Claerbout �����a�� page ���� While the 
	dimensional �lter might be made symmet	

rical in space by constraining the �lter coe�cients across the central element to be equal

�Gulunay et al�� ���
�� I simply applied the �lter in multiple directions and averaged the

results�
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FIG� ���� A three	dimensional lateral prediction �lter� The darkened cube is the output
position� TXFX�DDD
lter 
NR�

����� The three�dimensional extension of f�x prediction

The extension of f	x prediction into three dimensions is more di�cult than that of t	x

prediction� For each frequency� instead of a prediction along a vector� the prediction of a

set of complex numbers within a plane is required� For the examples of 
	dimensional f	x

prediction shown here� I computed a complex	valued �	dimensional �lter at each frequency

with a conjugate	gradient routine� While other techniques for computing this �lter exist�

they should produce similar results� The advantage of this approach is that the huge

matrix X
�
used to describe the 
	dimensional convolution of the �lter with the data does

not need to be stored� and the inverse of X
�

yX
�
does not need to be computed� which

simpli�es the problem signi�cantly �Claerbout� ����a��

The shape of the �	dimensional �lter used to predict numbers in a �	dimensional

frequency slice has the form

c���� c���� c���� c���� c����

c���� c���� c���� c���� c����

� c��� c��� c��� c���

� c��� c��� c��� c���

� c��� c��� c��� c���

� �����
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where all the coe�cients are complex	valued� The justi�cation for this shape is more

fully discussed on page ��� of Claerbout �����a�� but this form may be compared to a

horizontal slice through the center of the �lter shown in Figure ���� If the collection of the

�lters for all frequencies is Fourier transformed in time� a �lter similar to the one shown

in Figure ���� but extended in time� is formed�

����� Examples of three�dimensional lateral prediction

An example of the 
	dimensional prediction�s ability to predict nonlinear events is shown

in Figure ���� where the input consists of several dipping layers cut by a fault in the

crossline direction� so that events are nonlinear in the inline direction� In the cubes in

Figure ��� and the �gures that follow� the vertical direction is the time axis� the horizontal

direction is the inline spatial axis� and the direction running into the page is the crossline

spatial axis� The lines on the cubes indicate the position of the slices shown on the faces

of the cube� The one	pass 
	dimensional prediction did not smear the fault� because the

calculated 
	dimensional �lter created a prediction in the crossline direction that preserved

the discontinuity in the inline direction� With the two	pass prediction� the inline pass

smeared the re�ections across the fault� For the noiseless case of Figure ���� the f	x

prediction is not shown because it gave the same results as the t	x prediction�

The results of applying f	x prediction and t	x prediction to a 
	dimensional land survey

provided by ARCO are shown in Figures ��� to ��� to demonstrate the di�erences between

the two processes� This data set is interesting because it has a signi�cant noise level with

fairly �at� predictable events�

For both two	pass applications� the �lter size was �ve elements in the spatial direction�

For both 
	dimensional one	pass applications� I employed a �lter with �ve elements in both

spatial directions� The t	x prediction used a �ve	element �lter length in the time direction

for both one	 and two	pass applications� The window sizes were �� traces in the inline

direction� �� traces in the crossline direction� and ��� samples� or ��� seconds in time�

Both the two	pass and the one	pass t	x prediction results in Figures ��� and ��� show

less noise than the corresponding f	x results� otherwise the results are similar� While the

one	pass t	x prediction and f	x prediction results are much the same� the t	x prediction

output shows somewhat less noise�

The advantage of using 
	dimensional lateral prediction is especially clear in Fig	

ures ���� and ���� Both the one	pass results show signi�cantly less smearing of the
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FIG� ���� A comparison of smearing with one	 and two	pass t	x prediction� The top cube
is the input� the middle cube is the result of a one	pass 
	dimensional t	x prediction� and
the bottom cube is the result of two passes of one	dimensional t	x prediction in the inline
and crossline directions� The one	pass result shows no smearing of the fault� the two	pass
result shows a smeared fault image� TXFX�yplanesld 
CR�
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FIG� ���� The input to the t	x and f	x predictions� A signi�cant amount of noise is seen
here� In this �gure and the ones that follow� the vertical axis is time and the horizontal
axes are space� TXFX�Arcoorig 
CR�
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FIG� ���� The result of two passes of �	dimensional t	x prediction processing� While this
result is an improvement over the input� some of the details are seen to be lost when
compared to the 
	dimensional t	x prediction� More noise has been attenuated than with
the two	pass f	x prediction� TXFX�Arcotx�d 
CR�
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FIG� ���� The result of 
	dimensional t	x prediction processing� This result preserves the
details lost in the two	pass t	x prediction� TXFX�Arcotx�d 
CR�
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structure� On the top faces of the cubes in Figures ���� and ���� the one	pass results

appear clean and reasonable� whereas the two	pass results show smearing along the inline

and crossline directions� An example of the smearing of the detail can be seen at point

A of these �gures� where a small doughnut	shaped feature is badly smeared in both the

two	pass results� The front face of the cubes in Figures ��� to ��� are signi�cantly di�erent

for the one	 and two	pass results� with the one	pass results showing much more detail� The

features at point B in the �gures once again demonstrate the loss of detail� Although the

di�erences between the 
	dimensional t	x and f	x results in Figures ���� and ��� are less

than those between the �	dimensional t	x and f	x results in Figure ��
� the results of the


	dimensional t	x prediction appear slightly cleaner than those of the 
	dimensional f	x

prediction�

��� Conclusions

Since f	x prediction has been shown to be equivalent to a t	x prediction with a long time

length� it may not be surprising that t	x prediction generally produces results similar to

those of f	x prediction� Although both these techniques work equally well in low noise

cases� t	x prediction provides better random noise reduction than the older f	x prediction

technique in the presence of moderate	 to high	amplitude noise� The t	x prediction also

avoids the generation of false events in the presence of parallel events when using f	x

prediction� at least for parallel events with spacings wider than the �lter length in time�

The advantages of t	x prediction are the result of its ability to control the length of the

prediction �lters in time� Because t	x prediction has a shorter e�ective �lter length in

time than f	x prediction� t	x prediction passes signi�cantly less random noise than f	x

prediction� While Gulunay�s f	x prediction biases the prediction toward the traces nearest

to the output point� allowing more noise to be passed� this bias appears unimportant when

compared to the problem with the length of the e�ective �lter in time�


	dimensional prediction allows improved noise attenuation because more samples are

used to make predictions� 
	dimensional prediction also relaxes the requirement that

events be linear� Comparisons of one	 and two	pass predictions on a land data set show

that the one	pass results retain signi�cantly more detail than the two	pass results� In both

one	 and two	pass predictions� the f	x prediction passes more random noise than the t	x

prediction�
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FIG� ���� The result of two passes of �	dimensional f	x prediction processing� While this
result is an improvement over the input� some of the details are seen to be lost when
compared to the 
	dimensional f	x prediction� TXFX�Arcofx�d 
CR�
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FIG� ����� The result of 
	dimensional f	x prediction processing� This result preserves the
details lost in the two	pass f	x prediction� TXFX�Arcofx�d 
CR�
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In the next chapter� the generation of spurious events is examined in more detail� In

chapter �� I will examine two more shortcomings of f	x and t	x prediction� that of the

amplitude loss in the signal and that of the �lter response to the noise being left in the

signal� To avoid these di�culties� a method of extending t	x prediction is presented in

chapter ��



Chapter �

Spurious event generation with

f�x and t�x prediction �ltering

In the previous chapter� the f	x prediction technique and the t	x prediction technique

were compared and contrasted� It was shown that an f	x prediction is equivalent to a t	x

prediction with a very long �lter length in time� This �lter� with its long length in time�

generates spurious events from parallel events embedded in noise on the input� Even with

a short �lter length in time� the wavelet of events may be corrupted� since a wavelet on an

event appears as a series of parallel events� This chapter compares the action of these two

prediction techniques� and shows examples of spurious event generation for both widely

spaced events and for wavelets�

��� F�x prediction expressed as t�x prediction

As shown in Abma and Claerbout ����
� and in chapter � of this thesis� the similarities

and di�erences between f	x prediction and t	x prediction are explained by comparing the

form of the t	x prediction �lter and the form of the e�ective t	x domain �lter created by

f	x prediction� This comparison� which is also shown in chapter �� is quickly reviewed

here�

For each frequency� f	x prediction generates a prediction �lter over the samples in

space� The individual �lters calculated by the f	x prediction have the form

� a� a� a� a� � �����

����
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where a�� a�� a�� and a� are complex numbers� Collecting these �lters for all frequencies

and presenting them in the frequency	space domain produces the following composite

�lter�
���

���
���

���
���

� a���� a���� a���� a����

� a���� a���� a���� a����

� a���� a���� a���� a����

� a��� a��� a��� a���

� a��� a��� a��� a���

� a��� a��� a��� a���

� a��� a��� a��� a���
���

���
���

���
���

� �����

Transforming this �lter from the frequency	space domain into the time	space domain gives

the e�ective t	x domain �lter�

���
���

���
���

���

� b���� b���� b���� b����

� b���� b���� b���� b����

� b���� b���� b���� b����

� b��� b��� b��� b���

� b��� b��� b��� b���

� b��� b��� b��� b���

� b��� b��� b��� b���
���

���
���

���
���

� ���
�

where the number of rows is the number of time samples in the data being considered�

i�e� the design window� The Fourier transform has converted the �rst column of �s into a

single � at the output position� creating a time	space �lter�

A typical t	x prediction �lter appears as�

� b���� b���� b���� b����

� b��� b��� b��� b���

� b��� b��� b��� b���

� �����

This �lter has the same form as the f	x prediction �lter shown in ���
� but with the



����

number of rows greatly decreased� The action of an f	x prediction �lter can be seen to be

the action of a t	x prediction �lter with a very long time	length�

��� Spurious event generation with f�x prediction

This section reviews the discussion in chapter �� where it was shown that one e�ect of

the long �lter length in time for f	x prediction is the possible generation of false events�

If strong parallel events are embedded in a background of random noise� f	x prediction

generates weak but signi�cant events parallel to the original events� While both t	x and f	x

techniques tend to line up noise with strong events� f	x prediction actually generates new

events with its long �lter length in time� These spurious events occur because parallel

events in a random noise background produce an f	x �lter where the prediction of one

strong event is in�uenced by the presence of other parallel events� An event corrupted by

noise can have its prediction improved by using information from a nearby parallel event

if the �lter length in time is long enough to take advantage of the extra information� The

t	x prediction is much less likely to be a�ected by the in�uence of widely separated events

because of its short �lter length in time�

The strength of the spurious events depends on the ratio of the signal to the background

noise and the number of parallel events that contribute to the output sample�s prediction�

With no noise� no spurious events are generated� If there is no signal� or a very weak signal

with respect to the noise� no prediction is done and no spurious events are generated� If

many events parallel to the signal exist� each event contributes little to the prediction� and

the spurious events generated by each of these parallel events will be too small to notice

in most practical settings�

An example of the spurious events generated by f	x prediction can be seen in Figure ����

In this case� two �at events are immersed in noise on the left side of the displays� and the

right side of the display is left noise free to show the response of the �lter� For both f	x and

t	x predictions� only one design window is used� With f	x prediction� events widely spaced

in time can be used to predict any output point� For the f	x prediction in Figure ����

the noise on the left side of the input allows the predictions to be made using input from

both events� so the equivalent t	x �lter has signi�cant coe�cients far in time from the

output point� When this �lter is applied to clean data on the right side� spurious events

generated by these widely separated coe�cients are seen� In the f	x prediction result�
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strong events are generated above and below the two original events� and weak events line

up with the original events on the right side� The t	x prediction results do not show these

erroneous events� While the f	x prediction may be modi�ed to eliminate this problem by

constraining the �lter coe�cients to be smooth in frequency� the t	x prediction does not

generate spurious events since its time length is more naturally controlled�

The false events generated by the f	x prediction generally appear to be weak� To give

a better idea of the amplitudes of the false events� the results of the f	x prediction seen in

the Figure ��� are displayed as an elevation plot in Figure ���� In real data with an even

distribution of noise� these spurious events are unlikely to be mistaken for real events�

since the remaining noise should hide the errors�

Finally� to demonstrate that the f	x prediction and the t	x prediction show the same

e�ects when a long �lter length in time is used and that the generated events are not

Fourier domain wraparound� Figure ��
 shows a t	x prediction �lter with a time	length of

�� samples� Notice that the results are similar�

A typical f	x prediction program has an advantage over a similar t	x prediction program

because the �lter length in time is �xed and does not need to be speci�ed� Therefore� this

length cannot be accidentally made too short� The cost of not requiring this parameter

is creating the risk of generating false events and by passing more noise �Abma and

Claerbout� ���
��

��� Wavelet distortion

The previous examples show spurious events generated at widely spaced times because

parallel events a�ect each other�s predictions� These widely spaced events may be removed

by shortening the �lter length in time� Closely spaced parallel events will produce spurious

events with little separation in time� These appear as distortions to the wavelet�

A single event that is extended in time� such as a re�ection with a wavelet convolved

with it� su�ers distortions� as seen in Figures ��� to ���� Figure ��� shows an example of

lateral prediction with a single event� The original event extending over three samples in

time is shown in Figure ���� When a prediction �lter was applied to the data� a trace from

the noise	free side of the data was extracted and is shown in Figure ���� While Figure ���

shows the t	x prediction result� f	x prediction produces similar e�ects�

Notice that the event in Figure ��� appears similar to the event in Figure ���� but is
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FIG� ���� An example of the creation of false events with f	x prediction and the corre	
sponding result from t	x prediction� spurious�two 
R�
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FIG� ���� The relative amplitudes of
the false events to the original events
for the f	x prediction of Figure ��
spurious�twoh 
R�

FIG� ��
� The relative amplitudes
of the false events to the original
events for a t	x prediction with an
extremely long �lter length in time�
spurious�twomdlong 
R�
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FIG� ���� An example of lateral prediction with a single event� spurious�one 
R�
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extended in time� As the level of the noise is decreased� the spreading of the wavelet in

time will decrease� There will be a trade	o� between noise attenuation and resolution in

time that will depend on the level of the noise� Normally this trade	o� is well worth the

small sacri�ce of resolution� but the user should be aware that a trade	o� is taking place�

FIG� ���� The original trace before
predic	
tion �ltering� spurious�smultspike


R�

FIG� ���� The trace after prediction
�ltering� spurious�smultmda 
R�

��� Discussion

If a large number of closely spaced parallel events buried in noise fall in a window� the

calculated �lter will consist of the central main spike plus small contributions from all

parallel events� With a large number of parallel events� the contribution of any one event

parallel to the event being predicted will be small� For example� data in the Gulf of Mexico

generally has many closely spaced re�ections� If a long prediction �lter in time is used
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with this data� events far from the output will contribute to the output point� but since

each contribution is small� the spurious events generated by the �lter are unlikely to be

a problem� In an area with only a few re�ections that are widely spaced� parallel events

may generate signi�cant spurious events as seen in Figures ��� and ��
�

These demonstrations should not be construed as suggesting that lateral predictions

produce unreliable answers� The spurious events are low amplitude and will generally be

hidden by the remaining noise� Furthermore� if many parallel events exist within a design

window� the spurious events generated are weakened and distributed over time so that

the e�ect is reduced� Figure ��� shows an f	x prediction over a dataset with many parallel

events� While many of the expected spurious events are very weak� a spurious event close

to the original events on the left is almost as strong as those seen in Figure ���� I suspect

that these phenomena will cause problems only in cases where a few isolated re�ections

appear in a background of noise� and where weak re�ections are being sought� In this case�

a t	x prediction rather than an f	x prediction should be used to avoid generating events

separated from the original events by signi�cant times� Spurious events that appear as a

change of wavelet are less likely to be interpreted as new events� but may interfere with

the interpretation of subtle stratigraphic changes�

FIG� ���� For f	x prediction applied to a dataset with many parallel events� spurious events
generally have lower amplitudes than for datasets with fewer events� spurious�manyh 
R�
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��� Conclusions

While f	x prediction generally produces results similar to those of t	x prediction� f	x pre	

diction may create spurious events when parallel events occur in the presence of noise�

These spurious events are caused by the long �lter length in time of the e�ective time	

domain �lter of the f	x �lter� The t	x prediction avoids the generation of false events in

the presence of strong parallel events by limiting the length of the �lter in time� With

both f	x and t	x predictions� wavelets may be distorted� since events with wavelets may be

considered as closely spaced sets of parallel events� In typical seismic data� this problem is

unlikely to be a serious problem� but if a few isolated re�ections appear in a �eld of noise�

weak events may be generated that will confuse the interpretation� In the next chapter� a

solution to this shortcoming of f	x and t	x prediction will be presented�



Chapter �

Random noise removal enhanced

by inversion

In the previous chapter� the generation of spurious events by t	x and f	x prediction was

shown to occur when a signal occured in a background of noise� Soubaras ������ also

pointed out that the amplitudes of signals may be reduced by these prediction	�ltering

techniques� Both these e�ects are examples of how t	x and f	x prediction	�ltering methods

may break down in the presence of noise� These breakdowns are partially caused by the

corruption of the prediction �lter by noise� It may also be seen that the response of

the �lter to the noise can also contribute to these breakdowns when it overwhelms weak

re�ections�

These problems can be overcome by posing the noise removal as an inversion problem�

This inversion removes the �lter response from the calculated noise� plus� the inversion

allows the �lter to be recalculated without the noise corruption� The recalculated �lter

allows improved signal prediction�

In this chapter� I will show how the noise removal may be posed as an inversion problem

and how the noise estimate from prediction �ltering is used to increase the accuracy and

speed of the solver� The combination of the inversion and the recalculation of the �lter will

be shown to preserve the amplitude of re�ectors and to reduce spurious events generated

by the prediction �ltering �Abma� ������ The process is demonstrated on synthetic and

real data�

����
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	�� Shortcomings of prediction �ltering

High	amplitude noise produces �aws in prediction	�ltering techniques such as t	x and f	x

prediction �ltering� One �aw is the reduction of re�ection amplitudes� Another is the

generation of spurious events� as seen in the previous chapter and in Abma ������� Both

these errors are due to the corruption of the signal	prediction �lter by the noise in the

data from which the �lter is calculated�

Another� less obvious� �aw in prediction �ltering is that� even with a �lter that perfectly

predicts the signal� the output of this �ltering does not perfectly separate the signal and

noise� To demonstrate this� I de�ne d as the available data� s as the signal� and n as

the noise� The relationship between the data� the signal� and the noise is de�ned to be

d � s�n� Although the prediction of the signal could be stated otherwise� the prediction

is done here with a signal annihilation �lter S
�
� The �lter S

�
is a purely lateral �	 or 
	

dimensional �lter as discussed in chapter �� If the signal s is prefectly predictable� the

�lter S
�
completely removes the signal so that S

�
s � 
� In fact� only an approximate

signal annihilation �lter is generally available so that S
�
s � 
� but to simplify the following

discussion� S
�
s � 
 will be assumed for now� When the data d is �ltered by the exact

signal annihilation �lter� the result is S
�
d � S

�
s � S

�
n� which becomes S

�
d � S

�
n� since

S
�
s � 
� Since prediction �ltering de�nes the noise as S

�
d� a �ltered version of the noise

S
�
n is obtained from the prediction �ltering instead of the actual noise n�

Prediction �ltering makes the assumption that the noise n is una�ected by the signal

annihilation �lter S
�
� The di�erence between S

�
n and nmay also be seen as an inconsistency

between de�nitions of the noise in the expressions n � d � s and n � S
�
d �Soubaras�

������ For weak noise and large �lters� the assumption that the noise n is una�ected

by the signal annihilation �lter S
�
is reasonable� For strong noise and short �lters� the

response of the noise to the �lter is important� Although prediction �lters may be made

as large as desired� Chapters � and � show that large �lters allow more noise to pass into

the signal and that �lters that are large along the time axis tend to create spurious events�

For very large noises� the �lter response is alway signi�cant�

An example of the �lter response to noise is shown in Figure ���� In the original data

seen in this �gure� the signal is a �at event and the noise is an isolated spike� Since

the prediction �lter is applied in two directions� the response of the signal annihilation

�lter S
�
can be seen on both sides of the spike�s position in the prediction	�lter result�
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The prediction	�ltering result also shows a small amplitude loss in the �at event� The

corruption of the signal annihilation �lter S
�
by the spike causes this amplitude loss�

FIG� ���� The action of a prediction �lter on a �at layer and a spike� rinver�respn 
R�

Getting a more accurate calculation of the noise requires solving the expression S
�
d �

S
�
n when S

�
s � 
� If the exact signal annihilation �lter is not available and S

�
s � 
� the

noise must be solved for from the regression S
�
n � S

�
d� Similar expressions have been used

for noise removal by Claerbout and Abma ������ and Abma and Claerbout ������� In the

next section I will present a solution to S
�
n � S

�
d�

	�� Noise estimation by inversion

As described in chapter 
� a structure for creating an inverse may be


 �W
�
�L
�
m� d� �����


 � �A
�
m� �����

where W
�
� L
�
� and A

�
are linear operators� and m and d correspond to a model and to

the data� The value of � is used to weight the relative importance of ����� and ������

Replacing W
�
with the signal annihilation �lter S

�
� L
�
with I

�
� the identity matrix� and

ignoring 
 � �A
�
m for the moment gives an expression S

�
d � S

�
n for calculating the noise

from the data given the signal annihilation �lter S
�
� The expression S

�
d � S

�
n is not useful

in itself for calculating the noise n� since the �lter S
�
is not perfect and is unlikely to

completely annihilate the signal to the point where the inversion for n could not restore

it� Without additional constraints� the obvious solution to S
�
d � S

�
n is d � n� In practice�

I have found that� although the �lter S
�
could attenuate the signal signi�cantly� a simple

inversion of S
�
d � S

�
n for n restores much of the signal into the calculated noise n� What

is needed is a constraint to replace 
 � �A
�
m in system ������
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The constraint used here to keep signal out of the calculated noise is that the noise

is approximately the noise estimated from prediction �ltering S
�
d� This is a reasonable

approximation� since S
�
d should be somewhat close to the actual noise� The di�erence

between the actual noise n and the approximated noise Sd should be fairly small and

involves only the response of the noise to the �lter S
�
� The approximation is weighted as

