SEP Manual

Robert G. Clapp, Marie L. Prucha, Paul Sava, Joe Dellinger, Biondo Biondi

© February 11, 2004

Contents

1 SEPlib
1.1 What'sHere? e
1.2 Overview-using SEPlib
1.2.1 Gettingthetestdata
1.22 Historyfiles
1.2.3 The SEPlibdatacube
1.3 Illustrative examples L
1.3.1 Playing with parameters
1.3.2 Parameters, parameter files, and history files.

2 SEP3D Introduction

2.1 SEP3D Overview o it e e e
22 DataFormat e
2.2.1 Structure of aSEP3D dataset,
2.2.2 Data and Headers Coordinate System
2.2.3 Mapping between the header records and the datarecords
2.2.4 Gridding information
23 SEP3D Standards
2.3.1 Standard headernames Lo
24 SUperset e e e e e e e e

3 Programs

3.1 SEPlibprograms

<IN I N V)

11

13
13
14
14
15
15
16
17
17
17

21

CONTENTS

3.1.1 Useful non-SEPIlib programs 30
3.2 SEP3Dprograms e 31
3.3 Graphics programs 32
34 Converters e 34
34.1 SEG-Yand SUconverters 34
342 Vplotconverters 34
Ricksep 37
4.1 Ricksepdocumentation L 37
42 Examples 45
Example flows 49
5.1 RegularDatasets 49
5.1.1 Creating synthetics 49
5.1.2 Creating velocitymodels 50
5.1.3 Waveequationmodeling 50
5.1.4 NMO/Muting/Velocity analysis 53
5.2 SEP3DDatasets e 55
5.2.1 Reading from SEGY L. 57
5.2.2 Viewing and manipulatingheaders 57
5.2.3 Sortingandbinning L Lo 61
5.24 Reading and writing to SEGY/SU 62
525 Velocity analysis/NMO 0oL 62
5.2.6 Creating synthetics 63
53 Traveltimes 63
54 PEFs. . . . e 65

5.4.1 Texture synthesizing and seismic decon with prediction-error filters . 66

Tricky things 75
6.1 PipinginSEP3d. 75
6.2 Handlinglargefiles o 75

CONTENTS

6.3 Fancyplotting L 76
6.3.1 Advancedplotting L o 76
6.3.2 Plotmatrices 77

6.4 Headermappingonthefly. 78

6.5 SUsupport 79
6.5.1 Example 80

7 Makerules 81

7.1 CompileRules 81

7.2 Example and translation oL oL 83
7.2.1 Example Makefile 00, 83
722 Translation 84

8 Libraries 85

8.1 Summaryof libraries oL 85

82 Library:sep e 86

83 Library:sep3d. 87

8.4 Library: sep2df90 L 89

8.5 Library: supersetfo0. 89

8.6 Library: sepaux e e e e 90

8.7 Library: sepauxtf90 Lo 90

8.8 Library: geef90 L 90

8.9 Library: sepfilter 93

8.10 Library: sepfilterf90 o 93

8.11 Library: sepfft 94

8.12 Library: septravel L 94

8.13 Library: sepvelanf oL 94

8.14 Library: sepvelanfO0 oo 94

8.15 Library: sepmath 95

8.16 Library: sepmathf90 95

CONTENTS

8.17 Library: sepsul e e e e e 96
8.18 Library: oclib 96
8.18.1 Summary of oclib 96
8.18.2 oclib . . v v i 97
Writing a program 117
9.1 How to writea SEPlibprogram, 117
9.1.1 Language: C 117
9.1.2 Language: Fortran77 119
9.1.3 Language: Ratfor 121
9.1.4 Language: Fortran90 123
9.1.5 Language: Ratfor90 125
9.1.6 Language: Ccalling Fortran 126
9.1.7 Language: Fortran callingC 129
9.2 How to write a SEP3D program 131
9.2.1 SEP3D 131
922 Superset. e 138
9.3 Howtowriteavplotprogram 143
9.4 Writing in SEP’s Fortran90 inversion library 144
94.1 Out-of-core 144
942 In-core 146
9.5 HowtouseMPI 148
9.5.1 Makefile 148
952 MPIprogram 148
Preprocessors 151
10.1 Introduction L 151
10.2 Ratforbasics L 151
10.3 Changes from Ratfor77 152

10.3.1 Backward compatibilityissues 152

CONTENTS

10.3.2 EXtensionsl 153

10.4 SEPextensions i 153
10.4.1 Memory allocation 153
10.4.2 Parameterhandlingo 154
10.4.3 Ratfor90code 155
10.4.4 Translated Fortran90 Code 155

10.5 Downloading/installing 158
10.6 Errorhandling 159
11 SEPIib outside SEP 161
11.1 Installing SEPlib 161
11.2 How to modify and compile SEPlib 163
11.3 Setting up the SEP environment 163
11.4 How to compile and run SEP reports remotely 164
11.5 Converting old versionsof SEPlib 165
11.6 Basic Troubleshooting 165
11.6.1 More specificproblems 166

11.7 Important Contributors Lo 166

CONTENTS

Chapter 1

SEPIlib

SEPIib is a software package developed by members of the Stanford Exploration Project. It
contains programs to manipulate and process many types of geophysical data. SEP students
may view this manual in DVI form by typing sepMan in any shell.

1.1 What’s Here?

1.2 Overview - using SEPIlib

Although SEPIib currently consists of over 100 different programs, they share many common
features. First of all, by convention SEPIib programs start with a Capital Letter. More impor-
tantly, most SEPlib programs are “filters”; they read from standard input and write to standard
output:

Prog < input > output
Complex functions are created by joining filters with pipes:
Progl < in | Prog2 | Prog3 > out

We will use the SEPIib program wigg1le to demonstrate some basic SEPlib-program properties.
Wiggle is just a simple program that converts raw data into wiggle traces, but it is used a lot
because people are usually curious to see what they have done to their data.

Try typing:

Wiggle

2 CHAPTER 1. SEPLIB

You should get a couple of screens’ worth of documentation. This is called self documentation:
run the program without arguments, input, or output, and it will display a brief documentation
summary. Almost all SEPlib programs will self document, which is good because very few of
them have real manual pages.

If you get an error message doc () : No such file or directory, complain to the person
who installed SEPIib at your site! If you don’t feel like complaining (perhaps because you are
that person) and you know where the SEPIib source is installed, you can tell SEPlib programs
an alternate place to look for their source by setting the environment variable sEp_poc_PATH.
See the “SEPIib Outside SEP” chapter.

1.2.1 Getting the test data

Hopefully you have now worked out any software-environment problems you might have had
before, and you are ready for your “test drive”.

There should be three data files in the directory where you found this paper. Txx.=HH,
Txy.HH and Txz.HH. Plot one of these files by doing

Wiggle < Txx.HH | Tube

When you run the command above wiggle creates a plot which Tube then tries to display on
your screen. Did it work? Hopefully your screen will look something like the one in Figure ??.
(If when you try it “Tube” does the plot using the graphics device xtpen, like in the figure, exit
the program by clicking on the qu1T button at the top of the window. If you are using some
other sort of graphics device you may have to hit return or space to exit, or the program may
simply exit when the plot is done without any prompting from you.) Try displaying Txy.H and
Txz.H t0O0.

Now we can try printing the plot using pspen. Of course, Pspen has to know where to
send the plot. By default it will send it to whatever printer your local machine thinks is called
“postscript”. Try:

Wiggle < Txx.HH | Pspen

Hopefully this will work, producing something like Figure 1.2. If the printer your workstation
calls “postscript” turns out to be old and slow, on another floor or in another building, or you
often get strange error messages and partial plots when you attempt to plot big files, check the
“Tricky Things” chapter for some advice.

At this point you may be thinking that setting up your SEPlib environment is just too
tedious to be worth it. Don’t despair; the apparent complexity has a worthy goal. The idea of
SEPIib and “Tupe” is that (if things are set up correctly) you will not have to worry about what
device you are sitting at or even what brand of computer you are logged into. You should be
able to just use the same SEPlib commands without worry on any of your local computers that

1.2. OVERVIEW - USING SEPLIB

.6

1

1.2
seconds

)

0.8
Time

0.4

]
a4
Z
e
=
]
. o
SPUIAS AUl Q
2 81 31 20 Q_u
[©)
=
N
g
sm 0]
sf Q
I
£ e v W
mw — i 3 w
£ — =
¥ = MMWMWW
x. ——
X e
H W —=
v W&WW —
(0] ==)
=l ==L
o
R —
m T
o
—
]
=
=]
.20 2 1.6 1.2 0.8 0.4
, ehezeury | T66T BEZ6IT0 7T 14V pai o

Offset, kilometers

Figure 1.2: wiggle < Txx.HH | Pspen |intro-Wigglel |[ER]

4 CHAPTER 1. SEPLIB

run UNIX, and on any of a wide variety of graphics devices, and always get the same behavior
and the same plots on your screen (or wall).

1.2.2 History files

Take a look at the format of the data by typing more Txx.HH. You will see that the first part of
the file is ASCII text, and the second part of the file comes out as nonsense because it is binary
data. These two parts are quite distinct, and, as we shall see later, are often stored in separate
files. For this reason they have different names: the text part of the file is called the “history
file”, and the binary part of the file is called the “data file”.

The ASCII parts of the data are called “history” files because they document the “history”
of the corresponding data. (They are also called “header” files in some documents.) Programs
append information onto the history file; it thus contains a history of the programs run (and
often of all the parameters specified, so that from the history file you could recreate the file
from scratch).

In our example so far three programs have been run. The line
Mallick: joe@montebello Wed Feb 19 00:27:17 1992

shows that this particular data originated in its SEPlib incarnation from a program called
“Mallick”, which was run by a “joe @montebello” in the early hours of a Wednesday morning
in 1992. The lines

Mv : matt@oas Sat Sep 16 03:31:53 1995
and
Cp: matt@oas Sat Sep 16 03:41:38 1995

show that the data was then moved and copied by Matt to where it is now. Notice that more
recent additions are added to the bottom.

The most important part of the history file is the line
in="stdin"

The parameter in tells where the data associated with the file Txx.rn actually is. In our case
the data is attached to its history file, and so its location is described as the “standard input”.
However, if the data file is separated from the history file, this will be a pathname showing
where the data described by the history file can be found. Either relative pathnames (begins
with “. /”), or absolute pathnames (begins with “/”) can be used.

1.2. OVERVIEW - USING SEPLIB 5

The rest of the file gives other important information:
esize=4 indicates the data consists of elements 4 bytes long;
data_format="xdr_float" indicates these 4-byte long elements are in fact machine-independent
IEEE floating-point numbers.
n1=1024 n2=20 indicates the data is in a 2-dimensional array with a fast axis 1024 elements
long and a slow axis 20 elements long.
01=0 d1=.002 labell="Time, seconds" indicates the fast axis has dimensions of seconds,
with the first element corresponding to time 0, the second element time . 002, the third . 004,
etc.
02=.1 d2=.1 label2="Offset, kilometers" indicates the slow axis has dimensions of kilo-
meters, with the first element corresponding to an offset of .1 kilometers, the second element
.2, the third . 3, etc.

So far we have displayed our data without creating any new files at all. We did this by
using UNIX pipelines (“|”’). These tell the operating system we want to pass the information
(both data and parameters) from one program to another, and we don’t want to be bothered
with having to keep track of any temporary intermediate files ourselves.

We could have done it differently by saving the output of the programs. Let’s see how our
favorite example
Wiggle < Txx.HH | Tube

can be split up into two separate steps':

Wiggle < Txx.HH > Out.H
Tube < Out.H

where out . 1 is the output of wiggle.? (Type “man vplot” if you are curious what sort of output
Wiggle Writes.)

Take a look at the the output file with more out.H. This time you will only see the ASCII
history file. So the question is: where has the actual data gone? This might be interesting if
you are playing around with files of a size of several 100MBytes, given that we all have to
face the fact that free diskspace is always limited.

Unless otherwise instructed, SEPlib will attempt to separate your data files from your his-
tory files. The advantage of this is that you may want to keep large, bulky data files somewhere
away from your home directory, where you do most of your work.

There are four options for directing your output:

By default SEPIib will attempt to put the raw data in a subdirectory with your username
under the system-default SEPIlib “scratch” directory. If you tried the commands above and got

Ithe fact that the original data has the suffix za and the output only has a single 1 is nothing to do with
SEPIib - it just stops the original data from being deleted when the directory is cleaned, with gmake clean
for example

2 . , . . .

If you just got an error message don’t panic yet, just keep reading.

6 CHAPTER 1. SEPLIB

an error message something like

output () : No such file or directory This means your default directory did not exist.
Look to see what directory wiggle was trying to use, and create it if you wish (and have
sufficient permissions to do so) using the UNIX command “mkdir”; then try our example
again. Be warned that to keep such “public” data areas from filling with junk, they are usually
subject to swift and merciless disk mowing.

Alternatively, you can specify where you want the data files to go with a command-line
parameter, for example:

Wiggle < Txx.HH > Out.H out=./Data/Out.datafile

but it might get tiring to do this every single time! (For a quick experiment you might want to
try the above example with and without the leading “. /” in the out= argument, and note what
in= gets set to in out . H in each case. Unless the SEPIib output subroutine sees a leading . /”,
it automatically expands output file names to fully qualified paths.)

Another, better, solution is for you to create a personal directory to keep your data in
somewhere, and tell SEPIlib that’s where you want it to put your data by default. Let’s suppose
you create a directory called “pata” under your home directory. You then tell SEPIlib to put
data files there by doing:

setenv DATAPATH ~/Data/

(Note in this example the leading ~ will get expanded to your full home directory name by the
csh before the pATAPATH variable is set.) Remember that binary data files will accumulate
in the directory given by your pataraTH if you are not careful. Make sure to use rm, not
rm, to delete SEPIlib files! (Examples of using rm to remove SEPIib files can be found later
in this document.)

Note that the patapaTh is simply prepended as an arbitrary string to a slightly modified
version of the history filename to get a name for the data file, so you probably want your
pATAPATH to end with a *“/”, like the example above does. You can also set your datapath by
creating a file called “.datapath” in your home directory (or in your current directory, with
the one in your current directory taking precedence). The .datapath file should contain a line
looking something like

datapath=/net/kana/joe/Data/

Note in the file you have to expand out your full home-directory name yourself. This will
cause the binary file to always be written to your home directory on kana. If you are working
on a different machine (let’s say you are working on redbluff) and want to write to a scratch
drive on that machine, you can put a line like this in your .datapath file:

redbluff datapath=/net/redbluff/scrl/joe/

1.2. OVERVIEW - USING SEPLIB 7

Finally, if you want the data to stay attached to the history file you can use the out=
command line option again but this time send the data to the standard output along with the
history file:

Wiggle < Txx.HH > Out.H out="stdout"

1.2.3 The SEPIlib datacube

If we have data frames of the same size (like shot records usually are) we can easily merge
them into a “datacube” to make their processing easier. Let’s try to merge the three files
Txx.HH Txy.HH and Txz.HH into a datacube using the program “cat”, which does to SEPIib
files something like what “cat” does to ASCII files.

Cat Txx.HH Txy.HH Txz.HH > Three.H

Now make a wiggle plot of this new file by doing:

Wiggle < Three.H | Tube

/par Pretty snazzy, eh? Tube realizes that there are three different panels, so it shows all three
of them.3

Look at the history file Three.H to see how history “accumulated” in this example. In
general, each successive SEPIlib program writes more information onto the end of the history
file. (cat is a bit of a special case, since it is always called with multiple input files and doesn’t
use redirected input. Most SEPIlib programs read a file from standard input and write a file
to standard output. The SEPIib input and output subroutines shared by all such “standard”
programs begin by automatically copying the input header straight across to the output un-
changed. Anything the running program wants to add to the history then gets appended. cat
has to do the copying “by hand”, so its output looks a little different.)

Note that lines setting parameters such as “n3=1"" can occur multiple times in one history
file, as various programs set old parameters to new values. The last-defined value is the only
valid one, because it is the “most recent” and corresponds to the current data.

You might be thinking now that using “more” to examine history files to find the dimen-
sions of the associated data file can get confusing and tedious if the history is long and com-
plex. A quick way to examine the dimensions and properties of a SEPIib file is to use the
command “In”:

3Hardcopy devices will print out three separate pages of plots. On devices where you can see either the
text screen or the graphics screen (but not both at the same time) you may have to hit “Return” to work
through the sequence of plots one at a time. On most other screen devices the three plots will simply zip by
in quick succession; you have to give an option to tell it to slow down or wait for a keypress. If your pen
program is xtpen it will animate the three frames for you, Movie-style.

8 CHAPTER 1. SEPLIB

In Three.H
gives the salient features of the dataset

Three.H:
in="/usr/local/sep/scr/joe/Three.H@"

expands to in="/usr/local/sep/scr/joe/Three.HQ@"

esize=4

nl=1024 n2=20 n3=3 61440 elem 245760 bytes
dl=.002 d2=.1 d3=1

01=0 o2=.1 03=0

labell=Time, seconds
label2=0ffset, kilometers

Note that “Three.n” is a three-dimensional block of data, with n3=3.

When you are done with Three.H, delete it by doing
Rm Three.H

This will delete both the history file and its associated binary data file. If you slip and acciden-
tally use rm instead, the binary data file will remain behind uselessly cluttering up your data
directory, possibly forever if nothing ever looks for junk files to clean up there.

Warning: the default behavior of both rm and rm is to go ahead and delete without con-
firmation. You probably have rm aliased to rm -i (you may have forgotten doing it), but you
probably don’t have rm aliased to rm -i. You may want to do that now.

1.3 Illustrative examples

1.3.1 Playing with parameters

SEPIib programs generally do simple things. They are still very flexible, though, because
their default behavior can be modified by appropriate command-line or history-file parameters.
Most programs have at least a few options or parameters; some of them have hundreds. Let’s
look at some relatively simple examples.

We saw already that most of the Txx.HH data consists of zero values that are not very
interesting for us. Let’s trim the data a bit. The SEPIib utility window is used for this purpose.
If you remember, Txx.HH consists of 1 plane of 20 traces, with 1024 samples in each trace.*

In SEPIib notation, n3=1 n2=20 n1=1024. Let’s “zoom in” on the interesting part of the
data between times .4 and .8 seconds and offsets from the smallest (.1) up to 1. (i.e., we will

“If not, you can always check by running In Txx.H!

1.3. ILLUSTRATIVE EXAMPLES 9

keep samples 200 through 400 of the first 10 traces). To do its job window needs to know the
number of samples and the first sample to accept for each axis. (The defaults are “all of them
that you can” and “begin at the beginning”, respectively.) For our example we would have:

Window < Txx.HH n2=10 nl=200 £f1=200 > Txx_Windowed.H

Fortunately window is smart enough to understand your command using the values on the two
axes too:

Window < Txx.HH minl=.4 maxl=.8 max2=1. > Txx_Windowed.H

We must warn you that the second method is more risky, since it is possible that you have an
error in the sampling parameters such as o1 and d1 in the history file, or you simply forgot to
specify them at all (so they defaulted to 0 and 1 respectively). You may prefer to tell window
where to start and end using integer sample numbers. If you are sure that you would never
make such mistakes, did you catch the discrepancy in the two examples above? You’ll find
they don’t give quite the same results! Starting at . 4 and ending at . 8 is 201 samples, not 200.
As usual for computer programs, window does what you tell it to do, not necessarily what you
mean for it to do. Whichever way you did it,

In Txx_Windowed.H
shows us the file Txx_windowed.# 1s much reduced in size:
Txx_Windowed.H:

in="/usr/local/sep/scr/joe/_Txx_Windowed.H@"

expands to in="/usr/local/sep/scr/joe/_Txx_Windowed.H@"

esize=4

nl=200 n2=10 n3=1 n4=1 2010 elem 8040 bytes
dl=.002 d2=.1 d3=1 d4=1

ol=.4 o2=.1 03=0 04=0

labell=Time, seconds

label2=0ffset, kilometers

Note in particular the new value for o1.

Now let’s have a look at what we have done:
Wiggle < Txx_Windowed.H | Tube

So far so good, but let’s suppose that the journal you are submitting to insists wiggle plots
must have traces that run down instead of across, the order of the traces must go the other
way, and the traces must have geophysical-style shading. No problem; from wiggle’s self
documentation you find there are three parameters that are likely to do what you need. Try
them out:

10 CHAPTER 1. SEPLIB

Wiggle < Txx_Windowed.H transp=yes poly=yes yreverse=yes | Tube

Perhaps it would be better if the trace amplitudes were a little lower? The parameter pclip
stands for “percentile clip”; the default is 98%, which is meant to scale the plotting using the
effective maximum absolute value while ignoring a few huge abnormal spikes. Our data is
mostly zero and has no abnormal spikes, so perhaps clipping on the maximum would be more
appropriate:

Wiggle < Txx_Windowed.H transp=y poly=y yreverse=y pclip=100 | Tube

(Figure 1.3 shows what this plot should look like.)

- Txx
. >
go 7 r T <é>i
2 =
2 =
mQ ri,k
: :

0.2 0.4 0.6 0.8 1
Offset, kilometers

Figure 1.3: wiggle < Txx_Windowed.H par=plotpar.p | Pspen |intro-Wiggle2|[ER]

LR AT 9

Note most SEPIlib programs don’t care whether you type “yes” or “no”, “y” or “n”, or even
“1” or “0”. (Although a few old FORTRAN ones only accept the numbers, and a few old C
ones only accept the letters.)

Looking at wiggle’s self-doc you may have noticed that wiggle also supports parameters
like “min1” and “max2”. These will usually work just like the ones in window and probably
seem like the preferred way to do windowing of plots. Unfortunately (for now at least) wiggle
does the windowing a lazy way. The whole plot is calculated (and plotted!) just as before,
and the graphics driver does all the work of trimming away the excess. You can use these
parameters of plot programs like wiggle to make slight adjustments to the boundaries of a
plot, or to make a plot smaller, but don’t use them to “zoom in” very far! (We’ll see an
example of a legitimate use of these “dangerous” parameters in a few pages.)

1.3. ILLUSTRATIVE EXAMPLES 11

1.3.2 Parameters, parameter files, and history files

If you find yourself despairing at having to remember and type huge lists of parameters like
transp=y poly=y yreverse=y pclip=100

again and again, you will be happy to know there is a shortcut. Try putting the list of parame-
ters above into a text file called “plotpar.p”. Put the windowing parameters

n2=10 nl=200 £1=200
into another file called “windowpar.p”. Then you could do
Window < Txx.HH par=windowpar.p | Wiggle par=plotpar.p | Tube

and it would be just like you had typed the full set of parameters at the “par=plotpar.p” and
“par=windowpar.p”. Files like “plotpar.p” and “windowpar.p” are called parameter files,
and they can be nested simply by putting par= commands into the parameter files just like
on the command line. An additional advantage of parameter files is that they can be as long
as you want, so you don’t have to cram everything onto one single line. (You can also put

comments into a parameter file; anything after a “#” on a line in a parameter file is ignored,
just like for csh scripts.)

What happens if the same parameter is set multiple times? The last occurrence is the only
one that matters. You must pay special attention to how the parameters are written, though: a
parameter can be “unset” by leaving the space after the “=” blank. An = with a space before it
is ignored completely. In summary:

e nl=1 sets nl equal to 1;
e n1=1 would unset any previous setting of n1, letting it default.

e nl1 = 11isacomment. It has NO EFFECT AT ALL on n1.

Now reread the previous paragraph again until you are sure you won’t make the mistake
of writing n2 = 10 and wondering why it didn’t work.

You may have already realized that a history file is just a special kind of parameter file.
Before checking for parameters on the command line, SEPIib first looks for any relevant pa-
rameters in the input history file. That’s how “wiggle” knew the dimensions of the data in
Txx.HH without having to be told. Of course, we can override the information in the input
history file by setting another value on the command line. For example, if we do

Wiggle < Txx.HH par=plotpar.p nl=5000 | Tube

12 CHAPTER 1. SEPLIB

wWiggle will happily attempt to read past the end of the floating-point data set, resulting in an
error message

sreed: Illegal seek

AN

Wiggle: xdr error reading from in’’

For another example of overriding a parameter set by the history file, how about changing
the title of our plot from the boring “Txx” set in the history file Txx.unr?

Wiggle < Txx.HH par=plotpar.p title="My plot" | Tube

It is also possible to put superscripts, subscripts, etc, into labels and titles; do “man vplot-
text” for examples. Even a single program like wiggle has more options than we can hope
to enumerate here. To see what other options are possible, look at the self-documentation and
try them out. By all means don’t neglect to check whether the program you are interested in
might happen to have a manual page as well.

Chapter 2

SEP3D Introduction

2.1 SEP3D Overview

The SEPIib software package has proven to be a very productive tool for seismic research and
processing. However, its usefulness is fundamentally limited to processing regularly sampled
data. This limitation is too restrictive when tackling problems in 3-D seismic and problems
that involve geophysical data other than seismic. Therefore, we designed and implemented a
generalization of SEPIib to make it capable of handling irregularly sampled data (from now
on we will dub this new version SEP3D, while the old version will be referred to as just
SEPIib). In SEPIib, few parameters defined in the history file are sufficient to describe the data
geometry, since it is assumed to be regular. In SEP3D, to describe the irregular data geometry,
we associate each seismic trace with a trace header, as is done in the SEGY data format, and
in its many derivatives. However, to enable users and programmers to deal with irregularly
sampled data with the same simplicity and efficiency that is characteristic of SEPlib, SEP3D
introduces the following two principles:

e Separate the geometry information from the seismic data. This simple but powerful idea
is crucial for efficiently processing large amounts of data, such as in 3-D prestack data
sets. It allows you to minimize the access to the usually bulky seismic data files, while
performing many useful operations on the trace headers and on specific subsets of the
seismic traces.

e Exploit as much as possible the existing regularity in the data geometry. Regularity is
important when analyzing and visualizing the data; further, it helps the development
of simple and efficient code. SEP3D “regularizes” an irregularly sampled data sets
by associating the data traces with a uniformly sampled multi-dimensional grid. This
gridding information is then exploited by SEP3D application and utility programs to
efficiently select and access the seismic traces.

Another important characteristic of SEP3D is that it is a generalization of SEPlib and not a
completely new system. There are many good reasons for this choice. From the user point

13

14 CHAPTER 2. SEP3D INTRODUCTION

of view, it enables users familiar with SEPIib to quickly master SEP3D. Further, it enables
SEP3D to leverage the considerable amount of coding and brain power that went into SEPIib.
In particular we use the SEPIib routines for accessing files (both ASCII and binary), and build
SEP3D capabilities on the top of these routines.

2.2 Data Format

This section describes the data format of a SEP3D data set. A SEP3D data set is defined as
the collection of all the files (ASCII and binary) that contain the information relevant to the
Geophysical data set.

2.2.1 Structure of a SEP3D data set

A "complete" SEP3D data set is made of 6 files, three ASCII files and three binary files. With
the exception of the History File , the existence of all the other files is optional. The six files
are connected to each other through pointers contained in the ASCII files. The path to the
Header Format File (HFF) is specified by the value of the hff parameter in the History File.
The path to the Grid Format File (GFF) is specified by the value of the gff parameter in the
History File. Figure 2.1 is a brief “graphical” description of the connectivity among the 6 files,
with the arrows representing the ASCII pointers.

Header Format File (ASCI}———=Header Values File (binary)

History File (ASCI)—————= Data Values File {binary)

Grid Format Flle (ASCII}—— Grid Values File (binary)

Figure 2.1: Relationship of the 6 SEP3D files. |sep3d-files | [NR]

In addition to the links to the other files, the History File contains the processing history
of the data set. The Data Values File (DVF) is defined as collection of fixed length records
(data records) that contain the data values. Typically the data records are seismic traces. The
header values are stored in the Header Values File (HVF), that is defined as a collection of
fixed length records (header records) describing the geometry and properties of the associated

2.2. DATA FORMAT 15

data records. The header parameters are described in the Header Format File by a table of
header keys. A header keys specifies the name of the header parameter (key name), its data
type (key type), and its position in the header record (key index). The association between the
header records and the data records is described below.

If the data set has been binned on a regularly sampled grid, the Grid Format File contains
the description of the grid. The Grid Value File contains the mapping information between
the grid cells and the corresponding header records. The Grid Value File does not exist if the
gridding is regular; that is, there is a one-to-one correspondence between grid cells and header
records.

2.2.2 Data and Headers Coordinate System

The History File contains the usual SEPlib parameters ni, oi, di, labeli (wherei=[1,2,3,...])
describing the Data Coordinate System. The length of the axes in the Data Coordinate System
must be constant and is given by the values of the respective ni parameter. The number of data
values in a data record is given by n1 and the the number of data records is equal to the product
(n2*...*ni*...). The Header Format File contains also the usual SEP3D parameters ni, oi,
di, labeli (where i=[1,2,3,...]) describing the Header Coordinate System. The number of
header keys in the header records is given by n1 and the the number of header records is equal
to the product (n2*...*ni*...).

2.2.3 Mapping between the header records and the data records

In general, the order and number of the data records stored in the Data Values File may be
different than the order and number of the header records stored in the Header Values File. This
happens, for example, if the Header Values File has been reshuffled (e.g. sorted or transposed)
while the Data Values File was left untouched. Whether the data and header records are
in the same order is indicated by the value of the integer parameter same_record_number
in the History File. The value of same_record_numper is equal to 1 if the records are in
the same order, and equal to O if they are not. If same_record_number is missing from the
History File it is defaulted to 1. When the data and header records are in the same order
(same_record_number=1), the association between header records and data records is given
by the positions of the records in the respective binary files, and the Data Coordinate System
coincides with the the Header Coordinate System. If data and header records are in different
order the association between data records and header records is assured by the reserved header
key data_record_number, that contains the data record number of the associated data record.
The value of the data record number is defined as equal to the position of the data record in
the Data Values File.

16 CHAPTER 2. SEP3D INTRODUCTION

2.24 Gridding information

The Grid Format File and the associated Grid Values File define the Grid Coordinate System
and they contain the information about coordinates of each header records in the Grid Coor-
dinate System. The Grid Coordinate System is a regularly sampled coordinate system defined
by the the parameters ni_grid, oi_grid, di_grid, labeli_grid (where i=[1,2,3,...]) in
the conventional SEPIib style. The mapping between the grid cells and the header record can
be either regular or irregular. A gridding is regular if for each grid cell in the Grid Coordi-
nate System exists a header record, and vice versa, for each header record exists a grid cell.
The grid cells and the header records are connected by tables of pointers to header records.
These tables have an entry for each grid cell, containing the header record number of the corre-
sponding header record. The value of the header record number is equal to the position of the
corresponding header record in the Header Values File. Notice that if same_record_number=0
the header record numbers are different from the data record numbers of the associated data
record.

If the gridding is irregular, there are grid cell for which there is no associated header record.
For these cells the pointer in the header record number tables are null (equal to -1). Figure 2.2
illustrates the double-pointer mechanism that connects grid cells to data records, through the
header records.

Grid Values File Header Values File Data Value File
-1
nﬁ?ndtfgrremrd / data record
\\ data record
-1 humber
-1
header record data record
number —= number
- data record

Figure 2.2: Schematic of the interaction between SEP3D files | sep3d-map | [NR]

If the data is irregularly gridded the header record number tables are encoded in the Grid
Values File. The format of the encoded tables is variable, and can be different from file
to file. However, the programming interfaces for accessing the header record number are
well defined and independent on the encoding. The encoding is variable because the opti-
mal encoding strongly depends on the sparsity of the grid cells within the Grid Coordinate
System, and thus depends on the particular way the header records were binned into the

2.3. SEP3D STANDARDS 17

Grid Coordinate System. The gridding tables can be stored and retrieved by using the func-
tions sep_get_grid_window and sep_put_grid_window described in the SEPlib man and html

pages.

The Grid Format File and the Grid Values File are optional. When no Grid Format File
is associated with a data set, the Grid Coordinate System is assumed to be the same as the
Header Coordinate System, and the grid coordinates of the header records are assumed to be
regular.

2.3 SEP3D Standards

2.3.1 Standard header names

SEP3D uses many standard header names. These are listed with a short description as follows:

offsetx, offset_x the offset location in x
offsety, offset_y the offset location in y
cmpx, cmp_x the CMP location in x
cmpy, cmp_y the CMP location in y
SX, S_X the source location in X

Sy, s_y the source location in y

Sz, S_z the source location in z

gx, g_X the receiver location in x

gy, g_y the receiver location in y

gz, g 7 the receiver location in z
azimuth the azimuth

aoffset the absolute offset

2.4 Superset

SEP3D is good at dealing with 3-D data, but requires a significant coding overhead. As a result
Clapp and Crawley (1996) wrote SEPF90, a Fortran90 library that simplified dealing with 3-D
data. Unfortunately the design, like all early prototypes, had serious limitations. Among them,

18 CHAPTER 2. SEP3D INTRODUCTION

o it forced referencing through a structure to access the data (something that was incredi-
bly slow with early Fortran90 versions)

e it required programs to be written in Fortran90 (even though many programs are more
suited for C)

e it did not easily allow for headers and data to be read separately (a very powerful option
in SEP3D)

The new version of SEPIlib comes with a replacement for SEPF90, superset. The purpose
of superset is the same, but the implementation is significantly different. The basic idea
of superset is to maintain an invisible sep3d structure copy of each SEP3D dataset. The
structure contains

e the type of data (float, complex, byte, integer)

the type of SEP3D file (regular, header, grid)

the axes of the data (n, o, d, label, unit)

o the header keys associated with the data (key name, key type, key format)
e current section of the grid being processed
e current section of the headers being processed

e mapping from the headers to the traces

This internal structure can be initialized through a SEPIib tag, from another structure, or cre-
ated manually by the programmer. Information is passed to and from the structure through a
sep3dtag.

Reading of any SEPIib data then can be done in two simple steps: First the programmer
makes a call to read in the headers (either all or a portion) and is returned the number of
headers read. The library will automatically read in the grid, find the valid headers, check for
a data_record_number and create a list of pointers to the traces. Once the headers have been
read the user can ask for all of the data associated with the header block to read in, or read in
sections of the data.

Writing is also simple. The programmer first initializes the output format files. He then
makes a call(s) to write data (data, headers, and/or grid), and finally asks for the number of
traces in the dataset to be updated in the format files if it wasn’t known until the end of the
program. The library does all the work figuring out what files to write, what trace number it is
currently writing out, etc.

For added convenience we also have a F90 module which provides wrappers around the C
function calls. The module allows the programmer to access a Fortran90 type which contains
all properties of the dataset (except the header and grid values). The programmer can then
access and modify these values. When done they can synchronize the C and Fortran90 version.
This added flexibility further simplifies dealing with SEP3D data.

2.4. SUPERSET

REFERENCES

Clapp, R. G., and Crawley, S., 1996, SEPF90: SEP-93, 293-304.

19

20

CHAPTER 2. SEP3D INTRODUCTION

Chapter 3

Programs

3.1 SEPIlib programs

This chapter gives brief descriptions of almost all of the SEPlib programs that come with the
standard SEPIib release for widespread distribution. A few closely related non-SEPIlib vplot
utilities have been included as well, at the end. To find out more, read the self-documentation.
Most programs do not have manual pages (or very current manual pages), so if you need
to know more than what you find in the self-doc you’ll probably have to look at the source
code. The graphical language used by these programs is called “vplot”. SEPIib’s “vplot” has
about as much to do with Versatec’s “vplot” as calculus does with roman numerals. See the
references for some articles describing vplot. While vplot does have several technical manual
pages that describe it in great detail, a user’s guide is unfortunately lacking. Note that the

Names of these Programs all begin with an Upper-Case Letter.

Add A versatile program for doing element-by-element mathematical manipulations on one
or more data files. It can be used to form linear combinations of two or more files,
multiply two or more files, or divide one file by another. It can also be used to scale a
file or take the absolute value, square root, logarithm, or exponential.

Again Take the arctangent of a floating-point data file element by element.
Agc Automatic gain control with first-arrival detection.

AMO Azimuth Moveout - Convert from one azimuth and offset to another.
Aniso2d Two-dimensional anisotropic heterogeneous elastic modeling.
Attr Displays the attributes of a dataset.

Balance Perform trace balancing.

Bandpass Butterworth bandpass filtering. See also Lpfilt.

21

22 CHAPTER 3. PROGRAMS

Box Box outputs the vplot commands to draw a balloon-style label. Options let you position
the box and pointer, control the size of the labeling, etc. (It is even possible to draw
boxes with perspective.) The boxes can be overlayed onto vplot graphics files using
the “erase=once” option of pen filters. The interact option of pen filters can be used to
determine the coordinate of the spot the box’s pointer is to point at. (Alas, not all pen
filters support the “interact” capability.) The special pen filter Vppen can be used to
combine vplot files.

Byte Convert floating-point SEPIlib data (esize=4) to byte-deep SEPIib raster data (esize=1).
Usually used in conjunction with Ta2vplot or X11movie. The clip value is determined
by the option “pclip” for “percentile clip”. pclip=50 gives the median, pclip=100 the
maximum, etc. The percentile clip can be calculated based on one particular input panel
or all the input panels. (It is also possible to simply specify your own clip, which can
speed the program up tremendously.) The input data is assumed to be about equally
split between positive and negative values; an option is available for mapping input data
that is all positive to the entire possible range of output values. Several other conversion
options are available that are useful for bringing out hidden features in data, such as a
sign-preserving gain parameter “gpow”.

CAM Common Azimith Migration.

Cabs Complex (esize=8) to real (esize=4) conversion; take the absolute value of complex-
valued data. (Alternatively, if you consider the input data to be (X,Y) coordinate pairs,
output the Euclidean norm.)

Cat Combine two or more SEPIlib header files into one by concatenation. They can be merged
along either the fast (1), intermediate (2), or slow (3) axes.

Cfft Complex fast-Fourier transform. Requires complex-valued input data (esize=8).

Clip Find a “clip” value for the input data, and put it into the header. With appropriate options
performs several sorts of clipping on the data as well, such as changing all clipped or
unclipped values to some given value, etc. The clip value is determined by the option
“pclip” for “percentile clip”. pc1ip=50 gives the median, pc1ip=100 the maximum, etc.

Cmplx Combine two real (esize=4) data files into one complex data file (esize=8). Note
that some programs such as Graph treat esize=8 data files as (X,Y) coordinate pairs, so
this program can also be thought of as a way to combine an “X” and a “Y” file into an
“(X,Y)” file. See also Real and Imag.

Combine Combine two sets of elastic layer coefficients to give the effective combined layer.

Conj Take the complex conjugate for each element of a complex-valued dataset. (I.E., change
the sign on the second real number in each element of an esize=8 dataset.)

Contour Input areal-valued (esize=4) dataset and output vplot commands for a two-dimensional
contour plot of the data. (The vplot output can be viewed on a screen using the program
Tube, or plotted on a postscript printer using Pspen.) Contour has many, many options

3.1. SEPLIB PROGRAMS 23

to specify at what values to draw contours, where to position the plot on the page, how
big to make the plot, which way to draw the axes, where to place tick marks and labels,
etc, etc, etc. All of these parameters attempt to default reasonably. Contour also al-
lows auxiliary input files which can be used to annotate the contour plot with symbols,
curves, or arrows. You may find the utility programs Window and Reverse useful for
pre-processing data to be plotted with Contour. See also Vppen and Box for a crude
way of adding annotation, and plas and pldb for a crude way of editing.

Cp Copy a SEPIib dataset.

Create Create a stiffness tensor given lambda and mu, or p-wave velocity and s-wave velocity,
or all of the elastic coefficients.

Cubeplot Create a 3D raster plot of a seismic data cube.

Dd Convert data from one esize to another. Possibilities for esize are O (ASCII), 1 (byte-deep
raster), 2 (short integer), 3 (real with least-significant byte truncated), 4 (real), and 8
(complex). Dd currently attempts to perform all conversions in core, so it is only useful
for converting relatively small datasets.

Decon Perform deconvolution. Choices of predictive, Lomoplan, steep dip. Uses the helix
and patching.

Disfil Formatted display of a binary data file. Allowable input types are real (both IEEE and
native), integer, complex, and byte. The default depends on the input esize but can be
overridden from the command line. There are several options that can be used to control
the format of the output ASCII data if you don’t like the default. There are also options
for changing the reading frame or only showing some subset of the input data. The
default is to start at the beginning and show everything.

Display Take a layer parameters dataset and display the parameters.

Dots A program somewhat like Wiggle, but better in some ways because it tries to be smarter.
The output style depends on the input n1 and n2. For loosely packed traces with only
a few data points Dots plots the data as lollipops on strings, showing each data point
clearly. There are also options for separately labeling each trace, omitting dead traces,
making bar graphs, etc. As n1 and n2 increase Dots by default simplifies the output and
eventually behaves almost the same as Wiggle. Unfortunately Dots does not use the
axis drawing and plotting routines shared by Wiggle, Contour, Graph, and Ta2vplot,
and so Dots’ options and output plot size, position, and axes are currently incompatible
with those for other plot programs.

Energy Calculate energy in running windows along fast axis of data.
Envelope Calculate signal amplitude.

FMeikonal Fast marching eikonal solver.

24 CHAPTER 3. PROGRAMS

Filter Filtering along the fast axis performed in the frequency domain. The filter is read from
an auxiliary input file. (This old FORTRAN program does not do dynamic allocation;
the input trace length is hardcoded to a limit of 4096 samples.)

Ft3d One, two, or three-dimensional Fast Fourier transform. The input and output are complex-
valued (esize=8). The sign of the Fourier transform on each axis can be set from the
command line or history file. Ft3d writes the opposite sign onto the output history file
so a second application will automatically perform the inverse of the first. A sign of
0 skips transforming on that axis entirely. There are options to allow centering of the
origin in the output domain, to make a graph of the output easier to understand.

Ftplot Output vplot commands to plot an input real time series and its Fourier amplitude or
phase spectrum.

Fx2d 2D Fx deconvolution.

Gauss Create Gaussian anomalies for a velocity model.
Get Perform simple operations on parameters.

Gfgradz Calculate Green’s functions for a v(z) medium.

Gpow Raise each element of an input data file to a power, preserving sign. The power to use
defaults to unity, so you probably want to specify it.

Graph The standard SEPIib program for making graphs of all sorts. The input data can
be real numbers (esize=4) or coordinate pairs (esize=8). (See Cmplx for converting
separate X and Y files into one (X,Y) file.) The output will consist of n3 graphs, each
plotted with their own axes set according to the data in that graph. Each graph will
have n2 traces with n1 points in each trace. (Although if the option is set then n3
will effectively become n1*n2 and n2 will become one.) If esize=8 the (X,Y) pairs
determine the coordinates to draw. If esize=4 the input value is taken as the Y of the
pair, as you would expect, while the input d1, ol, and element number are used to
calculate the associated X. Graph supports a bewildering variety of plotting options;
almost every part of the plot can be moved about or turned on and off. The colors,
symbols, line styles, line fatnesses, etc, for each trace can be specified. There are options
to set the background screen color and the background graph color. Notably lacking is
a mechanism for overlaying labels on the graph. (This is possible to do in a somewhat
crude way by simply creating a vplot file with labels in the appropriate position using
Box, and appending the plot containing the annotations onto the vplot file containing
the graph using Vppen.) Graph sets the output clipping window hard against the limit
of its graphing area, so the slightest bug in the positioning of the clipping window by the
output “pen” filter may clip away extreme parts of the plot. (Single-pixel-off clipping
windows is a bug that is unfortunately all too common among “pen” filters, so you will
probably see this bug sooner or later.)

Grey Create a raster vplot. This is used alot. Has many optional color tables.

3.1. SEPLIB PROGRAMS 25

Halfint Half-order integration along the fast axis. (Also conjugate and inverse of this opera-
tion. The inverse is half differentiation.)

Headermath Perform mathematical operations on header keys.
Helderiv Factor the laplacian operator. Apply helix derivative. Loops over n3.

Helicon Apply helix convolution (polynomial multiplication) or deconvolution (polynomial
division). One is the exact inverse of the other. Beware of helical boundary conditions.

Histogram Create a histogram of the dataset’s frequency distribution.
Hwt2d Create a 2-D ray database via Huygens wavefront tracing.
Hwt3d Create a 3-D ray database via Huygens wavefront tracing.

Hypint Velocity-space transformation via integration (along hyperbolas). (Also does conju-
gate transpose and pseudo-inverse; the conjugate transpose is hyperbola superposition.)

Hypmovie Create a movie going in and out of velocity space.
Hypsum Velocity-space transformation via superposition (along hyperbolas).

Imag Convert from complex (esize=8) to real (esize=4) by keeping only the imaginary com-
ponent. Alternatively, pull the Y component out of (X,Y) coordinate pairs.

In Give useful information about a SEPIib header/data file pair. Tells you which of the canon-
ical parameters are set in the header file and which are defaulted, and what values they
have. Tells you the expected size of the data given the header and whether the data
is actually that size. (Very useful if you want to check on the progress of a running
program.) Warns if the data is all zeroes. Etcetera. Unlike most SEPIib programs, In
understands four-dimensional datasets.

Interleave Merge two files on the 2-axis (1 axis is fast, 3 is slow) by interleaving them.

Interp Linear interpolation on the 2-axis. (Also can do the conjugate, transpose, and pseu-
doinverse of this operation.)

Iso2d 2-d isotropic modeling.
LMO Perform linear moveout.
Laymod Create elastic parameter model of a layer with interbedding layers.

Laymod21 Create elastic parameter model of a layer with interbedding layers, output is 21
panels, one for each of the independent elastic constants divided by the density.

LoLPef Find PEF on aliased traces (with patching).

Log Take the log of data.

26 CHAPTER 3. PROGRAMS

Lomiss Fill in missing data by mimimizing the data power after convolution. Works in any
number of dimensions!

Lopef Estimate local prediction-error filters with the helix and patching.
Lpfilt Butterworth lowpass filtering. See also Bandpass.

Ls List the data files associated with the given header files. (Also useful for directly referring
to the data file associated with a SEPIib header file, so you can use SEPIib data files as
input to non-SEPIlib programs. For example instead of you could do .)

MCvfit Monte Carlo automatic velocity picks (fit).

MTTmaps Band-limited maximum-energey Green’s function maps.
Math Perform mathematical operations on data.

Median Apply a median smoother.

Miss Perform missing data interpolation with a prescribed helix filter.
Mute Mute a SEPIlib dataset.

Myv Copy (not move, despite the name) a SEPlib header and data file to another name. The
output history file name is set on the command line; the associated data file name is
determined by the usual rules (involving environment variable, the name of the history
file, etc.).

NMO Standard Normal MoveOut correction via linear interpolation; also can do the conju-
gate and pseudoinverse of this operation. Make sure to specify a reasonable velocity
(or velocity function) for it to use. It wants NMO velocity, not interval velocity; by all
means make sure to get the units right!

Noise Add random noise to data, either Gaussian or uniform.

OFF2ANG Convert from offset to angle domain or back for wave equation migration.
Operplot Plot a one-, two- or, three-dimensional set of samples.

Overlay Draw a simple overlay (polylines, text, boxes, and ovals).

Pad Append zeroes onto any of the fast (1), intermediate (2), or slow (3) axes to make a
SEPIib file bigger. Defaults to bump up to the next power of two. Also can append
zeroes onto the “0” axis, for example it pads esize=4 to esize=12 by appending two
floating-point zeroes onto each element.

Pef Estimate a PEF in N dimensions.
Phase Phase-shift migration and diffraction.

Pow Raise data to a power, preserving sign.

3.1. SEPLIB PROGRAMS 27

Pspen The vplot “pen” filter for postscript devices.

Radial Transform to radial traces. Also can do the conjugate and pseudoinverse of this oper-
ation.

Radnmo Transform to radial traces and do NMO at the same time. Also can do the conjugate
and pseudoinverse (for constant velocity) of this operation.

Real Convert from complex (esize=8) to real (esize=4) by keeping only the real component.
Alternatively, pull the X component out of (X,Y) coordinate pairs.

Reshape Reshape a SEPlib dataset. Usually this will involve shifting axes for use with other
SEPIib programs. The user must ensure that the amount of data in equals the amount of
data out. For example, if we have a datset of dimensions n1=10 n2=10 n3=10 and run
this command: Reshape < in.H >out.H axis3=axis2 axis4=axis3 n2=1, we result-
ing dimensions will be n1=10 n2=1 n3=10 n4=10.

Reverse Flip one or more axes of the dataset.
Ricksep The ultimate movie program. Displays seismic data sets with 3 or more dimensions.
Rickvel Ricksep modified to do picking for velocity analysis.

Rm Remove a SEPIib header file and its associated data file. Not to be confused with lower-
case .

Rotate Rotate the coordinate frame of the elastic coefficients for a layer to give a new layer.

Rtoc Real (esize=4) to complex (esize=8) conversion; the imaginary part is set to zero. This
function can also be done as a special case of Pad.

Scale Trivial data scaling program; multiply a dataset by the parameter “dscale”. (Beware
the special-case behavior of “dscale=1"!) Add can also be used to scale a dataset, but
Add cannot use pipes which makes it somewhat less convenient. Unlike Add, Scale can
be used to automatically normalize a dataset so the maximum is (plus or minus) unity.
(There are several options governing how much of the dataset is to be normalized at a
time.)

Smooth Perform smoothing.

Spectra/Spectrum Calculate average Fourier-domain amplitude spectra. Accepts real or
complex input.

Spike Everyone’s favorite program for creating a SEPlib dataset out of thin air. Can be used
to create a dataset that is all zeroes, all ones, or all some specified constant value. It is
most often used to create a dataset that is mostly zeroes except for one or more “spikes”
of unit magnitude. Beware the FORTRAN-style notation: the first element is numbered
1, not 0, as it would be for most other SEPIib programs.

Stack Sum a dataset over the intermediate (2) axis.

28 CHAPTER 3. PROGRAMS

SRM Stolt Residual Migraion

Stretch A general t-squared x-squared stretching and conversion program that is usually
called under one of the aliases NMO, Unmo, Radnmo, Radial, or Stolt.

Surface Creates surfaces described by parametric curves. Makes fun velocity models.

Ta2vplot Input a SEPIlib raster (esize=1) dataset and output vplot commands for a two-
dimensional raster plot of the data. (The vplot output can be viewed on a screen using
the program Tube, or plotted on a postscript printer using Pspen.) Ta2vplot has many,
many options to specify generic plotting things such as where to position the plot on the
page, how big to make the plot, which way to draw the axes, where to place tick marks
and labels, etc, etc, etc. All of these parameters attempt to default reasonably. There are
also several options unique to Ta2vplot to control things such as orientation of the raster
and what color table to use (user-specified color tables are allowed). Ta2vplot also ac-
cepts esize=3 input which it interprets as (R,G,B) byte-deep triples. This option is most
useful for plotting raster that is meant to have a “multidimensional” color table. (Warn-
ing: the esize=3 option is very slow if used with the standard linear Movie-style color
tables, although it does work. esize=3 input is really meant to be used with “RGB”
color tables.) You may find the utility programs Window and Reverse useful for pre-
processing data to be plotted with Ta2vplot. See also Vppen and Box for a crude way
of adding annotation.

Taplot A synonym for Byte.
Thplot Pseudo three-dimensional hidden-line plotting program.

Tpow Multiply each element of a seismogram by time raised to a given power. (The dimen-
sion associated with the fast (1) axis is assumed to be time.) A power of 2 often seems
to be a good one for balancing the early and late time of a seismogram without the loss
of amplitude information and other annoying problems associated with automatic AGC.
(By default Tpow attempts to find a good default value for the time-power parameter
automatically. Unfortunately the routine that does this has been broken by a careless
programmer and currently always core dumps; for now (mid 1992) you must specify
the tpow yourself.)

Transf Transpose and FFT a dataset.
Trcamp Calculate total energy in a tapered time window.

Transp Transpose two of the three dimensions of a SEPIib data cube. (An option lets you
select which two.)

Tube The generic vplot “pen” filter for screen devices. (In reality it’s just a script that calls
the appropriate pen filter for your device by searching case-by-case for the value of
your environment variable in a switch.) The “pen” manual page gives a canonical list of
device-independent Tube (and tube) options. Additional options may apply, depending
on which pen filter Tube calls.

3.1. SEPLIB PROGRAMS 29

Txdec TX domain noise removal, 2- or 3-D.
Uncombine Subtract the second set of layer coefficients from the first to give a new set.

Uncrack Compare a fractured layer with an unfractured sample of the same rock and print
out the excess compliance.

Unmo The pseudoinverse of the program NMO (standard Normal MoveOut correction via
linear interpolation). Make sure to specify a reasonable velocity for it to use!

Vceonvert Convert one type of velocity function to another (interval/rms and depth/time con-
versions).

Vel Make a velocity model.
Velan Velocity analysis of common-midpoint gathers.

Vppen The vplot “pen” filter for the virtual vplot device. This program is widely used to do
various utility sorts of transformations on vplot files. It can be used to automatically
center and size vplot files, to report statistics, rotate, scale, shift, fatten, thin, scale text,
scale dash patterns, etc, etc, etc. It can also be used to combine multiple vplot files in
various ways. For example it can overlay one vplot file on top of another, combine them
as successive frames in a single file, or most usefully combine multiple plot frames into
one superplot by arranging the individual subplots in a grid. As you can guess, Vp-
pen has a frightening number of options; they are enumerated with some explanation
in both the vppen and pen man pages. (These man pages are at least current and com-
plete, though some people have claimed that they are just too dense and wordy to be
usable.) See also vppen (lower case), plas, pldb, and the vplot manual pages (vplot,
pen, vplottext, vplotraster, libvplot).

Wavelet Wavelet generation program; used by modeling programs as input to provide a
source time function. Beware the dreaded “echo” bug that can occur if the output time
duration is too much longer than the duration of the wavelet. (After the wavelet is zero
and should remain forevermore zero, a new scaled-down copy of the wavelet fires off
again.)

Wiggle Inputs a real-valued (esize=4) dataset and outputs vplot commands for a geophysical-
style wiggle plot of the data. (The vplot output can be viewed on a screen using the
program Tube, or plotted on a postscript printer using Pspen.) Wiggle has many, many
options to specify how closely to pack the plot traces, how much to overlap the wiggles,
whether to fill under the positive excursions, where to position the plot on the page, how
big to make the plot, which way to draw the axes, where to place tick marks and labels,
etc, etc, etc. All of these parameters attempt to default reasonably, although Wiggle can
behave stupidly if the input data is constant or consists mostly of zeroes. In such cases
you may have to set the clip value yourself. You may find the utility programs Window
and Reverse useful for pre-processing data to be plotted with Wiggle. See also Vppen
and Box for a crude way of adding annotation. Also see the related program Dots,
which is superior to Wiggle for some applications.

30 CHAPTER 3. PROGRAMS

Window Window out a portion of a dataset. This includes dropping elements from the begin-
ning or end of an axis (or both); it also includes decimation. The beginning and ending
elements can be specified in terms of physical units (dependent on the “o” and “d” pa-
rameters of the axis) or in terms of element number. Note Window, like most SEPlib
programs, uses “C” style numbering: the first element is numbered 0, not 1 as may seem
natural to you if you grew up on FORTRAN. Beware the special-case behavior of Win-
dow if one of the axes is reduced to length 1: it automatically does a transpose to shift
unit-length axes to the end. This behavior is usually desirable, but can be an unpleasant
surprise if unexpected. (If not desired there is an option to turn it off.) Unlike most
SEPIib programs, Window understands four-dimensional datasets.

Xtpen The X11 “pen” device. One of the snazziest vplot filters around.

Zero Create file(s) of zero length.

3.1.1 Useful non-SEPIlib programs

Note that the names of these programs all begin with a lower-case letter.

plas plas reads in a human-readable ASCII version of the vplot graphics language and writes
out standard binary vplot (the same stuff written into the output SEPlib data file by
SEPIib graphics programs like Graph, Wiggle, Contour, Ta2vplot, Dots, etc...). plas
is the inverse of pldb. plas is primarily used to convert the output of pldb back into
regular vplot, but it can also be used to generate trivial vplot files from scratch. To do
this, use your favorite editor to create an ASCII human-readable version of a vplot file,
then use plas to turn it into a genuine (binary) vplot file. You can find the documentation
for both the ASCII and binary vplot file formats in the vplot man page, although it is
probably easier to learn by using pldb to generate a few examples from known files.
(Note plas is not a SEPIib program: it does not begin with a capital letter. It does not
read in or write out SEPIib history files!)

pldb pldb reads a vplot file from standard input (not a SEPIlib header file pointing to a vplot
data file, but a raw vplot data file) and writes out a human-readable and editable ASCII
version. By default the units are in integer “vplot units”, 600 to the inch. You may
find the options of pldb to express everything in units of inches or centimeters make the
output ASCII vplot file easier to work with. pldb is often used to perform trivial editing
operations on a vplot graphics file. For example, if you want to change the color of some
object and can’t easily regenerate the plot from scratch, you can convert the binary vplot
to ASCII using pldb, edit one or two lines so the color changes and changes back again
at the right times, and then use plas to turn the file back into standard binary vplot.
(Note pldb is not a SEPIib program: it does not begin with a capital letter. It does not
read in or write out SEPIib history files.) See also plas (the inverse of pldb).

pspen The non-SEPIib version of Pspen; takes straight vplot files as input instead of SEPIib
history files that point to vplot files.

3.2. SEP3D PROGRAMS 31

tube The non-SEPIlib version of Tube; takes straight vplot files as input instead of SEPIib
history files that point to vplot files.

vp_Movie Create a movie of vplot files.
vp_Overlay Overlay many vplot files one over another.

vp_OverUnderAniso Stack two or more vplot plots one over the other, with the first on
bottom and the last on top. Stretch the files anisotropically to “fill the screen”. The
multiple plots to be stacked can be spread through multiple input files, or can be multiple
frames of plots (separated by erases) within a single vplot file.

vp_OverUnderIso Stack two or more vplot plots one over the other, with the first on bottom
and the last on top. Do not stretch the files to “fill the screen”; preserve aspect ratios.
The multiple plots to be stacked can be spread through multiple input files, or can be
multiple frames of plots (separated by erases) within a single vplot file.

vp_SideBySideAniso Like vp_OverUnderAniso, but stacks plots side by side from left to
right.

vp_SideBySidelso Like vp_OverUnderlso, but stacks plots side by side from left to right.

vp_Unrotate Unrotate old-style plots. (In former days SEPIlib programs put the plot origin
at the upper-left corner of the screen, with the X axis going down and the Y axis going
left to right across the page.) Hopefully you will never have a need for this utility, but
the past never completely dies.

vppen The non-SEPIib version of Vppen; takes straight vplot files as input instead of SEPlib
history files that point to vplot files. The user interface to vppen can be intimidat-
ing to the new user. Those intimidated may find the shells vp_OverUnderAniso,
vp_OverUnderlso, vp_SideBySideAniso,
vp_SideBySidelso, and vp_Unrotate useful. These shells use vppen to do their work
but have a much simpler user interface (since they aren’t trying do to everything under
the sun in one program). See also plas, pldb, tube, and the vplot manual pages.

3.2 SEP3D programs

Many of the programs described in the previous section can be used on SEP3D datasets as
well, but there are some programs that have been modified for SEP3D or are only compatible
with SEP3D datasets. These are listed here. Note that they all begin with Capital Letters and
most end in 3d.

Attr3dhead Calculates statistics for header values of SEP3d dataset.

Cat3d Concatenate SEP3D datasets. It also has a “virtual” option if you don’t really want to
concatenate the files but do want a multi-file SEP3D file.

32 CHAPTER 3. PROGRAMS

Cp3d Copy SEP3D datasets.

Create3d Create a SEP3D file from either two SEPIib files or a single SEPIib file.
Dis3dhead Display header values for a SEP3D dataset.

Fold3d Calculate the fold of SEP3D dataset.

In3d Provide useful information about SEP3D datasets.

Infill3d Stack a SEP3D dataset producing a normalized SEPIlib cube.

Kirmod3d Perform Born/Kirchhoff modeling.

Marine_geom3d Make TRACE HEADERS for simple Marine Geometries both in CMP and
shot gather sorts.

Mv3d Move a SEP3D dataset.

Nmo3d Perform NMO, adjoint NMO, pseudoinverse NMO on a SEP3D dataset.
Rm3d Remove all files of a SEP3D dataset.

Scat3d Create a 3-D scatter model for Kirmod3d.

Sort3d Sort, transpose, or test gridding parameters.

Stack3d Stack a SEP3D dataset.

Synch3d Synchronize headers and data of a SEP3D dataset.

Velan3d Perform Velocity Analysis on sep3d datasets.

Window3d Window SEP3D datasets.

Window_key Window SEP3D headers dataset according to key values.

3.3 Graphics programs

You must be getting bored of wiggle plots by now, and we also want to show how once you
get a feeling for SEPIib it is really easy to get around with new programs too. So, how about
choosing another form of display? How about a contour plot instead? We know that it might
sound strange to contour seismic traces, but let’s try it! All we want to do is to demonstrate
that since the plotting programs have a consistent interface, it is as simple as:

Contour < Txx_Windowed.H par=plotpar.p | Tube

3.3. GRAPHICS PROGRAMS 33

Offset, kilometers
OO.}L 02 03 04 05 06 07 08 0.9
. | | | |

‘owat],

Spuoodas

Txx

fﬁgure3.lZContour < Txx_Windowed.H par=plotpar.p | Pspen prog—Cknnour UERJ

Figure 3.1 shows the result. “Ta2vplot” is a different kind of plotting program; it plots byte-
deep rasters (esize=1). Since the data in Txx.&# is floating-point (esize=4), we have to plot
using two steps:

Grey eout=3 < Txx_Windowed.H pclip=100 | Ta2vplot par=plotpar.p | Tube

The program “Grey eout=3" converts from floats to bytes, and then Ta2vp1ot plots the bytes
as grey-scale rasters. Alternatively you can use the program Grey which incorporates the
functionality of both. The two commands above can be replaced by

Grey < Txx_Windowed.H pclip=100 par=plotpar.p | Tube

Figure 3.2 shows the Ta2vplot version of our zoomed-in wiggle and contour plot. (Note that
the rasters are centered on their associated “Offset” value.) There are many more tricky ways
to plot your figures, including our very fun movie program Ricksep. These are explained in
the Tricky things chapter.

34 CHAPTER 3. PROGRAMS

Offset, kilometers
0.2 0.4 0.6 0.8 1

70

G0

‘owat],

90

Spuoodas

20

Txx

Figure 3.2: Grey eout=1 < Txx_Windowed.H pclip=100 | Ta2vplot par=plotpar.p |
Pspen ‘ prog-Ta2vplot ‘ [ER]

3.4 Converters

3.4.1 SEG-Y and SU converters

We often want to use SEPIib programs on datasets that are not in the proper format, but in
SEG-Y or SU format. Therefore SEPIlib includes programs to convert SEG-Y and SU datasets
into SEPIib datasets, then back again.

Segy2sep Converts a SEG-Y file to SEPlib format.
Sep2segy Converts a file in SEPIib format to SEG-Y.
Su2sep Converts a file in SU format to SEPIib format.

Sep2su Converts a file in SEPIib format to SU format.

3.4.2 Vplot converters

Some useful non-SEPIib converters are available for vplot files.

vplot2gif Converts a vplot file to a gif file.

3.4. CONVERTERS

vplot2mpeg Converts a vplot file to a mpeg file.

vplot2ras Converts a vplot file to a raster file.

35

36

CHAPTER 3. PROGRAMS

Chapter 4

Ricksep

Ricksep is the next generation of Rickmovie. This chapter includes the full documentation
for Ricksep, but we will first summarize the new features. Ricksep has the ability to show
several datasets at the same time, linked in such a way as to display the same slices of all of
the datasets if you select a slice in one dataset. This is particularly useful when comparing
different processing flows on the same dataset. There are many parameters available to cus-
tomize the display of multiple datasets, but for general use Rickmulti is a script that shows a
reasonable default multi-dataset display. Note that Rickmulti requires the data cubes to have
the same size dimensions (cube 1 nl=cube 2 nl, cube 1 n2=cube 2 n2, etc.). Ricksep has
an expanded picking function. It allows you to pick several different groups of points using
different symbols for each and write them to the same file. This is useful for picking several
different events in a dataset. Ricksep has an improved annotation option. It allows you to
draw ovals and rectangles on the displayed dataset. The coordinates of these shapes can then
be written out to a file for use with vplot programs. Ricksep has an interactive velocity analysis
function. It can display the original dataset, a velocity scan, and an NMO-corrected dataset.
Different velocity functions can be picked on the velocity scan and the new NMO correction
will be displayed. Rickvelan is a script that displays these panels correctly.

4.1 Ricksep documentation

Ricksep - display cubic array of data in XWindows-Motif

USAGE: Ricksep in=datafile [data pars] [display pars]
DATA ARGUMENTS:
in=datafile nl= n2= n3= bytes format (SEPlib)

byte array without header
in=datafile nl= n2= n3= esize=4 float format
float array without header
DATA PARAMETERS:
For all parameters:

First check command line with dataset number (e.g) for the

37

38 CHAPTER 4. RICKSEP

second dataset title2=.
second title, third history file.
in="stdin" name of input file

nl= n2= n3= n4=1 n5=1 length of three dimensions, nl is fastest, e.g. time

0l=0, 02=0 ... first sample value in each dimension
dl=1 d2=1 ... sample increment in each dimension
labell="nl" ... label for each dimension

title=in dataset title

value="sample" name for values on colorbar

esize=1 data samples are =1 for bytes or =4 for floats

For esize=1 data
pclip=255 positive clip value; high= and clip= are synonyms
nclip=1 negative clip value; low= and clip= are synonyms
For esize=4 data
tpow, gpow, pclip,clip,min,max — Clipping parameters \
PICK PARAMETERS:
For additional datasets: param# overrides param

npick=25000 maximum number of picks used

pick=file file containing picks
picksize=5 size of pick mark to display
run_cor=0 whether or not to run correlation when doing auto picking

search_radius=5 Radius to search around when doing auto picking

npaths=3 Number of paths to search when doing VIT path
j_display=8 Sampling of picks to display when doing auto picking
nwind_cor=8 Half width of correlation window when doing auto picking
ind_axis=1 Independent axis when doing auto picking

max_tol=1.02 First tolerance when doing auto picking by growing
min_tol=.96 Minimum tolerance when doing auto picking by growing
dtol=.022 Sampling of tolerance when doing auto picking by growing

showypicks=1 Whether (1) or not (0) to show picks
display_method=0 Method (0) puts marks at each location
(1) Lines drawn between picks along dependent axis
pickrange=5 Range in which we can see nearby picks
DISPLAY PARAMETERS:
For multiple views: style, orient, origin, norder, and shape
stylel corresponds to the second view, style2 third view, etc.
ncolor=128 For now we can only display up to 12

width=600 height=600 pixel dimension (> 64) or fraction of screen (<= 1.0)

style="cube" view is front, side, top, plan, array, picks, cube, fence, or transparent
orient="front" orient is front, side, top

origin="minimum" frames set to middle or minimum

transp=0 if 1, transpose down and across

shape="fit" shape fits screen, true, or pixel

movie="off" run movie in up, down, left, right, in, or out direction

color="gray" color is gray, straw, flag, tiger, blue, or rainbow

4.1. RICKSEP DOCUMENTATION 39

contrast="50" contrast is between 0 and 100
norder=1,2,3,4,5 data axis corresponding to each view axis
view axes are DOWN, ACROSS, DEEP, AXIS4,AXIS5
font= alternative XWindows font; default bold-courier-20
MULTIPLE VIEW PARAMETERS:
nview=1l number of different views. Numbering of views starts with 0
dataX = tag for dataset beyond the first (e.g. datal=comparison.H)
nview_dim=[nview, 1] The orientation of the different views (across,down)
view_ratio_x=[1./nview[0]] The amount of space in x for each view
view_ratio_y=[1./nview[1l]] The amount of space in y for each view
viewX_data = [in] The data to be used in a given view
VELOCITY ANALYSIS PARAMETERS
Set mode=velan. Make sure to have vscan and nmoed set in
viewx_data. Right click with key=1 is useful.
oversample=10 Oversample rate for velocity analysis
ignore=0. How much of eary times to ignore
smute=1.5 Stretch factor begin muting
nsmooth=ovesample*2+1 Amount to smooth semblance
no_sem=0 Whether (1) or not (0) to calculate semblance
v0=1.5 1Initial velocity to scan over
nv=50 Number of velocities to scan over
dv=(3.5-v0)/ (nv-1) Sampling rate of velocity
FILE FORMATS:
seplib, bytes input data set: (user supplied)
2-D of 3-D array of unsigned byte integers 0-255.
Use segy2movie to convert segy.
Use Byte to convert seplib floating point.
seplib, float input data set: (user supplied)
2-D of 3-D array of float numbers
par file: (user supplied or generated by Save State menu)
List of parameters in name=value form. Free format.

Last of duplicates used.

WINDOWS :
(1) Menubar on top.
(2) Message window below menubar.
(3) Control panel below message window
(4) Color spectrum below control panel.
Line shows relative data sample distribution.
Bar shows last pick value or range of values.
Mouse click-drag-up specifies a value range.
(5) Resizable image window. Responds to following mouse clicks:

NAVIGATION MOUSE USAGE:
LEFT: zoom; MIDDLE: navigate; RIGHT: pick.
LEFT click-drag-up: zoom window.

LEFT click-drag-up + 'h’ key: zoom horizontal only.

40

CHAPTER 4. RICKSEP

LEFT click-drag-up + ’'v’ key: zoom vertical only.

LEFT click-drag-up in ARRAY window: those panels.

MIDDLE cli

ck: sel

ect cross frames.

MIDDLE click-drag-up: select an animation range.
PICKING MOUSE USAGE:

RIGHT clic
RIGHT clic
RIGHT clic
RIGHT clic
RIGHT clic
RIGHT clic
RIGHT clic
RIGHT clic

RIGHT drag
RIGHT drag

RIGHT drag

RIGHT clic

RIGHT clic

k: pick
k + ra’
kK + 'm’
k + 7'c’
k + rd’
k + g’
k + 72’
k + "1’

+ Iel

+ Igl

+ Ipl
k + £
k + 'b’

a point on the image.

key: add a point to end of pick.

key: move nearest point in pick.

key: bring up pick menu

key: delete nearest point in pick.

key: Print information about nearest pick

key: Print information about nearest pick

key: Display a line across all panels at selected
independent axis wvalue

key: delete a window of picks

key: Do a 2-D growing within selected window. Fixing

preselected points

key: Do a line between two points that has the
best correlation

key: Perform region growing in the currently viewable
cube.

key: Snap all points with current symbol to best correlation

ANNOTATE MOUSE USAGE:

All actions only available when annotation option selected.

RIGHT clic
LEFT drag
Middle dra
RIGHT clic
RIGHT clic

k + g’
: Crea
g: Cre
k +7a’

k + /£

key: Modify nearest annotation object
te an oval at the given location
ate a rectangle at the given location
key: Add point to polyline object
key: Finish a polyline object

OTHER MOUSE USAGE:

RIGHT clic

k + 's’

key: Create sub-volume

COLORBAR ANY click-drag-up: replace sub-volume range with this new range.
INTERACTIVE CONTROLS:

MAIN FUNCT
"Main"
"Main"
"Main"
"Main"
"Main"
"Main"

STYLE FUNC
"Style"
"Style"
"Style"
"Style"

IONS: I
"Redraw
"Write
"Write
"Write
Debug"
"Quit"
TIONS:
"Fron
"Side
"Top
"Plan

nterface to system

" —— refresh damaged screen

vgrid file (floats)" —-—- save data files as floats in seplib/vgrid format
vgrid file (bytes)" -- save data files as bytes in seplib/vgrid format
parameter restart file" —-- create a parameter restart file

—— dump various arrays for programmer debugging

Select a style and set attributes

t (2D)" ——- Front face of data cube
(2D) —— Side face of data cube
(2D)" ——- Top face of data cube
(2D)" —- All three cube faces

4.1. RICKSEP DOCUMENTATION 41

"Style" "Array (3D) ..." —-— Array of front faces - up to a hundred
"Style" "Pick (3D) ..." —-- Array of picked faces

"Style" "Cube (3D) —-- Cube view

"Style" "Fence (3D) ..." -- Show intersecting faces

"Style" "Transparent (3D) ..." —-- Transparent volume

"Array Panel" "Direction" <four axes> -- Select through direction
"Array Panel" "Down" —-- Panels in down direction

"Array Panel" "Across" -- Panels in across direction

"Array Panel" "Start" -- First panel

"Array Panel" "Delta" -- Panel increment

"Array Panel" "End" -- Last panel; sets delta

"Array Panel" "Draw" -- Draw with new parameters

"Array Panel" "Close" —-- Close control panel

"Array Panel" "LEFT MOUSE SELECTS PANEL RANGE

"Fence Panel" "Toggle Front —-- Toggle front plane on

"Fence Panel" "Toggle Side" —-- Toggle side plane on

"Fence Panel" Toggle Top" -- Toggle top plane on

"Fence Panel" "Transparency" —-- Set transparency threshold

"Fence Panel" "Draw" -- Draw with new parameters

"Fence Panel" "Close" —-- Close control panel

"Transparency Panel" "Min" -- Set minimum transparency value
"Transparency Panel" "Max" —-- Set maximum transparency value
"Transparency Panel" "Transp" —-— Set transparency value
"Transparency Panel" "Draw altogether" -- Update screen once
"Transparency Panel" "Draw tenth blocks" —-- Update screen ten times
"Transparency Panel" "Draw each plane" -- Update screen continuously
"Transparency Panel" "Draw" -- Draw with new parameters
"Transparency Panel" "Close" —-- Close control panel

ORIENT FUNCTIONS: change way axes point; 2-D are in-plane

"Orient" "Transpose axes (1-2)

"Orient" "Transpose axes (1-3)

"Orient" "Transpose axes (1-4)

"Orient" "Transpose axes (1-5)

"Orient" "Transpose axes (2-3)

"Orient" "Transpose axes (2-4)

"Orient" "Transpose axes (2-5)

"Orient" "Transpose axes (3-4)

"Orient" "Transpose axes (3-5)

"Orient" "Transpose axes (4-5)

"Orient" "<-Down—-> (2-D)" —-- Reversal

"Orient" "<-Across—> (2-D)" —- Reversal

"Orient" "<-Deep-> (3-D)" -- Reversal

"Orient" "Orientation Menu" -- What data axis and frames to display
"Orient" "Frames to Origin" —-- Cross frames to start of origin of each axis

"Orient" "Frames in Middle" —-- Cross frames in middle of each frame

42 CHAPTER 4. RICKSEP

"Orient" "Labels Set .." —-—- Control panel to adjust labeling
"Orient" "Reset Initial"
SIZE FUNCTIONS: set size and shape policy

"Size" "Fit Screen" —-- Front fills 2/3s screen; sides 1/3
"Size" "True Proportions"

"Size" "Sample per Pixel"

"Size" "Interpolate" -- Improves large magnifications
"Size" "Size Set .." —-- Launch size setting control panel
"Size Set" "Minimum" -- Minimum sample/value along axis
"Size Set" "Maximum" -- Maximum sample/value along axis
"Size Set" "Frame" -- Frame sample/value along axis

"Size Set" "Pixels" -- Pixels along axis

"Size Set" "Draw" —-- Draw these size settings

"Size Set" "Current" -- Restore current size settings
"Size Set" "Initial" -- Fill in initial settings

"Size Set" "Close" -- Close size settings panel

"Size" "Reset Initial"

"Size" "LEFT MOUSE BOX ZOOMS" —-- interactive magnification
"Size" "+ ’'h’ KEY ONLY HORZ" —-- constrain to horizontal
"Size" "+ ’v’ KEY ONLY VERT" -- constrain to vertical

MOVIE FUNCTIONS: go to part of the cube; run movies

"Movie" "Reset Bounds" -- Movie loop traverses full cross face
"Movie" "High Speed" -- Frames are stored in displat terminal
"Movie" BUTTON "GO" —-- Start movie

"Movie" BUTTON "NO" —-- Stop movie

"Movie" BUTTON " z —-— Run/step in direction

"Movie"™ BUTTON " Z " -—- Run/step out direction

"Movie" BUTTON " < " —- Run/step left direction

"Movie"™ BUTTON " > " -— Run/step right direction

"Movie"™ BUTTON " ~ " —— Run/step up direction

"Movie"™ BUTTON " v " -— Run/step down direction

"Movie" SLIDER " Speed " —-- Delay between frames

"Movie" "MIDDLE MOUSE CLICK Reset cross framesFRAMES" -- X
"Movie" "MIDDLE MOUSE DRAG MOVIE BOUNDS" -- Set movie range

COLOR FUNCTIONS: set color, contrast, and transparency

"Color" "Gray" -- Grayscale

"Color" "Straw" -- Blue and yellow

"Color" "Flag" -- Red, white and blue

"Color" "Tiger" -- Red, white and black

"Color" "Blue" -- Blue and white

"Color" "Rainbow" -- Multi-colored

"Color" "Graybow —-- Gray plus multi-colored

"Color" "Overlay <color-list> —-- Overlay lines and text
"Color" "Mark" <color-list> -- Pick color

"Color" "Background" <color-list> -- Screen background color

4.1. RICKSEP DOCUMENTATION 43

"Color" "Flip Polarity" -- of data-> color

"Color "Reset Contrast" -- No skew or zero point contrast
"Color" SLIDER "CONTRAST" -- Shift color table skew
"Color" SLIDER "CONTRASTO" —-- Shift color table zero point
"Color" SLIDER "TRANSPARENCY" -- Change transparency value
"Color" BUTTON "Reset —-—- Reset initial contrast

PICK FUNCTIONS: set picking behavior

"Pick" "Clear Current Line —- Erase pick line or sub-volume

"Pick" "Write pick file —-- Write to pick= now

"Pick" Read pick file" -- Read from pick= now

"Pick" "RIGHT MOUSE MAKES PICK -- right mouse button manipulates picks
"Pick" "+ ’c’ KEY BRINGS UP PANEL TO CHANGE PICK SYMBOL"

"Pick" "+ "a’ KEY ADDS POINT TO "

"Pick" "+ /i’ KEY INSERTS POINT BETWEEN NEAREST POINTS"

"Pick" "+ 'm’ KEY MOVES NEAREST POINT"

"Pick" "+ ’d’ KEY DELETES NEAREST POINT"

"Pick" "+ ’s’ KEY + DRAGGING PICKS SUB-VOLUME"

EDIT FUNCTIONS: edit grid sub-volume

"Edit" "Clear Sub-volume pick" -- Clear current subvolume

"Edit" "Smooth Sub-volume" -- Smooth sub-volume to boundary value

"Edit" "Undo Smooth" -- Restore sub-volume

"Edit" "Grade Sub-volume" -- Grade sub-volume to boundary plane values

"Edit" "Undo grade"

"Edit" "Sub-volume Neighborhood" <6, 18, 26> —-- Cube connectivity of sub-volume
"Edit" "COLOR BAR MOUSE SETS SMOOTH RANGE"

SECTION FUNCTION: plot various sections through the data

"Section" "On screen wiggle plot ..." "Front, side or top plane"

"Section" "On screen contour plot ..." "Front, side or top plane"
"Section" "On screen grey profile ..." "Down, across, or deep profile"
"Section" "Print wiggle plot ..." "Front, side or top plane"

"Section" "Print contour plot ..." "Front, side or top plane"

"Section" "Print grey profile ..." "Down, across, or deep profile"
"Section" "Cubeplot ..." "Plot or print "

"Section" "Output ..." "View or commands "

"Section" "Save section in file ... "Front, side or top plane"

"Section" "Save profile in file ..." "Save down, across, or deep profile"

"Section" "PLANES AND PROFILES ARE SELECTED AT CROSS-HAIRS"
STATUS FUNCTIONS: print parameters and state variables

"Status" "Dataset" —— Dataset parameters

"Status" "Data Values" —-- Data value parameters
"Status" "Data AxisO" -- Value/color axis

"Status" "Data Axisl" -- Fast axis, usually time
"Status" "Data Axis2" -- Second data axis, usually CDP
"Status" "Data Axis3" -- Slow axis, usually section

"Status" "Data Axis4" -- Slow axis, usually offset

44

CHAPTER 4. RICKSEP

"Status" "Data Values" —-- Data value parameters
"Status" "Data AxisO" -- Value/color axis
"Status" "Data Axisl" -- Fast axis, usually time
"Status" "Data Axis2" -- Second data axis, usually CDP
"Status" "Data Axis3" -- Slow axis, usually section
"Status" "Data Axis4" -- Slow axis, usually offset
"Status" "Data Axis5" -- Slow axis, unused
"Status" "Style" -- View parameters
"Status" "Down Axis" -- View down axis parameters
"Status" "Across Axis" -- View across axis parameters
"Status" "Deep Axis" -- View deep axis parameters
"Status" "Extra Axis" -- View extra axis parameters
"Status" "Color Axis" -- Colorbar axis parameters
"Status" "Color" —- Color and contrast parameters
"Status" "Render" -- Rendering parameter
"Status" "Draw" -- Draw screen parameters
"Status" "Mouse Buttons" -- Mouse button functions
"Status" "Movie" -- Movie parameters
"Status" "Pick" -- Pick parameter
"Status" "Pick List" -- Current pick line parameters
"Status" "sub-volume" -- Current mark sub-volume
"Status" "Frame List" -- List of screen frames

HELP FUNCTIONS: print self documentation from various places
"Help" "Command Line Args\
"Help" File Formats"
"Help" "Windows"
"Help" "Mouse Usage"
"Help" "Main Functions\
"Help" "Style Functions"
"Help" "Orient Functions"
"Help" "Size Functions"
"Help" "Movie Functions"
"Help" "Color Functions\
"Help" "Picking Functions"
"Help" "Status Functions"

EXAMPLES

END

Two datasets:

Ricksep < in.H datal=comparison.H nview=2 viewl_data=datal

Velocity anlaysis:

Ricksep < cmps.H mode=velan viewl_data=vscan

view2_data=nmoed nviews=3 nview=3 v0=1.5 dv=.025

4-D:

Ricksep < data.H nview=2 norder=1,3,4,5,2 norderl=1,2,3,4,5

4.2. EXAMPLES 45

4.2 Examples

This section will demonstrate the use of the Rickmulti and Rickvelan scripts as well as anno-
tation and picking in Ricksep. .

46 CHAPTER 4. RICKSEP

=] e 5 f

Main Yiew Orient Size Mavigate Color Pick EditMol Sections Statuz Help

render=66 mzec pixels=121287 rate=1826197 pixelsdsec

GO NO Annotate <> Normal Dy 7 < Foas ™ agew | SPEED

COMTRAST I] CEMTER I 1 RESET

Figure 4.1: Using Ricksep with the script Rickmulti. The command written on the command

line was Rickmulti style=three style2=three data.T look.mig.T rick-rickmulti [NR]

4.2. EXAMPLES 47

=] e 5 f

Main Yiew Orient Size Mavigate Color Pick EditMol Sections Statuz Help

render=208 mzec pixels=2BE243 rate=1226970 pixelsdsec

GO NO Annotate <> Normal Dy 7 < Foas ™ agew | SPEED

COMTRAST I] CEMTER I 1 RESET

i iy

o e PR
SN AL

g
— st

SN -

Figure 4.2: Picking and annotating in Ricksep. The command on the command line was Rick-
sep style=three < look.mig.T. Five different events were picked with different symbols.
Interesting areas were annotated with an oval and a rectangle. [NR]

48

CHAPTER 4. RICKSEP

Chapter 5

Example flows

In this chapter we focus on various processing flows to do common data manipulation within
SEPIib. The Makefile in this directory contains the actual commands, in each case the general
flow and potentially confusing aspects are discussed.

5.1 Regular Datasets

5.1.1 Creating synthetics

To create quick-and-dirty seismograms by inverse normal moveout (NMO) modeling, you
might consider this route:

Flow General procedure:
Spike Begin by creating a set of NMOed gathers with no wavelet (top-left panel of
Figure 5.1).
Wavelet Model the Wavelet associated with the dataset (top-right panel of Figure 5.1).
Filter Filter the data with the wavelet (center-left panel of Figure 5.1).

NMO Run inverse NMO to add moveout to the gather (center-right panel of Fig-
ure 5.1).

Tpow Simulate simple spherical divergence by applying a /7 gain to the inverse NMO’ed
gather (bottom-left panel of Figure 5.1).

Noise Add random noise to the gained gather (bottom-right panel of Figure 5.1).
Things to modify/watch out for Be aware of:

e spike allows you to choose different amplitudes for each event.

e wavelet allows to choose a wide range of wavelet, time-delay, etc.

49

50 CHAPTER 5. EXAMPLE FLOWS

e rilter could be run after nmo.
e MO can take v(z) velocity functions.
e Tpow has some special options for auto-scaling data. Specify tpow to avoid this.

e Noise has many different noise distribution options. You can specify seed to get
the same “random” numbers each time.

5.1.2 Creating velocity models

Flow General procedure:

Surface Begin by creating a layered model. The surfaces are described by parametric
curves (left panel of Figure 5.2).

Gauss Create several gaussian anomalies within a background velocity model (center
panel of Figure 5.2.

Add Add the two models together (right panel of Figure 5.2).
Things to modify/watch out for Be aware of:

e smooth allows you to create a smoother transition between layers

e surface and Gauss allow you to limit the range of the surface and gaussian anomaly.

5.1.3 Wave equation modeling

Flow General procedure:

Surface To create the reflectors we will use the surface program again, this time with
the layers=0 option (top-left panel of Figure 5.3).

Velocity Create the velocity model

For this simple test case we want a v(z) = v0+ a * z medium. We will do this by
creating a file with vO at the first depth location (spike k1=1). Then, we create
a second file with our velocity gradient a (spike), and sum these two files (add).
Finally, we perform causal integration by deconvolving (Helicon inv=y) with a
derivative filter (top-right panel of Figure 5.3).

moduli Create the moduli model
To get only p-reflections at layer boundaries we will use a couple tricks in creating
our moduli file. To avoid s-reflections we will set the v to low number. To avoid
reflections due to velocity contrasts we will define our density p as p = v‘—p where
c is a constant, using Math (bottom-left panel of Figure 5.3). To create the c11
moduli we use Math again multiplying by v, and then adding adding — contrast
at our layer boundaries.

