SUTIVEL - SU Transversely Isotropic velocity table builder computes vnmo or vphase as a function of Thomsen's parameters and theta and optionally interpolate to constant increments in slowness Optional Parameters: a=2500. alpha (vertical p velocity) b=1250. beta (vertical sv velocity) e=.20 epsilon (horiz p-wave anisotropy) d=.10 delta (strange parameter) maxangle=90.0 max angle in degrees nangle=9001 number of angles to compute verbose=0 set to 1 to see full listing np=8001 number of slowness values to output option=1 1=output vnmo(p) (result used for TI DMO) 2=output vnmo(theta) in degrees 3=output vnmo(theta) in radians 4=output vphase(p) 5=output vphase(theta) in degrees 6=output vphase(theta) in radians 7=output first derivative vphase(p) 8=output first derivative vphase(theta) in degrees 9=output first derivative vphase(theta) in radians 10=output second derivative vphase(p) 11=output second derivative vphase(theta) in degrees 12=output second derivative vphase(theta) in radians 13=( 1/vnmo(0)^2 -1/vnmo(theta)^2 )/p^2 test vs theta (result should be zero for all theta for d=e) 14=return vnmo(p) for weak anisotropy normalize=0 =1 means scale vnmo by cosine and scale vphase by 1/sqrt(1+2*e*sin(theta)*sin(theta) (only useful for vphase when d=e for constant result) =0 means output vnmo or vphase unnormalized Output on standard output is ascii text with: line 1: number of values line 2: abscissa increment (p or theta increment, always starts at zero) line 3-n: one value per line Author: (visitor to CSM form Mobil) John E. Anderson, Spring 1994