## **GEOPHYS 242:** Near Surface Geophysical Imaging

## **Class 2: Land and Shallow Marine Near-Surface Problems** Wed, April 6, 2011

- Rugged topography, large velocity variations, and hidden layers
- Review of near-surface imaging technologies and case histories
- 1) During this class, we shall review seismic wave propagation in the simplest velocity model that we discussed last time, and then we will discuss about the complex situation: rugged topography, large velocity variations, and hidden layers.
- 2) We will review a few cases that apply the near-surface imaging methods to address the statics problems. Land problems versus shallow marine problems, any advantage of OBC survey geometry?
- 3) For different types of near-surface structures, we shall discuss what imaging techniques should be applied.

## Near-Surface Imaging Techniques:

- 1) Delay-time solution (traveltimes, layer models)
- 2) Generalized Linear Inversion (traveltimes, layer models)
- 3) Refraction Traveltime Migration (traveltimes, map refractors)
- 4) First-arrival traveltime tomography (traveltimes, grid models)
- 5) Refraction Interferometric Migration (wavefield, map refractors)
- 6) Early-arrival waveform tomography (wavefield, grid models)
- 7) Surface-wave dispersion curve inversion (wavefield, local 1D model)

## Rugged Topography:

Causing elevation statics, and breakdown of some imaging techniques

- Conventional refraction interpretation may fail
- Delay-time solution may fail
- Traveltime tomography is ok
- Waveform tomography: be careful about the free-surface implementation
- Surface wave inversion may fail

## Large Velocity Variations:

- Wavefront raytracing may be not accurate enough
- Large vertical velocity variations Delay-time may perform better

- Surface-wave inversion may perform better

- Large lateral velocity variations Traveltime tomography may perform better
- Waveform tomography should be ok, however, CFL condition (FD) may slow down the forward modeling speed because of fine grids required.

#### Hidden Layers:

- All refraction traveltime methods fail
- First-arrival traveltime tomography may be ok for isolated low velocity zone
- Surface-wave dispersion-curve inversion should be ok
- Waveform tomography should be ok

#### Review: Seismic wave propagation in the simplest near-surface velocity models

Case 1:

|                | SM2 |                          |
|----------------|-----|--------------------------|
| V=1000 m/s     | -Wi | Is there any refrection? |
| <br>V=2000 m/s |     | is there any refraction? |
| V=3000 m/s     |     |                          |
| V=4000 m/s     |     |                          |
| V=5000 m/s     |     |                          |
|                |     |                          |

Case 2:



V=4000 m/s

# Case 3:



Case 4:







Case 6:

