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ABSTRACT

The problem of inverting a set of core-sample traveltime measurements for a

complete set of 21 elastic constants is a di�cult one. If the 21 elastic constants are

directly used as the inversion parameters, a few bad measurements or an unfortu-

nate starting guess may result in the inversion converging to a physically impossible

\solution". Even given perfect data, multiple solutions may exist that predict the

observed traveltimes equally well. We desire the inversion algorithm to converge not

just to a physically possible solution, but to the \best" (i.e. most physically likely)

solution of all those allowed.

We present a new parameterization that attempts to solve these di�culties. The

search space is limited to physically realizable media by making use of the Kelvin

eigensti�ness-eigentensor representation of the 6�6 elastic sti�ness matrix. Instead of

21 sti�nesses, there are 6 \eigensti�ness parameters" and 15 \rotational parameters".
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The rotational parameters are de�ned using a Lie-algebra representation that avoids

the arti�cial degeneracies and coordinate-system bias that can occur with standard

polar representations. For any choice of these 21 real parameters, the corresponding

sti�ness matrix is guaranteed to be physically realizable. Furthermore, all physically

realizable matrices can be represented in this way.

This new parameterization still leaves considerable latitude as to which linear

combinations of the Kelvin parameters to use, and how they should be ordered. We

demonstrate that by careful choice and ordering of the parameters, the inversion can

be \relaxed" from higher to lower symmetry simply by adding a few more parameters

at a time. By starting from isotropy and relaxing to the general result in stages

(isotropy, transverse isotropy, orthorhombic, general), we expect that the method

should �nd the solution that is closest to isotropy of all those that �t the data.

INTRODUCTION

If a rock sample is transversely isotropic with a known symmetry axis, its 5 inde-

pendent elastic constants can be determined by cutting cores at 0�, 90�, and 45� to

the rock's axis of symmetry, and measuring P and S velocities along each core's long

axis (Jones and Wang, 1981). If the rock's anisotropic symmetry system and orienta-

tion are not known, however, a more general anisotropic inversion method is required.

Vestrum (1996; 1994) demonstrated that by using a large number of high-quality P

and S-wave velocity measurements, he could successfully invert for a complete set

of 21 elastic constants that best �ts the velocity measurements in the least-squares

sense. His method makes no prior assumptions about the symmetry or orientation of

the rock.

Although the 21 elements of the anisotropic sti�ness matrix make a convenient

parameterization for coding purposes, they can cause di�culties if the input velocity

measurements are of poor quality. Unrealistic parameter values are typically avoided
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in least-squares inversion by adding damping to the algorithm. However, there is no

simple damping term that can bias the sti�ness matrix towards being transversely

isotropic or orthorhombic without also imposing a bias towards a preferred coordinate

system (Rasolofosaon et al., 1991). There is also no easy way to ensure that the

algorithmwill not converge to a result that �ts the data but is energetically impossible.

To avoid these di�culties, we parameterize the sti�ness matrix C
~~
geometrically in

terms of its eigensti�nesses and eigentensors (i.e., the eigenvalues and eigenvectors of

the sti�ness matrix written using Kelvin, instead of the more familiar Voigt, notation)

(Helbig, 1994). By ensuring the eigensti�nesses are positive we avoid the possibility

of an energetically disallowed result (Auld, 1973).

Our parameterization requires 21 constants to specify general anisotropy: 6 to

specify the eigenvalues, and 15 to specify the eigenvectors. To ensure positivity, the

eigenvalues are represented as the exponentials of linear combinations of 6 of the

inversion parameters. The eigenvectors are generated by rotating a starting basis set

of 6 orthogonal 6-dimensional vectors. We use a Lie-algebra representation of the

6-dimensional rotation to avoid degeneracies (Gilmore, 1974; Hermann, 1966).

By careful choice of the parameters it is possible to \relax" the inversion from

higher to lower symmetry by adding a few more parameters at a time. If only the

�rst 2 parameters are nonzero, the result is isotropic. If only the �rst 7 are nonzero,

the result is transversely isotropic. If only the �rst 12 are nonzero, the result is

orthorhombic. (Our current implementation stops at 12 parameters.)

At each stage of the inversion the result is damped back towards the previous more

symmetric result. In this way we can determine from the data the likely symmetry

system of the medium. We have also found that the inversion converges more quickly

and more reliably by this method than inversions that attempt to solve for all 21

elastic constants directly. We expect that this method should also be more likely to

�nd the desired result (instead of a local minimum, or a solution that �ts the data

well but is geologically implausible).
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REVIEW OF KELVIN NOTATION

Since the subject is not yet generally well known in the seismic anisotropy com-

munity, we begin with a basic review of Kelvin notation. Interested readers are urged

to consult more in-depth sources for further information (Helbig, 1994; Cowin and

Mehrabadi, 1992; Sutcli�e, 1992; Mehrabadi and Cowin, 1990; Thomson, 1878).

A homogeneous elastic anisotropic medium can be parameterized by its sti�ness

tensor Cijkl and density �. The 3 � 3 � 3 � 3 sti�ness tensor Cijkl is traditionally

compressed into a 6�6 matrix Cij using \Voigt notation" (Auld, 1973). This notation

makes use of the symmetries of the sti�ness tensor Cijkl = Cjikl and Cijkl = Cijlk to

compress each pair of indices into one index according to the following rules: 11! 1;

22 ! 2; 33 ! 3; 23; 32 ! 4; 13; 31 ! 5; 12; 21 ! 6. Voigt notation is convenient

because each element of the compressed matrix Cij is equal to its corresponding

element(s) in the tensor Cijkl. Thus, for example, using Voigt notation we have

C11 = C1111, C35 = C3313 = C3331, and C44 = C2323 = C3223 = C2332 = C3232.

There are also certain disadvantages to Voigt notation. The sum of the squares of

the elements of the sti�ness tensor has geometrical signi�cance (Rasolofosaon et al.,

1991; Federov, 1968), and using Voigt notation this important norm is lost:

X
i;j

C2
ij 6=

X
i;j;k;l

C2
ijkl: (1)

Helbig (1994), rediscovering long-forgotten work of Lord Kelvin (Thomson, 1878),

showed that by using a slightly di�erent normalization the tensor norm can be pre-

served. This alternative form for the 6 � 6 sti�ness matrix Cij is called \Kelvin

notation" (as opposed to the traditional \Voigt notation").

Kelvin notation simply weights each of the elements of the sti�ness matrix accord-

ing to how many elements in the sti�ness tensor it represents. Compressed indices 1,

2, and 3 each represent only one combination of tensor indices, so the weighting for

these is unity. Compressed indices 4, 5, and 6, however, each represent two possible
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pairs of tensor indices, so elements of the sti�ness matrix with these indices must be

scaled by
p
2 (so that when squared they count twice). This extra weighting must

be applied for each of the two indices of the sti�ness matrix. Thus, using Kelvin

notation we would have C11 = C1111, but C35 =
p
2C3313, and C44 = 2C2323.

Eigensti�nesses and eigentensors

Because the Kelvin 6� 6 C
~~
matrix preserves the norm of the 3� 3� 3� 3 sti�-

ness tensor, its eigenvalues and eigenvectors are geometrically meaningful. Following

Helbig (1994), we will call the eigenvalues of the Kelvin-notation C
~~
matrix \eigens-

ti�nesses", and the 6-dimensional eigenvectors \eigentensors". The eigentensors �
~

(k)

have the property that:

�

~

(k) = C
~~
�

~

(k) = �(k)
�

~

(k); (2)

where �(k) is the associated eigensti�ness (a real scalar) and k = f1; 2; 3; 4; 5; 6g.
There are 6 eigentensors; each corresponds to a state of stress of the medium for

which the 6-dimensional stress and strain vectors, expressed in Kelvin notation, are

parallel.

The physical meaning of \parallel 6-dimensional eigentensors" can be better un-

derstood by uncompressing the 6-dimensional eigenvector into a 3� 3 matrix. For a

Kelvin-notation strain we have:

�

~
=

0
BBBBBBBBBBBBBBBB@

�1

�2

�3

�4

�5

�6

1
CCCCCCCCCCCCCCCCA

!

0
BBBB@

�1 �6=
p
2 �5=

p
2

�6=
p
2 �2 �4=

p
2

�5=
p
2 �4=

p
2 �3

1
CCCCA
=

0
BBBB@

�11 �12 �13

�12 �22 �23

�13 �23 �33

1
CCCCA
= �

~~
(3)
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The same equation holds for a Kelvin-notation stress:

�

~
=

0
BBBBBBBBBBBBBBBB@

�1

�2

�3

�4

�5

�6

1
CCCCCCCCCCCCCCCCA

!

0
BBBB@

�1 �6=
p
2 �5=

p
2

�6=
p
2 �2 �4=

p
2

�5=
p
2 �4=

p
2 �3

1
CCCCA
=

0
BBBB@

�11 �12 �13

�12 �22 �23

�13 �23 �33

1
CCCCA
= �

~~
(4)

The factors of \
p
2" ensure that the norm of the vector and matrix remains the same.

The 3�3 matrices �
~~
and �

~~
are real and symmetric, and so are guaranteed to have

real eigenvalues associated with a complete set of orthogonal eigenvectors (Strang,

1980). The 3 eigenvectors give the directions of the 3 principal stresses or strains; the

corresponding eigenvalues give their magnitudes. A Kelvin-notation eigentensor thus

corresponds to a state of the medium in which each principal stress is parallel to a

principal strain, and the same stress / strain ratio (equal to the eigensti�ness �(k))

applies to each of the 3 principal stress-strain pairs. Put more simply, an eigentensor

corresponds to a state of the medium for which the stress and strain ellipsoids have

the same orientation and aspect ratio.

An example of Kelvin decomposition

Transversely isotropic (TI) Greenhorn Shale (Jones and Wang, 1981) has elastic

constants (in kbar, written in traditional Voigt notation):

C
~~
=

0
BBBBBBBBBBBBBBBB@

341 129 107 0 0 0

129 341 107 0 0 0

107 107 227 0 0 0

0 0 0 54 0 0

0 0 0 0 54 0

0 0 0 0 0 106

1
CCCCCCCCCCCCCCCCA

: (5)

The axis of symmetry is the z axis (i.e., the medium is \TIV").
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To convert to Kelvin notation, pre and post multiply by the matrix

0
BBBBBBBBBBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0
p
2 0 0

0 0 0 0
p
2 0

0 0 0 0 0
p
2

1
CCCCCCCCCCCCCCCCA

; (6)

obtaining the Kelvin-notation form of the Greenhorn-shale sti�ness matrix,

0
BBBBBBBBBBBBBBBB@

341 129 107 0 0 0

129 341 107 0 0 0

107 107 227 0 0 0

0 0 0 108 0 0

0 0 0 0 108 0

0 0 0 0 0 212

1
CCCCCCCCCCCCCCCCA

: (7)

The eigenvectors of the above matrix are:

�

~~
=

0
BBBBBBBBBBBBBBBB@

:63759 �:30574 1=
p
2 0 0 0

:63759 �:30574 �1=p2 0 0 0

:43239 :90169 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

1
CCCCCCCCCCCCCCCCA

: (8)

The columns of this matrix give the eigentensors of Greenhorn Shale. (The apparently

jumbled ordering of the eigentensors is necessary for consistency with the canonical

ordering used by Helbig in his book (1994); we shall use his ordering throughout this

paper.)

Six-dimensional vectors are di�cult to visualize. Fortunately, it is possible to

write eigentensors as sti�ness matrices. Sylvester's matrix theorem allows us to write

any matrix as a sum of outer products of its eigenvectors, each weighted by the

7



corresponding eigenvalue (Claerbout, 1976). Thus, we can decompose a sti�ness

matrix C
~~
into a sum of sti�ness matrices C

~~

(k), each with the same eigentensors as C
~~
,

but with all but one of the eigensti�nesses set to zero. Mathematically,

C
~~
=
X
k

�(k)
�

~

(k)
�

~

(k)T =
X
k

�(k)C
~~

(k): (9)

The six eigentensors of Greenhorn shale follow. For each eigentensor, we have

formed the outer product (following equation (9) above) to convert the eigentensor

from a 6-vector to a Kelvin-notation sti�ness matrix. We have then converted the

Kelvin-notation sti�ness matrix to traditional Voigt notation. The reader can verify

that the six sti�ness matrices that follow do indeed sum to give the sti�ness matrix

for Greenhorn shale in equation (5).

After each single-eigentensor sti�ness matrix we also list the corresponding three

principal strain vectors (in the form of a scalar strain multiplied by a normalized

unit vector), and explain how the eigentensor would change if the symmetry were

increased (to isotropy) or decreased (to orthorhombic, with symmetry planes aligned

with the coordinate axes).

For eigentensor 1,

�(1)C
~~

(1) = 542:562

0
BBBBBBBBBBBBBBBB@

:40652 :40652 :27568 0 0 0

:40652 :40652 :27568 0 0 0

:27568 :27568 :18696 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

; (10)

and the corresponding principal strain vectors are:

:432385

0
BBBB@

0

0

1

1
CCCCA
; :637591

0
BBBB@

0

1

0

1
CCCCA
; :637591

0
BBBB@

1

0

0

1
CCCCA
: (11)

These three principal strains are aligned with the coordinate axes. All three have the

same sign, but the principal strain along the z axis has a di�erent magnitude from the
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other two. In an orthorhombic medium, the orientation of the strain vectors would

remain the same but the TI equivalence between the x and y axes would be lost.

For an isotropic medium, all three strains would have exactly the same magnitude

(1=
p
3) and the same sign, and this eigentensor would thus correspond to pure hy-

drostatic compression. The associated eigensti�ness then depends only on the bulk

modulus, k: �(1) = C11 + C12 = 3C11 � 4C44 = 3k.

For eigentensor 2,

�(2)C
~~

(2) = 154:438

0
BBBBBBBBBBBBBBBB@

:093478 :093478 �:27568 0 0 0

:093478 :093478 �:27568 0 0 0

�:27568 �:27568 :81304 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

; (12)

and the corresponding principal strain vectors are:

�:305742

0
BBBB@

0

1

0

1
CCCCA
; �:305742

0
BBBB@

1

0

0

1
CCCCA
; :901689

0
BBBB@

0

0

1

1
CCCCA
: (13)

These three principal strains are also aligned with the coordinate axes, but the z axis

has an opposite sign from the other two axes. Thus, if z is an axis of compression, then

x and y are axes of dilatation. As for eigentensor 1, in an orthorhombic medium the

orientation of the strain vectors would remain the same but the equivalence between

x and y would be lost.

For an isotropic medium, the three principal strain magnitudes would sum to zero

(being �1=p6;�1=p6; 2=p6 in that case), and the total volume change represented

by the strain would thus also be zero. Not surprisingly, in the isotropic case the

associated eigensti�ness is a pure function of the shear modulus, �: �(2) = 2C44 = 2�.
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For eigentensor 3,

�(3)C
~~

(3) = 212

0
BBBBBBBBBBBBBBBB@

:5 �:5 0 0 0 0

�:5 :5 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

; (14)

and the corresponding principal strain vectors are:

�1=
p
2

0
BBBB@

0

1

0

1
CCCCA
; 0

0
BBBB@

0

0

1

1
CCCCA
; 1=

p
2

0
BBBB@

1

0

0

1
CCCCA
: (15)

These three principal strains are also aligned with the coordinate axes. Here the

principal strain along the z axis is zero, and the other two are equal and opposite.

This is pure shear strain in the x-y plane. In the orthorhombic case the principal

strains of this eigentensor would still correspond to the coordinate axes, but it would

not necessarily have to form a pure shear strain.

In the more symmetric isotropic case the eigensti�nesses of eigentensors 2 through

6 would be equal, and we would have �(3) = �(2) = 2�.

For eigentensor 4,

�(4)C
~~

(4) = 212

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 :5

1
CCCCCCCCCCCCCCCCA

; (16)

and the corresponding principal strain vectors are:

�1=
p
2

0
BBBB@

�1=p2
1=
p
2

0

1
CCCCA
; 0

0
BBBB@

0

0

1

1
CCCCA
; 1=

p
2

0
BBBB@

1=
p
2

1=
p
2

0

1
CCCCA
: (17)
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This is another pure shear strain in the x-y plane, but rotated 45� about the z axis

from eigentensor 3. For the TIV case, it is thus symmetrically equivalent to eigen-

tensor 3 and has the same eigensti�ness (in this example, 212).

For eigentensor 5,

�(5)C
~~

(5) = 108

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0:5 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

; (18)

and the corresponding principal strain vectors are:

�1=
p
2

0
BBBB@

0

�1=p2
1=
p
2

1
CCCCA
; 0

0
BBBB@

1

0

0

1
CCCCA
; 1=

p
2

0
BBBB@

0

1=
p
2

1=
p
2

1
CCCCA
: (19)

This is a pure shear in the y-z plane.

Finally, for eigentensor 6,

�(6)C
~~

(6) = 108

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 :5 0

0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

; (20)

and the corresponding principal strain vectors are:

�1=
p
2

0
BBBB@

1=
p
2

0

�1=p2

1
CCCCA
; 0

0
BBBB@

0

1

0

1
CCCCA
; 1=

p
2

0
BBBB@

1=
p
2

0

1=
p
2

1
CCCCA
: (21)

This is a pure shear in the x-z plane.
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The principal strains for eigentensors 4 through 6 are exactly the same for

isotropic, TIV (with a z symmetry axis), and orthorhombic (aligned with the coordi-

nate axes), forming an orthogonal trio of pure shear strains in the x-y, y-z, and x-z

planes, respectively. This happens because an anisotropic symmetry plane is always

associated with a pair of pure-shear eigentensors (Helbig, 1994), and all three of the

symmetry systems we have been discussing have the coordinate planes as symmetry

planes.

The di�erent symmetry systems are distinguished by whether the associated eigen-

sti�nesses �(4) through �(6) are equal. In the isotropic case, all three axes are sym-

metrically equivalent and thus eigensti�nesses 4 through 6 are equal. In the TIV

case eigentensors 5 and 6 are equivalent (a 90� rotation about z maps one into the

other), and thus �(5) = �(6) (in this example 108). In the orthorhombic case all 6

eigensti�nesses are independent.

If the medium were monoclinic with an x-y plane of symmetry, then eigentensors

1-4 would be entirely arbitrary, but eigentensors 5 and 6 would still form a pair of

pure-shear strains. In the case of general anisotropy there are no symmetry planes

and all 6 eigentensors are arbitrary.

Note that rotating the medium would leave the eigensti�nesses completely un-

changed. The directions of the principal strains of the eigentensors would rotate, but

their magnitudes and the angles between them would also remain unchanged. Thus,

even if an anisotropic medium is arbitrarily oriented, any symmetry planes can be

immediately identi�ed by expressing the sti�ness matrix in Kelvin eigentensor form

and checking for paired pure-shear strains (Helbig, 1994).

KELVIN-MATRIX COMPOSITION

In the previous section we decomposed a sti�ness matrix into its Kelvin-

eigentensor components. It is also possible to reverse the process, building up an
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arbitrary sti�ness matrix from Kelvin-eigentensor building blocks.

Every sti�ness matrix has a complete set of orthogonal eigenvectors, each associ-

ated with a real eigenvalue. The sti�ness matrix is physically realizable if and only if

all its eigenvalues are non-negative (Auld, 1973). Given a complete orthogonal set of

eigenvectors �
~

(k) and their associated eigenvalues �(k), we can easily construct a real

symmetric matrix with those eigenvectors and eigenvalues using Sylvester's matrix

theorem (Claerbout, 1976):

C
~~
=
X
k

�(k)
�

~

(k)
�

~

(k)T : (22)

Any realizable sti�ness matrix can therefore be parameterized in terms of 6 real

nonnegative scalars (eigensti�nesses) and 6 orthogonal 6-dimensional vectors (eigen-

tensors).

Specifying the eigensti�nesses

For media more symmetric than orthorhombic, we have seen that some subsets

of the 6 eigensti�nesses are constrained to have the same value. As given by Hel-

big (1994), the patterns are (repeated letters indicate repeated eigensti�nesses):

Isotropic: fA, B, B, B, B, Bg
Cubic: fA, B, B, C, C, Cg
Transversely Isotropic: fA, B, C, C, D, Dg
Tetragonal: fA, B, C, D, E, Eg
Orthorhombic: fA, B, C, D, E, Fg .

We would like to parameterize the eigensti�nesses so that the symmetry systems

of interest in the list above (isotropic, TI, orthorhombic) \nest" one within the other.

Isotropy requires 2 eigensti�ness parameters, so the �rst 2 inversion parameters should

su�ce to specify isotropy, leaving parameters 3 through 6 set to zero. TI requires 4

eigensti�ness parameters, so inversion parameters 1 through 4 should be enough for
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that case, leaving parameters 5 and 6 set to zero. Orthorhombic anisotropy requires

all six eigensti�ness parameters to be unconstrained.

To accomplish this, we parameterize the eigensti�nesses as exponentials (to ensure

positivity) of linear combinations of the 6 eigensti�ness inversion parameters, which

are labeled IP, IS, TI1, TI2, OR1, and OR2. In terms of these parameters the six

eigensti�nesses are then:

�(1) = V 2
ref exp(IP),

�(2) = V 2
ref exp(IP + IS)=4,

�(3) = V 2
ref exp(IP + IS + TI1)=4,

�(4) = V 2
ref exp(IP + IS + TI1 +OR1)=4,

�(5) = V 2
ref exp(IP + IS + TI1 + TI2 +OR1)=4,

�(6) = V 2
ref exp(IP + IS + TI1 + TI2 +OR1 +OR2)=4.

If normalized by density, the eigensti�nesses have units of squared velocity; Vref

is just the reference velocity used to set the units of the problem. Note that as

required, IP and IS are enough for arbitrary isotropy. IP, IS, TI1, and TI2 span the

eigensti�nesses of transversely isotropic media. All 6 eigensti�ness parameters are

needed to span the space of orthorhombic media.