�n � �S
�
d� The value for � may be changed to account for the signal	to	noise ratio of the

data�

The system of regressions to be solved is now�
� S

�
d

�S
�
d

�
A �

�
� S
�
�

�
An� ���
�

The results of solving this system are referred to as inversion prediction in the following

discussion to distinguish it from prediction �ltering�

Since this system estimates n from the approximation S
�
d� it is reasonable to initialize

n to S
�
d before entering the iterative solver� Another reason for initializing n to S

�
d is that

the �lter S
�
is generally small and will pass only a limited range of spatial and temporal

frequencies� In the case of a spike in the data� inversion for the noise with a small �lter

does not allow the complete restoration of the spike� Because the noise is expected to be

almost white and in some cases dominated by spikes� initializing n to S
�
d improves the

calculation of n and reduces the number of iterations needed�

Equation ���
� expressed as a minimization of the residual r is

r �

�
� S
�
�

�
An�

�
� S

�
d

�S
�
d

�
A � �����

Initializing n to S
�
d involves adding �

� S
�
�

�
AS
�
d �����

to the right	hand side of equation ����� to produce� with some simpli�cation�

r �

�
� S
�
�

�
An�

�
� S
�
S
�
d� S

�
d

�

�
A � �����

Since the iterative solver just updates n without regard to the initial value �Claerbout�

������ the value of n in this equation may be considered as the change of the calculated
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�

noise from the �rst estimate of the noise S
�
d� This may be expressed as

r �

�
� S
�
�

�
A�n�

�
� S
�
S
�
d� S

�
d




�
A � �����

This is the e�ective system of regressions that is implimented in this chapter�

The results of inversion prediction are sensitive to the value of �� At the moment� the

optimum value of � is uncertain� It would seem that � should decrease as the signal	to	

noise ratio decreases� since the di�erence between the actual noise n and the estimated

noise S
�
d is larger� However� in the presence of strong noise� the larger � is� the more

stable the inversion should be� If � is relatively large� around ���� the amplitudes of the

re�ections are preserved and spurious events are somewhat suppressed� As � gets very

large� the result approaches the prediction �lter result� When � gets small� the amplitudes

of the re�ectors are attenuated� since the signal �lter S
�
does not perfectly annihilate the

signal before the inversion� For small �� the spurious events tend to return also� The best

value of � appears to be di�erent for samples with Gaussian noise than for samples with

uniformly distributed noise� For most work� it appears that good values of � vary from ���

to 
��� Small values of � remove background noise� but seem to introduce organized noise

into the calculated signal� For the real data examined� the background noise increases as �

increases� and the continuity of the data increases as � decreases� Further work is needed

to determine how the strength and type of noise a�ects the value of ��

An example of the di�erence between prediction �ltering and inversion prediction is

seen in Figure ���� The �lter S
�
is calculated from the data to predict the �at event� When

S
�
is applied to the spike� the �lter response can be seen in the prediction	�lter result� The

inversion prediction result has e�ectively eliminated the �lter response�

FIG� ���� A comparison of the action of a t	x prediction �lter and an inversion prediction
on a spike� rinver�onespikea 
R�
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	�� Improving the signal�prediction �lter

In the previous discussion� it was assumed that the signal �lter S
�
completely annihilates

the signal� that is S
�
s � 
� In reality� imperfect �lters are derived from noisy data� For

prediction �ltering� the �lters are derived from the least	squares solutions to the expression

S
�
d � 
� Since the data d contains noise� rather than getting an S

�
where S

�
s � 
� we must

contend with an imperfect S
�
such that S

�
s � 
� This section shows how a better S

�
may

be calculated by reducing the in�uence of the noise�

The presence of noise in the estimation of the signal annihilation �lter S
�
a�ects the

calculation of the estimated signal in two ways� First� spurious events may be generated�

These events may be widely separated in f	x prediction or may be seen as distortions

of an event�s wavelet� The cause of these distortions is discussed in chapter �� Second�

the amplitudes of the re�ectors in the calculated signal are reduced due to the imperfect

prediction� As the strength of the noise increases� the more corrupted the �lter becomes

and the more the re�ectors are attenuated�

To improve the calculation of the �lter S
�
� S
�
should be derived from the signal s instead

of the data d� Since the actual signal is unavailable� I use the inversion prediction result

from equation ���
� to get an estimate of the signal� Although the signal estimate is not

perfect because S
�
is imperfect� this signal estimate can be used to create a new S

�
that is

less a�ected by the noise� The process of calculating the signal� then getting a new signal

annihilation �lter� may be iterated as often as desired�

At this point� you might wonder why we should bother with the inversion when a

cleaned	up signal may be obtained from prediction �ltering� The inversion is more ex	

pensive than prediction �ltering and might be avoided until a more perfect �lter S
�
is

available� Unfortunately� the signal annihilation �lter calculated from the signal derived

from prediction �ltering will be exactly the same as the original �lter calculated from the

data� The residual r in the �lter calculation expression r � S
�
d becomes zero when the

data d is replace by the signal estimated from prediction �ltering� This is because all the

noise calculated in prediction �ltering is orthogonal to S
�
� but everything in the estimated

signal �ts S
�
perfectly�

Once an improved signal �lter S
�
is calculated from the estimated signal� this new �lter

may be used either to produce an improved prediction	�ltering result� or it may be used

to derive another inversion prediction result� If the response of the �lter to the noise is
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assumed to be small� the improved prediction	�ltering result might be the �nal result� but

generally� if the noise is large enough to corrupt the �lter� the response of the �lter to the

noise should be removed with inversion prediction�

Figures ��
 and ��� in the next section show that iterating the calculation of the signal

annihilation �lter has the desired e�ect of preserving the amplitudes of the calculated signal

and reducing the wavelet distortion in cases of small signal	to	noise ratios� Both e�ects

are the result of removing some of the noise from the data used in the �lter calculations�

The amplitude improvement is a straightforward result of having a �lter that predicts the

signal well� rather than having a �lter that predicts the signal poorly� The reduction of

the generated spurious events results from the �lter not being forced by the noise to use

events parallel to the predicted events to improve the predictions �Abma� ������

In the examples shown in the next section� three iterations of estimating the signal

annihilation �lter S
�
were used� I have found that one or two iterations do not allow the

amplitudes of the re�ections to be restored properly and more iterations seem to weaken

the re�ections� More work needs to be done to �nd how the number of iterations a�ects

weak events that do not line up with the strongest events in a section� It is possible that

iterating tends to eliminate weak events not lined up with the strongest re�ections� since

a preliminary �lter might attenuate a weak event which then would not be recovered in

the following passes�

	�� Examples


���� Synthetic data examples

The �rst synthetic example is one previously used in chapter � to show how t	x prediction

�ltering can generate spurious events that appear as wavelet distortions� Figure ��
 shows

how inversion prediction for the noise using equation ����� compares to prediction �ltering�

Although the inversion prediction result shows more organized noise in the background

than the prediction	�ltering result� the amplitude of the signal is better preserved in the

inversion prediction result� Close	ups of the wavelets are seen in Figure ���� Notice that

the input event has been distorted by the t	x prediction	�lter result� While the inversion

prediction result still shows some distortion of the wavelet� the distortion is small and the

amplitude of the wavelet is better preserved than it is in the prediction	�ltering result�



�	��

FIG� ��
� A re�ection buried in a �eld of random noise� The top plot is the original� the
middle plot is the original with t	x prediction� and the bottom plot is the signal using the
inversion results� rinver�synth� 
R�
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FIG� ���� A single trace taken from
the right side of the data� The orig	
inal re�ection on the top shows a
three	point wavelet� The middle plot
is the t	x prediction result� The bot	
tom plot is the inversion prediction
result� rinver�graph� 
R�
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���� Real data examples

Real data processed with the prediction prediction show results similar to the synthetic

examples� It is di�cult to con�rm which result is better without independent information�

Wavelet distortion is di�cult to recognize in complex real data� Even so� the re�ection

amplitudes appear to be improved on the inversion prediction results when compared to

the prediction	�ltering results�

The �rst section in Figure ��� shows the input� a �	dimensional line from a 
	dimensional

survey� The second section in Figure ��� shows the result of applying a prediction �lter

to the data in the �rst panel� The results are signi�cantly better than the input� The

third section in Figure ��� show the results of the inversion prediction� The amplitudes on

the inversion results are better preserved than the prediction	�lter results� It is di�cult

to judge whether the events between ��� and ��� seconds are organized noise or weak

re�ections attenuated by the t	x prediction �lter� but they are likely to be organized noise

similar to that seen in the synthetic examples� Figure ��� shows a close	up of the data

in Figure ���� The results of the inversion prediction are more appealing than the t	x

prediction	�ltering results�

	�� Conclusions

In the presence of strong noise� prediction �ltering attenuates re�ections and produces

spurious events� Inversion prediction preserves the re�ection amplitudes and reduces the

amplitudes of the spurious events� Although I was hoping for an improvement over pre	

diction �ltering� the signal	to	noise ratio of the output of inversion prediction generally

appears to be about equal to that of prediction �ltering� Inversion prediction removes the

response of the �lter to the noise� but this e�ect is di�cult to see in real seismic data�

The main advantage of the inversion prediction technique may be to clean up the signal

annihilation �lter in the presence of strong noise� For real seismic data� preserving the

signal amplitude and reducing the amplitudes of spurious events may be more important

than eliminating the �lter response� However� if the noise consists of very large spikes�

eliminating the �lter response becomes important� Removing the �lter response with the

inversion may have more e�ect on the calculation of an improved �lter than it does on the

interpretation of the section�

In the next chapter� I extend this technique to account for missing data� Allowing
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FIG� ���� The original data� t	x prediction� and inversion prediction rinver�real� 
R�



�	��

FIG� ���� A closeup of the original data� the t	x prediction� and the inversion prediction�
rinver�clsup� 
R�
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for missing data allows the removal of high	amplitude noise that would otherwise cor	

rupt a least	squares inversion� Tolerating missing data also provides for prestack data�

which� because of irregular acquisition� generally have not had these prediction techniques

successfully applied�



Chapter �

Signal and noise separation with

missing data estimation

In the previous chapter� I showed a method for separating signal and noise with an inver	

sion technique� In that chapter� it was assumed that the data was completely available and

the only problem was the separation of signal and noise on samples organized on a regular

grid� For much prestack data� although the data is generally still organized on a regular

grid� at least some of the data is missing� In addition to the data not recorded� some

samples are so contaminated with noise that they must be ignored� especially when using

a least	squares inversion technique� A method for removing these samples was shown in

chapter �� This removal of bad data creates more samples that are e�ectively missing�

This chapter addresses the issue of predicting missing data while separating signal and

noise by inversion�


�� Missing data prediction with signal and noise separa�

tion

Once the bad samples associated with high	amplitude noise are removed� it is necessary

to restore these samples� as well as the samples that were not recorded� The process used

in this chapter is a modi�cation of the technique suggested by Claerbout ������� but it

requires only a single �lter to describe the signal� as in the previous chapter� In chapter ���

a method using �lters that describe both signal and noise will be used� and the method

�		�
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�

of restoring missing data that follows the approach in Claerbout ������ will be used�

����� De�nitions

In this section� the terms needed to describe the inversion are de�ned� First� it is assumed

that a signal annihilation �lter S
�
is available� When applied to the signal s� the signal is

eliminated to a good approximation� S
�
s � 
� The �lter S

�
is a purely lateral prediction

�lter as described in chapter � and is calculated in the same way as the S
�
in chapter ��

The data d is assumed to be the sum of signal s and noise n� or d � s � n� The data

d is also separated into the data that is known k and the data that is missing m� so

that d � k �m� The missing data is the data not recorded or the data that has been

eliminated by the high	amplitude noise muting routine presented in the previous section�

Two masks are de�ned for use in the inversion� K
�
is the mask� that when applied to the

data d� generates the known data values� k � K
�
d� M

�
is the mask� that when applied to

the data d� generates the missing data values� m � M
�
d� The identity matrix I

�
results

when K
�
and M

�
are added� I

�
� K
�
�M
�
�

To summarize �

d � data

s � signal

n � noise

k � known data

m � missing data

K
�
� known data mask

M
�
� missing data mask

S
�
� signal annihilation �lter�

The relationships between these factors are as follows�

S
�
s � 


d � s� n

d � k�m

I
�
� K
�
�M
�
or d � K

�
d�M

�
d�

����� Inversion for missing data with signal and noise

The basic form of the inversion is the same as that used in chapter �� where the inversion

for the noise n from the regression S
�
d � S

�
n is stabilized by assuming that the noise is
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approximately the noise estimated from the prediction	error �ltering result S
�
d� These are

combined to produce the system �
� S

�
d

�S
�
d

�
A �

�
� S
�
�

�
An� �����

If k �m is substituted for d in the above system of regressions� and the unknown

missing data m is moved to the right side� the system becomes�
� S

�
K
�
d

�S
�
K
�
d

�
A �

�
� S
�

�S
�
M
�

� ��S
�
M
�

�
A
�
� n

m

�
A � �����

This system might be further modi�ed to account for the areas in the data where the

prediction	error �ltering result is not expected to produce a good estimate of the result�

For isolated missing data samples� the change in the result is likely to be small� since a

single missing sample is can be considered to be noise and will be well predicted� For

groups of missing traces� the prediction	error �ltering result will not be a good estimate�

and the previous system should be modi�ed to ignore the estimate of the missing data

in these areas� The emphasis here is recovering small numbers of missing data samples�

not interpolation of large gaps in the data� Even so� in the examples to follow� the signal

seems to be reasonably extrapolated several traces into an area of missing traces�

����� Initializing the inversion

As in the previous chapter� the value of n is initialized to S
�
d� which is just the prediction	

error �lter estimate of the noise� For poststack data� this is generally a good estimate� since

it is just the common prediction	error estimate of the noise used in f	x or t	x prediction

�ltering� For prestack data� this estimate will be less accurate� since many more traces

are likely to be missing in prestack data than in poststack data� but it is better than a

starting estimate of zero for n� Using S
�
d for the initialization is necessary to improve the

results and reduce the cost of the inversion by reducing the number of iterations needed

by the solver� Although the code is complicated slightly by this initialization� the time

taken by the inversion is reduced by an order of magnitude� Even with this increased

speed� the result is superior to the result with the noise initialized to zero� Details of

the initialization and its implementation with the conjugate	gradient solver used here is

discussed in Abma ������� More details about the conjugate	gradient method itself may

be found in Claerbout ������� Strang ������� and Luenburger �������
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�� Results

The shot gather shown in Figure ��� was �rst processed with the high	amplitude noise

removal process shown in chapter � to produce the results in Figure ���� The value of w�

the multiplier of the median� was � in this case� After the bad samples were removed� the

inversion of system ����� was used to predict the noise and the missing data� The missing

data was then added to the known data to produce a full set of data� This full set of data

then had the noise subtracted from it to produce the signal section shown in Figure ��
�

The results in Figure ��
 appear reasonable� The noise is well attenuated and the signal

appears strong� Although the signal is not well predicted into the missing data area near

zero o�set� it has been extended several traces� Figure ��� shows the di�erence between

the original data shown in Figure ��� and the calculated signal shown in Figure ��
� While

some signal appears in the di�erence section� it is weak compared to the noise� Some of

this apparent signal may be due to di�erences in the coupling of each receiver�s geophones

to the Earth� Irregularities in the re�ection amplitudes will be poorly predicted by the

signal annihilation �lter and will appear in the noise section�

FIG� ���� A shot gather showing some bad traces and other noise� missing�original 
R�

Figure ��� shows the data from Figure ��� with the noise removal applied� Next�
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FIG� ���� The accepted samples from the data in the previous �gure� missing�mpatchs 
R�

FIG� ��
� The signal extracted from the shot gather� missing�abmpatch 
R�
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FIG� ���� The di�erence between the original data and the signal extracted� missing�di�


R�

Figure ��� shows the data from Figure ��� where the inversion was used to predict the

missing data while separating signal and noise� as in the previous Figures� Notice that most

of the coherent noise discussed previously was not restored into the signal in Figure ����

Figure ��� shows the di�erence between the original data and the noise� Little signal has

leaked into the noise section and the results appear satisfactory�


�� Conclusions

To separate signal and noise in the presence of high	amplitude noise� the worst of the

high	amplitude noise should be removed to avoid crippling the least	squares inversion� In

chapter �� a method for eliminating high	amplitude noise is demonstrated� In this chapter�

an inversion that predicts missing data while it separates signal and noise is presented�

This inversion is a modi�cation of the inversion used in the previous chapter� Although

missing data far from the known data is not well predicted� most of the missing data have

been restored with reasonable success� The signal and the noise have also been separated

successfully�
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FIG� ���� A shot gather showing some bad traces and other noise� missing�original� 
R�

FIG� ���� The accepted samples from the data in the previous �gure� missing�mpatch�s


R�
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FIG� ���� The signal extracted from the shot gather� missing�abmpatch� 
R�

FIG� ���� The di�erence between the original data and the signal extracted� missing�di��


R�
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When removing random noise� the process of predicting missing data and the process

of separating signal and noise are likely to give similar answers when performed either

separately or simultaneously� There is a practical advantage� since the cost of doing a

single inversion is likely to be less than two inversions� Coherent noise will require the

simultaneous calculation of the missing data with the calculation of the signal or noise�

In the next chapters� I will extend these inversions to use not only a signal �lter� but to

use �lters describing the noise also�



Chapter �

Noise removal by characterizing

both noise and signal� theory

In the previous chapter� the separation of signal and noise was done using only the signal

annihilation �lter� This process works well in the case of noise that cannot be predicted

with a purely lateral �lter� In this chapter� I address the more complicated issues involved

in separating coherent noise from signal� This involves both signal and noise annihilation

�lters� as well as more complicated weighting of the various parts of the system to be

solved�

��� Least�squares separation of signal and noise

����� Assumptions and de�nitions

In the following discussion� three assumptions are made to separate signal and noise from

data� First� the data is de�ned to be a simple sum of the signal and noise� that is�

d � s� n� d being the observed data� s the signal� and n the noise� Next� there exists a

�lter S
�
that predicts the signal� S

�
s � 
� Finally� there exists a �lter N

�
that predicts the

noise� N
�
n � 
� The methods of getting S

�
and N

�
will be covered later�

The assumed noise �lter N
�
requires a change in the de�nition of the noise from the

previous chapters� where unpredictable noise was separated from a predictable signal� Al	

though it will be shown later that unpredictable noise may be removed with the techniques

to be discussed here� more emphasis is given now to coherent noise�

��
��
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Three conditions are expected to be met by the �nal solution for the signal and noise�

d � s� n �����

S
�
s � 
 �����

N
�
n � 
� ���
�

Equation ����� is just a de�nition of how signal and noise combine make the data� Equa	

tions ����� and ���
� characterize the expected properties of the signal and noise� These

might be considered more as levelers than as equations� since the result of either S
�
s or N

�
n

is very unlikely to be zero� The �nal solution for the signal s and the noise n is expected

to minimize� in the least	squares sense� both S
�
s and N

�
n�

Using equations ����� to ���
�� two systems of regressions may be generated� one to

calculate the noise and one to calculate the signal� To calculate the signal� n replaces d�s

in equation ���
�� which is then combined with equation ����� to give a single system of

regressions

� �

�
� S

�
N
�

�
A s�

�
� 


N
�
d

�
A � �����

A similar manipulation produces a calculation of the noise


 �

�
� S

�
N
�

�
An�

�
� S
�
d




�
A �����

Once the signal is calculated� the noise is simply n � d� s� If the noise is calculated�

the signal is s � d� n�

����� Initial estimates of the calculated noise and signal

For the discussion that follows� the calculation of the signal from equation ����� is labeled

s�� The calculation of the noise from equation ����� is then n� � d� s�� The calculation

of the noise from equation ����� is labeled n�� The calculation of the signal from equa	

tion ����� is then s� � d � n�� Is it true that s� � s� and is n� � n�� Ideally� yes� but

actually� the situation is more complicated� The two signals and the two noises calculated

need not be equal� as will be shown in the examples below�

To imagine how s� �� s�� consider an event that is eliminated by both �lters S
�
and

N
�
� This event is in the null space of both S

�
and N

�
�Strang� ����� Menke� ����� Nichols�



���
�

����a�� In both equation ����� and equation ����� that event will be eliminated from the

system� and no information about this event will be available for the solver� Therefore�

no part of that event will occur in the calculated solutions s� and n�� The event will then

be completely contained in n� and s��

The initial estimates of s� and n� might be set to values varying from zero to the

data d when using iterative methods for solving equations ����� and ������ If the initial

estimates of s� and n� are zero� the problem will appear as equations ����� and ������ If

the initial value of the signal s in equation ����� is the data d� the constant�
� S

�
N
�

�
Ad �����

should be subtracted from the residual that is minimized in solving equation �����

r �

�
� S

�
N
�

�
A s�

�
� 


N
�
d

�
A � �����

r being the residual� If the constant is added to the right	hand side instead of subtracted

from the residual� the expression

r �

�
� S

�
N
�

�
A s�

�
� 


N
�
d

�
A�

�
� S

�
N
�

�
Ad �����

results� Simplifying this gives

r �

�
� S

�
N
�

�
A s�

�
� S
�
d




�
A � �����

When this equation is compared to equation ������ it might be supposed that the s in

equation ����� is �n from equation ������ which was previously labeled as �n�� When the

initial value d of s is added� the result becomes d�n�� Instead of the previously calculated

value of s� from equation ������ using the initial estimate of d for s in equation ����� gives

the value s� � d� n�� which is the same answer as equation ������ A similar relationship

is true for equation ����� and equation ����� if the estimated noise is set to d�

The di�erence between solving with zero as the initial solution and solving with the

data as the initial solution is simply where to put the null space� If the initial solution

contains no null space data� the �nal solution will not contain any of the null space data�

If the initial solution contains data that falls in the null space� the �nal solution will



�����

leave this null space unchanged �Nichols� ����a�� The di�erence between equations �����

and ����� is the placement of events that fall in the null space�

To summarize the previous discussion� the solutions for the signal and noise derived

from equations ������ ������ and ���
� are the same whether the noise or signal is calculated�

provided the initial estimates of the signal and noise are the same and the estimates for

the signal and noise sum to the data d� For example� equation ����� solved with an initial

estimate of the signal of zero assumes the noise has an initial value of the data� Solving

equation ����� with the same initial values of the signal being zero and the noise being

the data gives the same results for the calculated noise and data� For a more symmetrical

result� the noise and signal might both be initialized with half the data� This choice of

initial values gives us a useful tool in specifying how data in the null space of both S
�
and

N
�
are distributed�

��� Synthetic examples of signal and noise estimations

����� Solutions with initial estimates of zero

Here I o�er some simple examples of the previous ideas� Figure ��� shows two sections�

The �rst section� which represents the signal� has a signal �lter S
�
calculated from it� The

second section� which represents the noise� has a noise �lter N
�
calculated from it� Notice

that the signal and noise sections contain a common event of intermediate dip� The data

consists of all three events and is shown in Figure ���� Figure ��
 shows the result of

calculating the signal using the system of regressions seen in equation ������ Notice the

event common to both the signal and noise does not appear in the calculated signal� Since

the noise is just the signal subtracted from the noise� the common event appears in the

noise section�

When noise is calculated with the system of regressions seen in equation ������ the

event common to both the de�nition of noise and signal does not appear in the calculated

noise� but is seen in the signal� which is now the noise subtracted from the data�

����� Solutions with non�zero initial estimates

When solving for the signal with equation ����� using an initial estimate of the signal being

the data� the common event now appears in the calculated signal� as is seen in Figure ����
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FIG� ���� The events on the left
are de�ned as signal� the events
on the right are de�ned as noise�
noiserem�signalnoise 
R�

FIG� ���� The data� made up of both
signal and noise� noiserem�data 
R�

FIG� ��
� The calculated signal and
noise using an initial solution of zero
for the signal� noiserem�separ�sa 
R�
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FIG� ���� The calculated signal and
noise using an initial solution of zero
for the noise� noiserem�separ�na 
R�

When solving for the noise with equation ����� using an initial estimate of the noise being

the data� the common event now appears in the calculated noise� as seen in Figure ����

FIG� ���� The calculated sig	
nal and noise using an initial so	
lution of the data for the signal�
noiserem�separ�san 
R�

The initial estimates for the signal and noise are not limited to zero and the data�

If there is no reason to believe that the data in the null space of the operators S
�
or N

�
should belong to either the noise or the data� a more symmetrical approach would be to

use one	half the data as the initial estimates of both the signal and noise�

In real data� the separation between the signal operator S
�
and the noise operator N

�
is likely to be less clear than it is in these examples� True null spaces� where an event is

completely zeroed� are less likely in the presence of noise� The separation of events that

are suppressed by both �lters� but not in the null space� is considered next�
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FIG� ���� The calculated sig	
nal and noise using an initial so	
lution of the data for the noise�
noiserem�separ�nas 
R�

��� Distribution of events not in the operator null space

In the discussion above� events were assumed to be either in the null space of an operator

or not� In general� an operator will attenuate an event to some extent� The null space of an

operator is completely attenuated� while other events are partially attenuated� depending

on the situation in which the �lter is designed� Operators derived from real seismic data

are unlikely to perfectly predict either signal or noise� Events that are simply attenuated

by the signal �lter S
�
and the noise �lter N

�
will be distributed between the calculated

signal s and the calculated noise n depending on the relative attenuation of S
�
and N

�
�

����� Event attenuation by weighting

Imagine an event that is attenuated� but not removed� by �lters S
�
and N

�
�

�� � S
�
x

�� � N
�
x�

������

where x contains the event� S
�
is the signal �lter� N

�
is the noise �lter� �� is the response

of the event to �lter S
�
� and �� is the response of the event to �lter N

�
�


� �  �
�
�


� �  �
�
�

������

is a measure of the power of the �ltered events� When getting a least	squares solution

for equations such as ����� and ������ the events included in x will be distributed between

signal and noise as �	
� for the signal and �	
� for the noise�
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This distribution may be changed by modifying the system of equations� Consider� for

example� this system�


 �

�
� �S

�
N
�

�
A s�

�
� 


N
�
d

�
A � ������

If � is less than �� �	
� will increase� allowing relatively more of the event into the signal�

If � is greater than �� �	
� will increase� allowing relatively more of the event into the

noise� If � is very large� only events that are almost perfectly removed by S
�
will be allowed

into the signal�

Even for events that are perfectly predicted and removed by �lters S
�
and N

�
� the

distribution of events may be controlled by the weighting in equation ������ which is the

prediction equation with the initial estimate of the signal as the data� In this case� the �

controls the �nal distribution of events in the null space of S
�
and N

�
� Once again� if � is

less than �� �	
� will increase� forcing relatively more of the event into the signal� If � is

greater than �� �	
� will increase� forcing relatively more of the event into the noise�

Once again� the weighting in system ������ may be thought of in terms of using S
�
s

and N
�
n as levelers� If S

�
s is weighted higher than N

�
n� the least	squares solutions of s

and n will be modi�ed since the values of 
� and 
� are modi�ed� In the unlikely event

that either S
�
s or N

�
n actually becomes zero� the weighting becomes unimportant� since

one of the conditions is �t perfectly and no better solution could be found� In practical

situations� both S
�
s and N

�
n will have some residual and can only be minimized�

����� Examples of event distribution by weighting

Several cases are shown here that illustrate the e�ects of the weighting in the previous

discussion� The �rst case shows the e�ects of varying � in equation ������� Figure ���

shows the events from which the signal �lter S
�
and the noise �lter N

�
are calculated� The

data in Figure ��� are therefore taken as de�nitions of signal and noise� the signal being

the �at event and the noise being the dipping event� Figure ��� shows the data to be

separated into signal and noise� In addition to the signal and noise seen in Figure ���� an

event with a dip of intermediate slope has been added in Figure ���� This event is only

slightly attenuated by the �lters S
�
and N

�
�

By solving equation ������ with � � �� the results seen in Figure ��� are obtained� The

event with the intermediate slope has been about evenly distributed between the signal

and the noise�
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Next� equation ������ is solved with � � ��� Increasing � increases the weight given

to the top part of equation ������� 
 � S
�
s� so events that do not �t S

�
extremely well get

eliminated from s� As expected� Figure ���� shows the event with intermediate slope has

been almost completely moved to the noise�

When � is decreased to ���� the weight given to the top part of equation ������ is

decreased so any event that does not �t the lower part of equation ������ extremely well

is pushed into s� This can be seen in Figure ����� where the event of intermediate slope is

almost entirely contained in the signal�

FIG� ���� The event on the
left is de�ned as signal� the event
on the right is de�ned as noise�
noiserem�signalnoise�a 
R�

FIG� ���� The data� made up of both
signal and noise� and an added event�
noiserem�data�a 
R�

In the previous examples� equation ������ has been solved with a zero estimated value

of s� This was possible since the signal was not signi�cantly attenuated by the �lter N
�
� In
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FIG� ���� The calculated sig	
nal and noise using � � ��
noiserem�separ�sal�a�� 
R�

FIG� ����� The calculated sig	
nal and noise using � � ���
noiserem�separ�sal�a��� 
R�

FIG� ����� The calculated sig	
nal and noise using � � �����
noiserem�separ�sal�a���� 
R�
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the next examples� equation ������ has been solved with a preliminary estimate of s being

the data d� since both �lters S
�
and N

�
can completely eliminate one part of the data� For

Figures ���
 to ����� the signal �lter S
�
is a two	dimensional prediction	error �lter with

the form
� a���� a���� a���� a����

� a���� a���� a���� a����

� a��� a��� a��� a���

a��� a��� a��� a��� a���

a��� a��� a��� a��� a���

� ����
�

The noise �lter N
�
is a one	dimensional prediction	error �lter with the form

�

a�

a�

� ������

Figure ���� shows the events de�ned as the signal and noise� The signal is a series

of horizontal events with random amplitudes� The noise is mono	frequency sine waves

with random shifts� Both �lters ����
� and ������ will eliminate the sine waves� since a

prediction is done along the time axis� but only �lter ����
� can predict the signal� since

the amplitudes in time are random and unpredictable by �lter ������� To allow any of the

noise in the output� equation ������ must be solved with a preliminary estimate of s being

the data� or all the sine waves will be removed from the system�

When equation ������ is solved with � � �� Figure ���
 shows that the noise is evenly

distributed between the calculated signal and the calculated noise� Increasing � to ��

moves the sine waves into the noise section� producing the excellent separation of signal

and noise seen in Figure ����� Decreasing � to ��� moves the sine waves almost completely

into the signal� This weighting gives a useful tool in distributing events between calculated

signal and noise�

��� Conclusions

Inversions using two annihilation �lters that remove common events require careful weight	

ing to obtain the desired results� While this weighting introduces extra complications to

this process� it also o�ers extra �exibility in determining the output� Nevertheless� while

events common to both the signal and noise may be distributed between the calculated



���	�

FIG� ����� The events on the left are de�ned as signal� the events on the right are de�ned
as noise� noiserem�input 
R�

FIG� ���
� The calculated signal and noise using � � �� noiserem�signois�� 
R�
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FIG� ����� The calculated signal and noise using � � ��� noiserem�signois��� 
R�

FIG� ����� The calculated signal and noise using � � ����� noiserem�signois���� 
R�
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signal and noise according to the user�s speci�cations� these events cannot be uniquely

determined to be either signal or noise�



Chapter �	

Noise removal by characterizing

both noise and signal�

applications

In the previous chapter� some of the theory behind solving a system of regressions by

characterizing both the signal and the noise was presented� It was shown there that

the weighting of the various parts of the system and the initialization of the system are

important considerations�

In this chapter I apply the ideas of the previous chapter to remove two di�erent types

of noise� The �rst applications involve removing noise that is limited to either a single

trace or to a small number of nearby traces within a given shot� The second example is

the removal of coherent noise� in this case� ground roll�

The signal and noise separation techniques in this chapter are developed in a sequence

of four steps� The �rst step is characterizing the signal and noise by amplitude only� the

second step adds characterization of the signal and noise by one	dimensional �lters� the

third step makes the signal �lter a two	dimensional �lter� and the fourth step characterizes

both the signal and the noise by two	dimensional �lters as well as by amplitude� Examples

of the results of the various techniques are demonstrated on synthetics and real data�

�����
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���� Amplitude estimation of signal and noise

�
���� Least�squares amplitude estimation

I assume that a collection of seismic data d�t� x� consists of signal s�t� x� and noise n�t� x�

so that

d�t� x� � s�t� x� � n�t� x�� ������

The variable t corresponds to time and x corresponds to the o�set of a recorded sample for

the shot data considered in this chapter� For simplicity� since I assume the signal varies

by approximately t�� a scaled signal s� is de�ned as

s� � t�s� ������

so that

d�t� x� �
�

t�
s� � n�t� x�� ����
�

The use of the t� in equation ������ indicates that a sample of s is multiplied by the

time of that sample squared to get the corresponding output sample in s�� Although the

function t� is actually a matrix with the corresponding gain values of t� on the diagonal�

for simplicity I will continue to use this notation for amplitude terms that are connected

with time�

In this chapter I assume the amplitude of the signal varies by approximately t� and

is zero above the start time� This amplitude variation is represented in this chapter as

the function T �t� x� v�� T �t� x� v� is not necessarily �xed as the t� scalar� or even �xed in

x� but may be modi�ed to �t the data being considered� For simplicity� I assume in this

discussion that the data require a t� scalar� The v in T �t� x� v� represents the start time

velocity� It is unlikely that an exact amplitude representation for the signal is needed�

since I am looking only for an approximation of the amplitude response� but the scaling

for T �t� x� v� should �t the data at least approximately�

Replacing t� in equation ����
� with a generalized time scalar T ��t� x� v� gives

d�t� x� �
�

T ��t� x� v�
s� � n�t� x�� ������

where T ��t� x� v� is just T �t� x� v�� except that T � produces large values before the start

time� so that �	T ��t� x� v� is e�ectively zero there� Thus� in equation ������� n�t� x� becomes

d�t� x� before the start time as �	T ��t� x� v� goes to zero�
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I further assume that the RMS amplitude �n of the noise is independent of time� while

the RMS amplitude �s of s
�� the signal scaled by time squared� is constant� Here� �n is

a function of trace position� or x� making it �n�x�� while �s is a constant for the entire

shot record� Both �n�x� and �s are calculated over zones of the input that are considered

typical of the noise and signal� respectively� Each �n�x� is calculated over the part of the

trace before the �rst arrival as

�n�x� �

vuut �

N

x�vX
t��

d�t� x��� ������

where N is the number of samples between t � � and x	v is the start time for that o�set�

x being the o�set and v being the start time velocity� For traces with small o�sets and

little data before the �rst breaks� it may be possible to get a measure of �n�x� from the

deeper data� after the signal has died o��

Next� �s is approximated from the shot gather using the data after the �rst breaks�

assuming that the re�ection amplitudes scale as t�� so

�s �

vuuut �

N

X
x

tendX
t�x�v

�t�d�t� x���� ������

where N is the total number of samples after the �rst break time on all traces� and tend

is the end of trace time� If the mean value of each trace is zero� ��s and �n�x�
� are the

estimated variances of the signal and noise�

To make an amplitude estimation of the signal and noise� I scale the noise and signal

by the corresponding RMS amplitudes and minimize the result� so that

� �
�

�s
s� � Ss� ������

and

� �
�

�n�x�
n � Nn� ������

where S � �	�s and N � �	�n�x�� Adding the condition that

d � s� n� ������

or

d �
s

T �
� n� �������
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where s� � T �s� the regression in equation ������ becomes


 � N

�
d�

s�

T �

�
� �������

making the system of regressions in equations ������ and ������

�
� 





�
A �

�
� Ss�

N
�
d� s�

T �

�
�
A � �������

Rearranging this expression produces�
� 


Nd

�
A �

�
� S

N
T �

�
A s�� �����
�

Given that the least	squares solution for the expression y � Ax is x � �AyA���Ayy� the

least	squares solution for s is

s� �

�
�� S N

T �

��� S
N
T �

�
A
�
A
�� �

S N
T �

��� 


N

�
Ad� �������

which� when multiplied� gives

s� �
N�

T ��

S� � N�

T ��

d� �������

or expressed as the estimated RMS amplitudes is

s� �
T �x� t� v���s

T �x� t� v����s � ��n�x�
d� �������

The data d and signal s� are functions of x and t and may be expressed as d�x� t� and

s��x� t�� but for the rest of this discussion they will be expressed as simply d and s� to

avoid some complexity� The original unscaled signal becomes

s �
T �x� t� v����s

T �x� t� v����s � ��n�x�
d� �������

The expression for the noise is

n �
�n�x�

�

T �x� t� v����s � ��n�x�
d� �������

It can been seen from equations ������� and ������� that s� n � d� which is consistent

with equation �������
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In the present case� S and �s are constant over all traces� while N�x� and �n�x� are

a function of space only� In the more general case� these values may be calculated from

some spatial separation of the signal and noise on the data�

The scale factors in equations ������� and ������� only change the amplitude of the

data to what I assume would be the correct result if there existed only noise or signal� I

have done no real separation of noise and signal other than estimating the amplitudes� I

attempt to take the separation one step farther in sections ����� ���
� and ���� where the

spectral characteristics of the noise and signal are included�

�
���� Examples of amplitude estimation

To demonstrate how the amplitude scalars appear for a real data case� the data in Fig	

ure ���� were analyzed� Figure ���� shows the calculated scale factor for the noise� Notice

that the strongest values follow what appears to be noisy traces on the input �le in Fig	

ure ����� The noise in Figure ���� was scaled by the scale factor for the noise� which is

displayed at the bottom of Figure ���
� The distribution of amplitudes seems reasonable�

The top of Figure ���
 shows the original �le scaled with the calculated signal scale factors�

Once again� the distribution of amplitudes seems reasonable�

���� Separation by ��D spectral estimation

�
���� ��D Separation theory

To improve the separation� more information is required� Here I attempt to use the time

spectrum of the signal and the noise as the extra information� In a manner similar to the

process used to determine the amplitudes� the spectrum of each trace is calculated from

the data above the �rst break� where the data above the �rst breaks are assumed to be

noise� Each trace has a separate �lter calculated� For the noise� a single �lter is derived

over the data after the �rst breaks�

The �lters used here annihilate the signal and noise� The signal �lter is represented

by


 � F
�
ss
�� �������

where s is the scaled signal and F
�
s is the matrix form of the �lter� A single �lter is used
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FIG� ����� A shot gather with noise� The plot on the left has t� scaling� the plot on the
right does not� prestack�originalf 
R�
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FIG� ����� The noise amplitudes based on the calculated RMS amplitudes of the signal
and noise from equation ������ The plot on the left has t� scaling� the plot on the right
does not� prestack�noisediag 
R�
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FIG� ���
� The original data scaled by the scale factors for the noise and signal� The
top row shows the data scaled by the signal scale factor� The bottom row shows the data
scaled by the noise scale factor� The plot on the left has t� scaling� the plot on the right
does not� prestack�aamp 
R�
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for the signal in all traces� The noise �lter appears as


 � F
�
n�x�n� �������

F
�
n�x� is a function of x because a separate �lter is computed for each trace� For this

section and the next� the noise �lter is calculated on the data above the start times� In

this section both these �lters are one dimensional�

I would like to incorporate what I know about the amplitudes of the signal and noise

from section ���� with the �lters derived here to improve the separation of signal and

noise� Since the signal loses amplitude as about t�� I multiply the signal by t� and force

the signal to zero above the start time by using the function T ��x� t� v�� which varies as

t� below the start time and is a large �xed constant above the start time� The relative

amplitudes of the noise and signal are also available from section ����� To minimize the

signal and the noise together� I use


 �
�

�s
F
�
sT

��x� t� v�s� �������

and


 �
�

�n�x�
F
�
n�x�n� �������

Modifying equation ������� using n � d� s gives

�

�n�x�
F
�
n�x�d �

�

�n�x�
F
�
n�x�s� �����
�

Expressing both systems as a single system gives�
� 


�
�n�x�

F
�
n�x�d

�
A �

�
� �

�s
F
�
sT

��x� t� v�
�

�n�x�
F
�
n�x�

�
A s� �������

An alternative approach is to solve for the noise� By repeating the same set of steps�

but solving for the noise instead of the signal with s � d� n� equation ������� becomes


 �
�

�s
F
�
sT

��x� t� v��d� n� �������

or
�

�s
F
�
sT

��x� t� v�d �
�

�s
F
�
sT

��x� t� v�n� �������

This expression� combined with equation �������� gives�
� 


�
�s
F
�
sT

��x� t� v�d

�
A �

�
� �

�n�x�
F
�
n�x�

�
�s
F
�
sT

��x� t� v�

�
An� �������
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The results of either system ������� or ������� may be used� Appendix A of Abma ������

shows that the results of either system of equations will produce equivalent results when

d � n � s� but it can be seen that this does not apply when null spaces containing the

signal and noise occur� Although it might be argued that the �lters F
�
n�x� and F

�
s are

never perfect and so actual null spaces are not created� given a reasonable number of it	

erations of the least	squares solver and the �nite capabilities of the �oating point number

representation used� e�ective null spaces will be created in these cases� Since the �lters

F
�
n�x� and F

�
s are fairly e�ective in removing the noise and signal� they create e�ective

null spaces in systems ������� and ��������

Another way of looking at this null space problem is to examine the information that

is available in the system to calculate a solution� In system �������� any information

about the noise is eliminated from the system since the �lter F
�
n�x� has removed the

noise from the data going into the left	hand side of the system� Therefore� the signal

calculated from system ������� will not contain any information removed by F
�
n�x�� If

any information in the signal falls in the null space created by F
�
n�x�� the solution for

the signal from system ������� will not contain that information� In system �������� any

information about the signal is eliminated from the system since the �lter F
�
s has removed

the signal from the data going into the left	hand side of the system� Therefore� the noise

calculated from system ������� will not contain any information removed by F
�
s� If any

information in the noise falls in the null space created by F
�
s� the solution for the noise

from system ������� will not contain that information� In short� if the signal and noise

have overlapping null spaces� the overlap is eliminated in systems ������� and ��������

Another aspect of solving these inversions involves initialization of the inversion �Abma�

������ This initialization reduces the number of iterations of the solver signi�cantly� thus

reducing the cost of the inversion� It also modi�es the action of the inversion� If sys	

tem ������� has the signal initialized with the original data� any data in the common null

space create by F
�
n�x� and F

�
s will not be removed from the signal� For system �������

initialized with the original data� any data in the common null space create by F
�
n�x�

and F
�
s will not be removed from the noise� It can then be seen that the noise calculated

from system ������� without initialization subtracted from the data will be equal to the

signal calculated from system ������� with initialization� Also� the signal calculated from

system ������� without initialization subtracted from the data will be equal to the noise

calculated from system ������� with initialization�
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For one	dimensional �lters� the overlap of the action of F
�
n�x� and F