The factor of 4 in the denominators ensures that if only IP is nonzero, the medium

is isotropic with the usual \default" Vp=Vs ratio of 2. In squared-velocity units, for

isotropic media

�(1) = 3V 2
p � 4V 2

s (23)

and

�(2) = 2V 2
s : (24)

Thus �(1)=�(2) = (3=2)(Vp=Vs)
2 � 2; if Vp=Vs = 2 then �(1)=�(2) = 4.
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Specifying the eigentensors

A sti�ness matrix contains 21 unique entries, so there are still 21�6 = 15 param-

eters remaining to be speci�ed.

Every real symmetric matrix has a complete set of orthogonal eigenvectors. This

basis of eigenvectors de�nes a natural Cartesian coordinate system in which the matrix

is diagonal (Strang, 1980). The number of angles required to specify the orientation

of a coordinate system in n dimensions is n(n � 1)=2. For our purpose n = 6 and

the number of angles is 15, which exactly accounts for the 15 remaining parameters.

(In general there is also the handedness of the coordinate system to consider. Since

eigenvectors can be negated without e�ect, in our application the handedness of the

coordinate system does not matter.)

We now must answer two questions: 1) Which 15 angles should we use? 2) What

is the best \starting coordinate system" (i.e., the one that will be obtained if all the

angles are set to zero)?

We choose the �rst three angles, �x, �y, and �z, to rotate the medium in the usual

three dimensions of x, y, and z without altering its elastic properties. These form a

subset of the 15 angles needed to rotate in 6 dimensions, as shown by Mehrabadi and

Cowin (1990).

Traditionally, arbitrary orientations in 3 dimensions are speci�ed using Euler an-

gles: start from the unrotated coordinate system, rotate about z, then x, then z

again, obtaining the new, rotated, coordinate system (Synge and Gri�th, 1959). We

instead use a Lie-algebra notation to specify the rotation (Hermann, 1966; Gilmore,

1974), which makes use of the fact that while �nite rotations about x, y, and z do

not commute, in�nitesimal ones do. (In some sense, we \apply all three rotations at

the same time".) This avoids the arti�cial degeneracies that occur using the Euler

angles when the x rotation is small (Vasicek and Lu, 1979). Using the Lie-algebra

notation, the required 3� 3 rotation matrix is:
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R = exp

0
BBBB@

0 �z ��y
��z 0 �x

�y ��x 0

1
CCCCA
: (25)

The Caley-Hamilton theorem states that any N � N matrix satis�es its own

characteristic equation, a polynomial equation of order N . We can use this result

to write any power of a matrix of order N or higher in terms of powers 0 through

N � 1, and thus to compress the in�nite Taylor series for the matrix exponential in

equation (25) down to a �nite number of terms. By that means, an analytical solution

can be found (Bellman, 1970; Strang, 1980; Gilmore, 1974). In three dimensions there

is a simple geometrical interpretation for the matrix in equation (25): it corresponds

to a rotation by an angle of
q
�2x + �2y + �2z about the axis (�x; �y; �z). The explicit

result can be found in Gilmore (1974).

The remaining 12 \nongeometrical angles" (nongeometric in that they do not cor-

respond to rotations in ordinary three-dimensional space) a�ect the elastic properties

of the medium. Before we can de�ne the angles, however, we must begin by de�ning

an initial eigentensor matrix. This matrix will give the eigentensors when all the

rotational parameters are zero.

The obvious choice for the initial eigentensor matrix is isotropy. In the purely

isotropic case, however, several of the eigentensors are symmetrically equivalent: the

eigentensor decomposition of isotropy is not unique. The symmetry can be broken by

in�nitesimally perturbing the medium towards orthorhombic anisotropy aligned with

the Cartesian coordinate axes. The choice of eigentensors is then uniquely

�

~~

initial =

0
BBBBBBBBBBBBBBBB@

q
1=3 �

q
1=6

q
1=2 0 0 0

q
1=3 �

q
1=6 �

q
1=2 0 0 0

q
1=3 2

q
1=6 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

1
CCCCCCCCCCCCCCCCA

: (26)
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Comparing equation (26) with equation (8), we see that only 1 rotation, mixing eigen-

tensors 1 and 2, is necessary to convert this set of eigentensors into those for a TIV

medium. Three angles, mixing eigentensors 1 through 3, are enough for orthorhombic

anisotropy aligned with the coordinate axes (Helbig, 1994).

For most laboratory applications arbitrarily oriented orthorhombic anisotropy is

the most general solution desired. In that case, we can again make use of the Lie-

notation for 3-dimensional rotation, multiplying the initial eigentensor matrix in equa-

tion (26) by

exp

0
BBBBBBBBBBBBBBBB@

0 TI3 OR3 0 0 0

�TI3 0 OR4 0 0 0

�OR3 �OR4 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

(27)

to obtain the required eigentensors. The angle TI3 speci�es the additional rotation

required for TIV; angles OR3, and OR4 specify the additional two rotations (beyond

TIV) required to span orthorhombic anisotropy.

For the generally anisotropic case, 9 more angles are required. These mix pair-

wise combinations of one of the �rst three eigentensors with one of the last three

eigentensors. The rotation matrix then becomes:

exp

0
BBBBBBBBBBBBBBBB@

0 TI3 OR3 M1 G1 G4

�TI3 0 OR4 M2 G2 G5

�OR3 �OR4 0 M3 G3 G6

�M1 �M2 �M3 0 0 0

�G1 �G2 �G3 0 0 0

�G4 �G5 �G6 0 0 0

1
CCCCCCCCCCCCCCCCA

: (28)

Rotations M1, M2, and M3 leave the last two eigentensors uninvolved, preserving the

unrotated xy plane as a plane of symmetry of the medium if rotations G1 through

G6 are zero. (A medium with a single symmetry plane is monoclinic.)
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The Canonical order

Now that we have de�ned the 21 parameters (6 eigensti�ness parameters, 3 ge-

ometrical angles, and 12 nongeometrical angles), they still must be placed in the

correct order. Isotropy requires only two anisotropy parameters, IP and IS (orienta-

tion is irrelevant for isotropy). For TI (transversely isotropic) media, �ve parameters

are required to specify the anisotropy and two parameters are required to specify the

orientation of the symmetry axis (�x and �y; rotation about the axis of symmetry, z,

is irrelevant). TI thus requires seven parameters in all. For orthorhombic anisotropy

nine anisotropy parameters and all three orientation parameters are required, for

twelve in all. General anisotropy requires all twenty-one parameters.

The proper order is thus:

IP, IS (enough for isotropic),

TI1, TI2, TI3, �x, �y (enough for TI),

�z, OR1, OR2, OR3, OR4 (enough for orthorhombic),

M1, M2, M3 (enough for monoclinic with an xy symmetry plane), and

G1, G2, G3, G4, G5, G6 (enough for general anisotropy).

In practice, unless the orientation of the single monoclinic symmetry plane is

known beforehand, each of the three orthorhombic symmetry planes must be tested

as a candidate. It is probably more useful to proceed directly from orthorhombic to

general anisotropy.

EXAMPLES

We have replaced the 21-constant parameterization in Vestrum's phase-velocity

inversion code (Vestrum et al., 1996; Vestrum, 1994) with our 12-dimensional param-

eterization. By using only 12 parameters, we explicitly excluded any result less sym-

metric than arbitrarily oriented orthorhombically anisotropic media. We have tested
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the inversion on Vestrum's phenolic-sphere physical-model dataset (Vestrum, 1994).

The inversion was performed in three stages, �nding best-�tting sti�ness matrices for

three di�erent anisotropic symmetry systems: isotropic, TI, and orthorhombic.

The following results were achieved. At each stage of the inversion, the 12 model

parameters are given, in the following order:
0
BBBB@

IP IS

TI1 TI2 TI3 �x �y

�z OR1 OR2 OR3 OR4

1
CCCCA
: (29)

The IP = 0 velocity, Vref, is 1500 meters per second. The angular parameters (in a

slanted font in the list above) are given in degrees. The sti�ness matrices are also

given, with the elastic constants normalized to units of squared velocity, with the

velocity measured in units of kilometers per second. The RMS errors are in units of

meters per second.

Initial model:
0
BBBB@

0: 0:

0: 0: 0: 0: 0:

0: 0: 0: 0: 0:

1
CCCCA

(30)

Initial sti�ness matrix:
0
BBBBBBBBBBBBBBBB@

2:250 1:125 1:125 0: 0: 0:

1:125 2:250 1:125 0: 0: 0:

1:125 1:125 2:250 0: 0: 0:

0: 0: 0: 0:562 0: 0:

0: 0: 0: 0: 0:562 0:

0: 0: 0: 0: 0: 0:562

1
CCCCCCCCCCCCCCCCA

(31)