�
s is likely to be

a problem� especially when both the signal and noise are broadband� One approach to

solving the problem of this overlap is to modify the systems so that the e�ective null spaces

do not occur� One method I have tried is to separate the amplitude and the �ltering e�ects

into separate equations� These equations were


 �
�

�s
s�� �������


 � F
�
ss
�� �������


 �
�

�n�x�
n� ����
��

and


 � F
�
n�x�n� ����
��

Expanded with relative weights to predict the signal� these minimizations become the

single system of regressions that follows�
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This system has no e�ective null spaces� Unfortunately� ������� and ����
�� assume that

the signal and noise are constant functions� not the sinusoidal functions normally found

in seismic data� While system ����
�� worked well for the peaks of the noise and signal� it

failed near the zero crossings� Because of these failures� I will no longer consider approaches

such as that in system ����
�� in this thesis�

�
���� ��D Separation examples

Figure ���� shows a very simple synthetic where the signal is a constant frequency sine

wave beginning at the start time with an amplitude that varies as time squared� The noise

is also a constant frequency sine wave� but has a di�erent frequency than the signal� The

noise also has a constant amplitude instead of the t� decrease in amplitude seen in the

signal� There is a background of weak random noise�

Figure ���� shows the result of predicting the signal using equation �������� The

trace that contained the noise is almost completely zeroed� This zeroing was caused by
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the common e�ective null space of the noise and signal �lters� In spite of the signal

overwhelming the noise in the area the signal �lter was designed in� the remaining noise

was eliminated by the �lter designed there� When applied to the real shot data� the noisy

traces are not well separated� and the traces with noise are signi�cantly weakened� as seen

in Figure �����

While other approaches may by taken� such as shortening the �lters or attempting to

completely zero the noise before designing the signal �lter� separation of signal and noise

using one	dimensional �lters does not seem practical� mainly because of the overlap of the

null spaces created by the signal and noise �lters� In the next sections� I address these

shortcomings by making the signal �lter two	dimensional�

FIG� ����� A simple synthetic showing noise and signal with di�erent spectra� The plot
on the left has t� scaling� the plot on the right does not� prestack�sine
le 
R�
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FIG� ����� A simple example of separation of signal and noise using sine waves of di�erent
frequencies� The method of equation ������� was used� The plot on the top is the calcu	
lated signal� and the plot on the bottom is the noise that remained� The plot on the left
has t� scaling� the plot on the right does not� prestack�sf�w�b 
R�
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FIG� ����� A simple example of separation of signal and noise using the real data from
Figure ����� The method of equation ������� was used� The plot on the top is the
calculated signal� and the plot on the bottom is the noise that remained� The plot on the
left has t� scaling� the plot on the right does not� prestack�sf�w�a 
R�
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���� Separation by ��D spectral signal estimation

�
���� ��D spectral signal estimation theory

To further enhance the characterization of the signal� a two	dimensional annihilation �lter

is used� This �lter is represented in this section by


 � F
�
ss� ����

�

where s� is the scaled signal and F
�
s is the matrix form of the �lter� As before� I design a

one	dimensional �lter on each trace to annihilate the noise� This appears as


 � F
�
n�x�n� ����
��

F
�
n�x� is a function of x because a separate �lter is computed for each trace� At present�

this �lter is calculated on the data above the start times�

Since the �	D �lter is expected to have much di�erent characteristics than the �	D

noise �lter� the regressions are scaled to each other as follows�


 � ��F
�
s
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�s
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��


 � ��F
�
n�x�

�

�n�x�
n� ����
��

It is interesting to note that the regression in equation ����
�� is just a weighted version

of t	x prediction �Abma and Claerbout� ���
��

Expanded to predict the signal� these minimizations become the single system of re	

gressions that follows� �
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If the inversion of system ����
�� is attempted with the initial value of s being zero�

many iterations of the solver are needed to produce a reasonable result� In Abma������� I

showed that initializing the value of s to the result obtained from prediction	error �ltering

reduced the cost of the inversion and improved the results� Although the estimated signal

from prediction	error �ltering is not a perfect �t� it appears close enough to reduce the

number of iterations by an order of magnitude� making this process a practical production

technique�
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�
���� ��D spectral signal estimation examples

Figure ���� shows the results of using equation ����
�� to predict the noise from the

data from Figure ����� Notice that the result is signi�cantly better than that shown in

Figure ����� although some artifacts are seen near the �rst breaks� Almost no noise is seen

in the signal section�

While the program using the �	D �lter version of equation ����
�� with the initial

solution of zero required ��� iterations to get a reasonable result� the program using the

initialized estimate needed only ���

Figure ���� shows the results of using equation ����
�� to predict the signal from the

data seen in Figure ����� The separation is also good� and only a little weakening of

the data traces can be seen where the noise appears� A little of the signal that has not

been perfectly predicted has leaked into the noise section� An improved result might be

produced by using the output of this process as the input to another step of the same

process� with the next step using the previous step�s results as the �rst guess of the

amplitude and noise� The new noise and amplitude scale factors might then be more

accurate�

���� Separation by ��D signal and noise spectral estima�

tion

Coherent noise is often strong enough to interfere with the interpretation or analysis of

seismic data� Coherent noises often encountered in re�ection seismic data are ground roll�

air blasts� and trapped waves� Typically� these noises show velocities that are di�erent

from the desired re�ection events and may also have frequency spectra that can be used

to distinguish them from the desired events� In this section I demonstrate a method to

separate coherent noise and signal�

�
���� ��D signal and noise estimation theory

As before� the signal s is described by a two	dimensional signal annihilation �lter F
�
s� so

that F
�
ss � 
� The noise n is described by a noise annihilation �lter F

�
n� so that F

�
nn � 
�

where F
�
n is now a single two	dimensional �lter� As before� the recorded data d is the sum

of the signal s and noise n� making d � s� n�
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FIG� ����� A simple example of separation of signal and noise using sine waves of di�erent
frequencies� The method of equation ����
�� was used� The plot on the top is the calcu	
lated signal� and the plot on the bottom is the noise that remained� The plot on the left
has t� scaling� the plot on the right does not� prestack�sf�wf�b 
R�
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FIG� ����� A simple example of separation of signal and noise using real data� The method
of equation ����
�� was used� The plot on the top is the calculated signal� and the plot
on the bottom is the noise that remained� The plot on the left has t� scaling� the plot on
the right does not� prestack�sf�wf�a 
R�
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The use of �lters to characterize the signal and noise is similar to the methods used to

separate the signal and noise in the simple three	dip cases shown in chapter �� Here� both

the signal and noise are characterized by two	dimensional �lters� one �lter for the noise

and one �lter for the signal� Although the signal and noise in the three	dip case considered

in chapter � did not overlap spatially� in the general case the noise and signal will always

overlap� Because of this overlap� calculating the signal �lter F
�
s and the noise �lter F

�
n

may be a problem� since the signal s and noise n are unavailable before the separation

takes place� A combination of two techniques is used to produce reasonable estimates of

F
�
s and F

�
n here�

The �rst technique is to separate spatially the noise and the signal into regions where

one or the other dominates� For example� in the case of the ground	roll noise considered

later in this section� the noise may be isolated to a narrow wedge within a shot gather�

The noise �lter calculated over the data in this wedge will be in�uenced primarily by the

ground roll� A similar technique is used to calculate the signal �lter� After the ground

roll and the �rst breaks are muted� the data is dominated by the signal� so that a �lter

calculated over this data will be in�uenced primarily by signal�

The second technique used to produce reasonable estimates of F
�
s and F

�
n is to control

the shape of the �lters to produce the desired prediction� The signal �lter F
�
s is a purely

lateral two	dimensional �lter as described in chapter �� If this �lter is kept short in time�

the steeply dipping ground roll becomes fairly di�cult to predict� The noise �lter F
�
n� on

the other hand� is shaped to follow the dip of the ground roll and has the form

� � � �

� � � �

� � � �

� � � �

a a a �

a a a �

a a a �

a a a �

� ����
��

where each of the as is a di�erent �lter coe�cient� Notice that the output point is the

upper right	hand side of the �lter and there is a gap between the output point and the

free �lter coe�cients� This gap prevents the prediction of re�ection events that fall inside

the window where the ground roll dominates� Also notice that the column that contains
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the one has no free �lter coe�cients in it� This prevents using the samples from within a

given trace to predict anything within that trace� This is needed since ground roll is often

an almost mono	frequency noise� If the predictions within a trace are allowed� the �lter

F
�
n might become a simple frequency �lter� and that frequency would also be removed

from the signal� Not allowing predictions from within a trace also keeps the predictions

from within the trace from overwhelming the predictions from the other traces� Since the

noise is recognized by its coherence between traces� the trace	to	trace predictions must be

maintained� The combination of the �lter shapes and the spatial separation of the signal

and noise provides good estimates of the signal and noise �lters�

Since this methodwill generally be used on prestack data� either �lter may be corrupted

by high	amplitude noise� Following the method presented in chapter �� high	amplitude

noise may be removed by a trace	to	trace prediction method where samples that are not

well predicted are thrown out� These missing data samples� as well as data not recorded�

are then restored during the inversion for the signal and noise�

To review chapter �� the data d is separated into the known data k and the missing

datam� so that d � k�m� Two masks�K
�
andM

�
� are used to describe the missing data�

making k � K
�
d and m �M

�
d� where K

�
�M
�
� I
�
� where I

�
is the identity matrix�

Summarizing the previous de�nitions�

d � data

s � signal

n � noise

k � known data

m � missing data

K
�
� known data mask

M
�
� missing data mask

F
�
s � signal annihilation �lter

F
�
n � noise annihilation �lter�

The relationships between these factors are as follows�

F
�
ss � 


F
�
nn � 


d � s� n

d � k�m

I
�
� K
�
�M
�
or d � K

�
d�M

�
d�
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Taking F
�
ss � 
 and F

�
nn � 
 and replacing s with d� n produces the system�

� F
�
sd




�
A �

�
� F

�
s

F
�
n

�
An� ����
��

Replacing the data d with k �m and moving the terms that depend on the missing

data m to the right	hand side gives�
� F

�
sK
�
d




�
A �

�
� F

�
s �F

�
sM
�

F
�
n 


�
A
�
� n

m

�
A � �������

Finally� system ������� is modi�ed to weight the noise prediction so that the noise

tends to fall only in the zone where the noise is expected� In this case� the weighting is

done by a simple set of weights� W
�

s and W
�

n� W
�

s being small where signal is expected

and large where only noise is expected� andW
�

n being small where noise is expected and

large where only signal is expected� The modi�ed system then becomes�
� F

�
sK
�
W
�

sd




�
A �

�
� F

�
sW
�

s �F
�
sM
�
W
�

s

F
�
nW
�

n 


�
A
�
� n

m

�
A � �������

In the example shown here� the weightW
�

n has been set to follow the ground roll by a

single velocity and a single window length� An alternative approach that might work well

when the ground roll is very strong would be to makeW
�

n the inverse of the envelope of

the data� This weighting function can also be used to describe the spatial extent of the

noise for calculating the noise and signal �lters� For signal and noise that vary as functions

in time� the two sets of weights can become functions such as the t and t� in section 
���
�

To reduce the numbers of iterations required to solve system �������� the initial es	

timate of n is set to be the wedge of data dominated by noise �ltered by the signal

annihilation �lter F
�
s to remove the signal that underlies the noise� This estimate reduces

the number of iterations and improves the �nal estimate of n signi�cantly�

�
���� ��D signal and noise estimation examples

Figure ���� shows a shot gather with strong coherent noise at a velocity of about ����

feet per second� This noise train is relatively strong and narrow so it is easy to separate

spatially� For this �le� the noise �lter was calculated from the data in a window ��� seconds

long with a starting velocity of ���� feet per second� This window can be seen from the
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distribution of the background noise seen around the ground roll in Figure ������ The

signal �lter was calculated from the data with the previous window zeroed out� as well as

having a start time mute of 
��� feet per second�

The most expensive part of this process is calculating the noise �lter F
�
n� since it is a

fairly large �lter� Using a smaller �lter reduced the e�ectiveness of the process� probably

because the noise train is more complicated than it appears� If the noise is consistent

from shot to shot� the noise �lter might be reused to reduce the cost� Calculating an

e�ective noise �lter is likely to be a problem on many land lines� since the noise will vary

from shot to shot� and since the coupling of the receivers to the ground is variable� This

variability of the coupling will show up as unpredictable parts of the ground roll� Since

the ground roll is very strong when compared to the signal� the unpredictable part of the

ground roll is likely to have signi�cant energy� One method of correcting for the variable

coupling was presented by Berlioux and Lumley������� If the variations in the coupling

are not corrected for� the results of this process are likely to be unsatisfactory� The shot

�le shown in Figure ���� appears to have an unusually uniform receiver coupling�

FIG� ����� A shot gather showing strong ground roll� prestack�WFshot 
R�

Once the signal and noise �lters were calculated� system ������� was inverted for the
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noise and the missing data� As mentioned above� the noise was initialized with the noise

window �ltered by the signal annihilation �lter� If the inversion was attempted with the

noise initialized to zero� many iterations were required to get a reasonable result� Even

with many iterations� the result was not as good as using a few iterations with the noise

initialized with a good estimate� For the results shown here� only ten iterations were used�

Little improvement was found when using more iterations�

Figure ����� shows the noise estimated by the inversion� Notice that there is little

energy outside the zone where the noise dominated� There is no obvious signal showing in

the noise section� When the noise in Figure ����� is subtracted from the original data in

Figure ����� the resulting signal is seen in Figure ������ Almost all of the coherent noise

was removed�

FIG� ������ The noise estimated from the inversion of system ������� using the data from
the previous �gure� prestack�condif 
CR�

There is a small change in the data character of Figure ����� between the zone where

the noise originally dominated and the area outside the zone� This was the result of the

treatment of noise not predicted by either the signal �lter F
�
s or the noise �lter F

�
n� espe	

cially random noise� The distribution of unpredicted noise is controlled by the weighting
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FIG� ������ The estimated signal obtained by subtracting the noise from the original data�
prestack�cohinv 
CR�

functions W
�

s and W
�

n� as shown in chapter �� Since the value of W
�

n was small in the

noise zone� most of the unpredictable noise fell there� Outside the noise zone� the value

of W
�

n was large� keeping the unpredictable noise out of the noise section and putting it

into the signal section� If this change of character a�ects analysis of the data� removing

random noise from the entire �le using the techniques of chapter � will eliminate the e�ect�

The values of the weighting functions W
�

s and W
�

n will also control the distribution

of events that are predictable with both F
�
s and F

�
n� as shown in chapter �� If an event is

equally predictable with either F
�
s or F

�
n� the event will fall into the noise zone because of

the small values ofW
�

n there� while outside the noise zone� equally predictable events will

tend to fall into the signal� Generally� events are unlikely to be well predicted by both F
�
s

and F
�
n because of the di�erent shapes of the �lters�

The results of the inversion were relatively insensitive to the exact values used inW
�

s

and W
�

n� As long as the values outside the noise zone were between � and �� times the

values inside the noise zone� the results appeared basically the same� This insensitivity

simpli�es the calculation of W
�

s and W
�

n considerably� since the signal can be corrected
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for spherical spreading before the process� while the noise� even though it will not have

its amplitude perfectly represented inW
�

n� can be removed e�ectively�

As a comparison� an F	K �lter was run on the previous data� muting out the noise in

the F	K domain� The results� as shown in Figure ������ appear similar to the inversion

results� although some of the ground roll is left in the shallow section in the F	K plot� The

inversion result shows more character change than the F	K result in the area where the

ground roll originally dominated� as discussed above� The F	K �lter shows some artifacts

of the mute� which is expected since the mute will produce a long impulse response in the

time	space domain� Even when the inversion method uses a long �lter� the response of

this �lter is removed from the output� In cases where the noise is aliased over a signi�cant

part of its bandwidth� the inversion may be able to characterize and remove noise more

e�ectively than simple F	K muting�

FIG� ������ An F	K �lter of the previous example� prestack�fk 
R�
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���� Discussion

The results of separating noise and signal using amplitude and spectral estimations appear

promising� In the cases considered here� the noise and signal can be separated fairly well�

especially in the case where both the noise �lter and the signal �lter were two	dimensional�

I found that if� before entering the conjugate	gradient solver� the desired result is

initialized to a good approximation of the desired result� the number of iterations required

by the solver is reduced tremendously� The resulting reduction of the cost makes this

technique a practical noise removal method�

In removing coherent noise� I found that using �lters of di�erent shapes to characterize

the signal and noise worked well� These shaped �lters� along with the amplitude weighting�

did a good job of removing the coherent noise without harming the signal� The re�ection

data was well preserved both within the zone where the noise was removed and outside

the zone�
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Conclusions

This thesis covers two methods of separating signal and noise using multidimensional

�lters� The �rst method is simple multidimensional �ltering� The second is using multi	

dimensional �lters to characterize the signal and noise in an inversion process�

As a preparation for the application of these two methods� a data editing step to

remove high	amplitude noise from the data is presented in chapter �� This removal of the

worst noise improves the calculation of the �lter for simple multidimensional �ltering and

prevents the noise from overwhelming the inversion when using �lters to characterize the

signal and noise� The muted data may also be predicted later during the inversion for

signal and noise�

Filters can be designed to characterize the signal or noise they predict by either chang	

ing the �lter shape or by limiting the data the �lter is designed from to that data dominated

by either the signal or the noise� An example of modifying the �lter shape is seen in chap	

ter �� where the �lters used for predicting laterally continuous signals are purely lateral

�lters� since predictions within a trace do not necessarily apply to nearby traces� Another

example of a �lter shaped to predict a characteristic noise is seen in chapter ��� where

ground roll is predicted using a �lter with a large gap to avoid predicting re�ections�

Although other methods may be used� the �lters in this thesis were almost always

calculated using a conjugate	gradient routine� This method simpli�es and generalizes the

�lter calculation process� since the conjugate	gradient technique only requires the �ltering

process and its adjoint� the cross	correlation� to be speci�ed� Filters with dimensions

higher than one are easily calculated without the need to build the autocorrelation matrices

for the higher dimensional �lters�

�����
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For the signal and noise separation by simple �ltering� I demonstrated in chapter �

that the f	x prediction technique of Canales ������ and Gulunay ������ is equivalent to t	x

prediction using a purely lateral �lter with a very long time	length� This long time	length

allowed more random noise to be passed into the signal section� it also allowed spurious

events to be generated far from the original re�ection signals�

For both t	x and f	x prediction on three	dimensional data� three	dimensional prediction

was best done with a three	dimensional �ltering process� Two passes of two	dimensional

prediction tended to smooth out details that were preserved with the three	dimensional

prediction �ltering process�

Simple �ltering to separate signal and noise has several shortcomings� The most serious

is the generation of spurious events� While the spurious events generated by f	x prediction

are more obvious since they are well separated in time� even the t	x prediction generates

spurious events� although these spurious events are constrained to be local� These often

appear as distortions in the wavelet of re�ections� In both f	x and t	x predictions� spurious

events are caused by the corruption of the �lter used to predict the signal by noise in the

data from which the �lter is predicted� This corruption also reduces the amplitude of

re�ection events� since they are imperfectly predicted� By recalculating a �lter from an

estimate of the signal obtained from a previous pass of the inversion� an improved �lter

is obtained� This improved �lter may then be used to obtain a better separation of the

signal and noise�

Even with a perfect �lter� simple prediction	error �ltering does not produce the desired

separation of signal and noise� This is because a perfectly predictable signal s removed with

a signal	annihilation �lter S
�
so that S

�
s � 
 gives S

�
d � S

�
n� not the assumed prediction	

error �ltering result of S
�
d � n� In short� the response of the noise to the �lter is left in

the signal calculated by prediction �ltering� The inversion eliminates this response of the

noise to the �lter from the calculated signal� For low amplitude noise� the response of

the noise to the �lter will be small enough to ignore� but for high amplitude noise� this

response will be signi�cant�

The randomnoise removal problem described in chapters � and � as a simple prediction	

error �ltering process can be changed to an e�ective inversion process by using the

prediction	error �lter result as a starting point and a stabilizer for the inversion� as shown

in chapter �� Using the prediction	error �lter result as an initial guess for the inversion
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signi�cantly reduces the number of iterations needed by the inversion routine� thus mak	

ing the process only moderately more expensive than prediction	error �ltering� Using the

prediction	error �lter result as a stabilization also keeps noise out of the signal section

when the signal is not perfectly predicted by an imperfect signal	annihilation �lter�

The inversion process of the previous paragraph may be extended to allow for missing

data� as shown in chapter �� This is a useful feature� since bad samples that have ampli	

tudes high enough to spoil the least	squares inversion process may be removed from the

data as show in chapter � and then recovered by the inversion� Also� unrecorded data may

be predicted by the inversion� Prestack data tends to have more problems with both high	

amplitude bad samples and unrecorded data than the poststack data these techniques are

generally applied to� The inversion allows random noise removal to be extended to these

prestack cases that were previously unsuited to prediction	error �ltering methods�

Finally� when both the signal and the noise can be characterized by �lters� inversions

can be set up to take advantage of the predictability� Chapters � and �� describe some

applications of such inversions� Perhaps the most impressive application is that of the

removal of coherent noise such as ground roll� as shown in chapter ���

The techniques described in this thesis are not limited to the problems addressed here�

In particular� the problem of multiple attenuation might be attacked using these techniques

�Taner et al�� ������ The methods demonstrated here may also be extended from the two	

and three	dimensional forms shown here to three	� four	� or �ve	dimensional applications

corresponding to three	dimensional seismic acquisition with either simple inline acquisition

or with full three	dimensional prestack geometries� In general� these extensions are simply

a matter of extending the convolution routines to higher dimensions� Although the cost of

higher	dimensional processing increases with the number of dimensions� and the amount of

data recorded in some direction may not be su�cient to allow useful predictions� increasing

the dimensionality of the predictions allows more data to be used and better predictions

to be made�
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