For the �rst iterations, only the �rst two parameters were freed. After 8 iterations,

the inversion converged to the isotropic result:
0
BBBB@

1:233685 0:071239

0: 0: 0: 0: 0:

0: 0: 0: 0: 0:

1
CCCCA

(32)
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0
BBBBBBBBBBBBBBBB@

7:916 3:768 3:768 0: 0: 0:

3:768 7:916 3:768 0: 0: 0:

3:768 3:768 7:916 0: 0: 0:

0: 0: 0: 2:074 0: 0:

0: 0: 0: 0: 2:074 0:

0: 0: 0: 0: 0: 2:074

1
CCCCCCCCCCCCCCCCA

(33)

RMS error = 110:93:

The number of free parameters was then increased to 7, and after 20 more itera-

tions, the inversion converged to the following TI result:

0
BBBB@

1:251109 �0:201660
0:482242 �0:305260 0:959083 �0:223800 1:039296

0: 0: 0: 0: 0:

1
CCCCA

(34)

0
BBBBBBBBBBBBBBBB@

8:398 3:175 4:151 0:004 �0:007 0:000

3:175 8:360 4:189 �0:001 0:018 0:000

4:151 4:189 7:384 �0:003 �0:011 0:000

0:004 �0:001 �0:003 1:918 �0:000 �0:012
�0:007 0:018 �0:011 �0:000 1:918 �0:003
0:000 0:000 0:000 �0:012 �0:003 2:602

1
CCCCCCCCCCCCCCCCA

(35)

RMS error = 76:25:

All 12 parameters were then freed. After 15 more iterations, the �nal Orthorhom-

bic result was obtained:
0
BBBB@

1:319171 �0:099532
0:329786 �0:227424 4:800553 �0:281243 1:884455

�11:910885 �0:161748 0:099789 �1:707797 �7:621446

1
CCCCA

(36)
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0
BBBBBBBBBBBBBBBB@

9:874 4:434 3:787 0:003 �0:071 �0:207
4:434 9:320 3:765 �0:006 �0:022 0:084

3:787 3:765 6:612 0:002 �0:037 �0:005
0:003 �0:006 0:002 1:803 �0:038 �0:017
�0:071 �0:022 �0:037 �0:038 1:976 0:005

�0:207 0:084 �0:005 �0:017 0:005 2:317

1
CCCCCCCCCCCCCCCCA

(37)

RMS error = 13:67:

This orthorhombic model �ts the data to within measurement error, which the

previous more-symmetric models did not. We therefore conclude that this physical

model was orthorhombic to within Vestrum's ability to measure it (Vestrum, 1994).

The small values of �x = �0:28 and �y = 1:88 also indicate that the slowest P-wave

propagation axis of this orthorhombic medium was nearly perfectly aligned with the

z coordinate axis.

The same inversion was also run starting from the same initial conditions, but

with all 12 parameters freed from the start. This run reached the above orthorhombic

result in only 13 iterations. Experience has shown, however, that it is safer to proceed

in stages, each damped back to the previous more-symmetric result, as we did for the

�rst run given above.

The same inversion code was also run using Vestrum's original parameterization

(21 elastic constants). Starting from the same initial conditions, it converged after

36 iterations to the generally anisotropic result:
0
BBBBBBBBBBBBBBBB@

9:889 4:495 3:771 0:038 �0:091 0:072

4:495 9:343 3:736 �0:002 �0:115 �0:131
3:771 3:736 6:612 0:006 �0:020 �0:130
0:038 �0:002 0:006 1:799 0:008 0:009

�0:091 �0:115 �0:020 0:008 1:994 �0:003
0:072 �0:131 �0:130 0:009 �0:003 2:315

1
CCCCCCCCCCCCCCCCA

(38)

RMS error = 12:43:
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This result deviates from being orthorhombic by only 2%.

CONCLUSIONS

We have modi�ed Vestrum's original phase-velocity inversion code (Vestrum et

al., 1996; Vestrum, 1994) (obtained courtesy of the CREWES consortium) to use the

12-parameter version of our new Kelvin-inspired parameter set. This new parameter-

ization imposes no assumptions on the orientation of the anisotropy of the sample. It

also naturally provides a series of best-�tting sti�ness-matrix results of progressively

lower anisotropic symmetry, allowing the likely symmetry system of the sample to be

determined from the data, instead of needing to be assumed beforehand. Most im-

portantly, using the Kelvin eigentensor parameterization the inversion can only �nd

physically realizable results. Our modi�ed code appears to converge somewhat more

quickly and reliably than the original code did, especially when used with poor-quality

data.
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