5.1. REGULAR DATASETS 51

o
©
N
=} O
® >
3
/3N k]
. =
o g
221
- 0w
)
|
© o
®
T T T T T T T T T T
0 04 08 12 16 R 24 28 0 0.04 0.08 0.12 0.16
km Time(s)
<} [}
© ©
s # dooac U
T T . it
o] | @

 — A —
T
I —

T

2
— T

A AN E—

g gy

i A
N A
e, A
i -l

|

0 04 08 12 16 2 24 28 0 04 08 12 16 2 2
km km

2.8

Figure 5.1: Top-left, the result of spike. Top-right, a time-delayed ricker2 wavelet. Center-
left, the result of filtering the spike result with the wavelet. Center-right, the result of applying
inverse NMO. Bottom-left, application of /7 filter to gather. Bottom-right, addition of random
noise to gather. examples—synth—cube‘ [ER,M]

52 CHAPTER 5. EXAMPLE FLOWS

('-u>t)'-nde-g
(unp)uadsa
(“-I:t)'-nde-a

[TTTTTTTI [TTTTTTTI
NI A A VL2 s s T I N A
sinfa) Ui sinfa)
Figure 5.2: Left, the result of surface. Center, the result of causs, three gaussian anomalies.
Right, the result of adding the top-right and bottom-left panels. | examples-vel-model ‘ [ER,M]

5.1. REGULAR DATASETS 53

Wavelet We again use wavelet to create a ricker wavelet.

Iso2d Finally we run 1so2d to model a shot.
Things to modify/watch out for Be aware of:

e Helicon boundary conditions require us to add to pad an additional row to our
initial model. We then window it out to get our initial v,,.

e Iso2d allows us to do multiple shots, roll along surveys, and multiple source and
receiver types. Be aware that stability and dispersion conditions are often hard to

meet.
X Position(km) X Position(km)
2 3 4 5 6 7 8 2 3 4 5 6 7 8
o ! h | | | o4
o)
S
—_ — 4 3
o
S S|
& 20 & o
= =
g S E
= = 3
B w A 8w +
= = [
-
. ~
X Position(km) X Position(km)
2 3 4 5 6 7 a8 2 3 4 5 6 7 a8
o I h | ! |
@<
o
-
S <
g1 N
- :
=
5w
N
~
©
—

Figure 5.3: Top-left are the reflector positions. Top-right is the v, model. Bottom-left, the
density model. Bottom-right, the result of 1so02d. [ER,M]

5.1.4 NMO/Muting/Velocity analysis

We often want to eliminate the direct arrival and other noise that occurs before the data we are
interested in. The SEPIlib program Mute is very easy to use. It has several options that you can
see in its self-documentation (just type “Mute” to see the self-doc), but for the most part the
parameters you will play with are tmute, the starting time for the mute, and vmute, the mute
velocity.

54 CHAPTER 5. EXAMPLE FLOWS

offsel (km) offsel (km)
0 056 1 16 2 26 3 3b

Figure 5.4: Left: CMP gather. Right: Muted CMP gather. examples—mute‘ [ER,M]

Mute Choose the appropriate starting time and velocity beyond which to mute.

Now that we have cleaned up the top of our seismogram, we can concentrate on other process-
ing. Velocity analysis and normal-moveout correction are intertwined. You need an accurate
velocity function to carry out normal-moveout corrections, and the moveout left in the CMP
gather lets you know if the velocity function is correct. There are two ways to carry out
velocity analysis and NMO corrections in SEPIib. This section will explain each.

Flow - Old style

Velan Velan creates a semblance panel from the input CMP gather.

NMO Use the semblance panel to create a velocity function to be used by NMO. In the
case of Figure 5.6 we have chosen to make the velocity a constant. As you can
see, the result is not flattened at the earliest and latest times.

Things to modify/watch out for: Be aware that:

e velan will return a semblance panel in slowness or velocity.

Flow - Interactive

5.2. SEP3D DATASETS 55

Rickvel Rickvel is a variation of Ricksep (?) that displays the CMP gather, its sem-
blance panel, and the NMO corrected gather (Figure 5.5). It lets you pick the
velocity function on the semblance panel and automatically updates the NMO
panel. When you quit Rickvel, it outputs the RMS velocity function. Rickvel is
very similar to the script Rickvelan described in the Ricksep chapter.

NMO Use the RMS velocity function from Rickvel to carry out normal- moveout cor-
rection. Figure 5.7 shows the result.

Things to modify/watch out for: Be aware that:

e Rickvel calculates and displays the interval velocity as you pick the RMS velocity,
but it outputs ONLY the RMS velocity function.

e rickvel does NOT output the NMO corrected gather.

Main Wiew Orient Size Mavigate Color Fick Edit¥al Sections Status Help

dir=midpoint{km) frame=0,0,0 sec=2,106 my=2.075 midpoint{km)=7,8725 =0 nS=0 samples=0,0110235

GO =™ HO Annotate <™ Mormal | | = Z < > 223 w | SPEED

CONTRAST [1§ CENTER [T 71 RESETI

Figure 5.5: The Rickvel interface. examples—rickvel‘ [NR]

5.2 SEP3D Datasets

The most important programs for 3-D data handling in SEPIib are window3d, In3d, Header-
math, and sort3d. The first two are simply the 3-D corollaries of window and 1n discussed in
detail earlier. Headermath works similarly to Math but on headers. sort3d is a binning pro-
gram. By changing your gridding axis orientation it can also perform the same functionality
as Transp but on 3-D data.

56 CHAPTER 5. EXAMPLE FLOWS

offset (km)
04 08 12 16 2 24 28 N2

yelocily (km/s)
6 2 2 28 32 36

offel (km)
04 08 12 16 2 24 28 &2 12

(s) =StxII}

Figure 5.6: Left:CMP gather. Center: Semblance panel. Right: NMO corrected CMP gather.

examples-oldvelan‘ [ER,M]

velocity (km/s)
2 2.4 2.8 3.2 3.6

(s) sum

1.5 2 2.5 3 3.5 4 4.5
velocity (km/s)

Figure 5.7: Left top:CMP gather. Right top: Semblance panel. Left bottom: RMS velocity
function picked. Right bottom: NMO corrected CMP gather. |examples-newvelan ‘ [CR.M]

5.2. SEP3D DATASETS 57

5.2.1 Reading from SEGY

Segy2sep is basically SU’s segyread with some additional features. To read a dataset, simply

Segy2sep tape=tape.segy >out.H

Things to modify/watch out for Be aware of:

e tape.segy canbea SEG-Y disk file or tape device and out . H is a SEP-3D dataset
with headers, but without a grid.

e Segy2sep uses the sepsu library so you must have SU installed.

e All non-zero standard SEG-Y headers in the first 100 traces are transferred by
default (except d1,...) by the program. You can modify this behavior by:

Increasing the number of traces checked using the nmem parameter.
Specifying dump_a11 to dump all headers.

Using ignore or ignore_list to specify headers to ignore.

Using keep or keep_1list to specify the headers, and the output order, for the
conversion.

Using extra_type, extra_offset, and extra_name to convert non-standard
SEG-Y headers.

Using only_list to only write out headers specified by the keep, ignore, and
extra mechanisms.

e When reading multiple SEG-Y files make sure to use the only_1ist option and
then concatenate the datasets using cat3d. You can avoid copying over the binary
files using the virtual option of cat3d.

e We can automatically scale and convert our keys using the scale option in the
sep2su library.

5.2.2 Viewing and manipulating headers

For this example we will perform an ordinary processing sequence for a small portion of a
3-D land survey. By using 1n3d we can find the number of traces, and what headers have been

converted:
* Kk Kk ok k ok ok ok ok k lnputH Kk kkkkkkk ok kK
4 -esize Synched data_format-xdr_float
nl=1251 01=0.000000 d1l=0.004000 labell=none
n2=18927 02=1.000000 d2=1.000000 label2=trace number

Data: in=/net/kana/scré4/bob/input.H@
18927 elements, 94710708 bytes in data file

58

CHAPTER 5. EXAMPLE FLOWS

keynumber=1
keynumber=2
keynumber=3
keynumber=4
keynumber=5
keynumber=6
keynumber=7
keynumber=8
keynumber=9
keynumber=10
keynumber=11
keynumber=12
keynumber=13
keynumber=14
keynumber=15
keynumber=16
keynumber=17
keynumber=18
keynumber=19
keynumber=20
keynumber=21
keynumber=22
keynumber=23
keynumber=24
keynumber=25
keynumber=26
keynumber=27
keynumber=28
n2=18927

keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
keytype=scalar_int
02=1.000000

keyname=tracl
keyname=tracr
keyname=fldr
keyname=tracft
keyname=ep
keyname=cdp
keyname=cdpt
keyname=trid
keyname=nhs
keyname=offset
keyname=gelev
keyname=selev
keyname=sdepth
keyname=gdel
keyname=sdel
keyname=scalel
keyname=scalco
keyname=sx
keyname=sy
keyname=gx
keyname=gy
keyname=counit
keyname=sut
keyname=sstat
keyname=tstat
keyname=muts
keyname=mute

keyname=shortpad

d2=1.000000

Headers in=/net/kana/scr4/bob/input.H@QQ

529956 elements,

label2=trace number

2119824 bytes in data file

We can look at some statistical properties of the headers by running Attr3dhead

key
tracl
tracr
fldr
tract
ep
cdp
cdpt
trid

nhs

min max
962.0 0.2373E+06
1.000 0.1893E+05
2.000 263.0
1.000 1140.
2.000 251.0
0.1645E+06 0.1698E+06
1.000 46.00
1.000 1.000
1.000 1.000

mean nzero rms
0.9058E+05 18927 6328.
9464. 18927 0.1093E+05
119.7 18927 133.2
421.9 18927 509.3
111.6 18927 124.0
0.1674E+06 18927 NaN
14.38 18927 17.59
1.000 18927 1.000
1.000 18927 1.000

o O O O O

o

norm

.87E+06
.15E+07
.18E+05
.70E+05
.17E+05

NaN

.24E+04
.14E+03
.14E+03

5.2. SEP3D DATASETS

offset
gelev
selev
sdepth
gdel
sdel
scalel
scalco
SX

Sy

gx

gy
counit
sut
sstat
tstat
muts

mute

shortpad

-3802.
0.2698E+07
0.2696E+07
0.1000E+06
273.0
273.0
-0.1000E+05
1.000
0.1016E+07
0.5203E+06
0.1015E+07
0.5204E+06
3.000
0.000
-8.000
-78.00
-45.00
-17.00
1.000

2358.
0.3200E+07
0.3141E+07
0.3800E+06

290.0

292.0

-0.1000E+05
1.000
.1020E+07
.5230E+06
.1018E+0Q07
.5226E+06
3.000
22.00
8.000
5.000
1569.
1597.
39.00

o O o o

-1132.
0.2741E+07
0.2769E+07
0.1548E+06
277.4
280.6
-0.1000E+05
1.000
0.1018E+07
0.5213E+06
0.1017E+07
0.5213E+06
3.000
8.489
0.1589
-23.80
610.9
638.9
13.32

18927
18927
18927
18927
18927
18927
18927
18927
18927
18927
18927
18927
18927
18383
13708
18926
18906
18927
18927

59

1490. 0.21E+06
NaN NaN

NaN NaN
0.3446E+05 0.47E+07
277.5 0.38E+05
280.6 0.39E+05
0.1000E+05 0.14E+07
1.000 0.14E+03
0.7110E+98 0.98+100
0.3391E+05 0.47E+07
NaN NaN
0.3362E+05 0.46E+07
3.000 0.41E+03
9.107 0.13E+04
2.276 0.31E+03
25.37 0.35E+04
689.5 0.95E+05
714.4 0.98E+05
15.33 0.21E+04

We can look at the actual values of the headers using pis3dhead. Most SEPlib programs
expect floats or complex numbers so it is useful to convert geometry position keys to floats. In
addition it’s useful to look at CMP locations. To do both we can use the program Headermath.

Most often the coordinate system stored in the trace headers is rotated from the acquisition
coordinate system. As a result some type of rotation needs to be applied to the data. Using the
Reshape program we can view header information using the conventional SEPIib utilites. For
example, Figure 5.8 shows the initial orientation for the data. We can find an appropriate rota-

Figure 5.8: Initial orientation for the 2
‘ examples-initial-orientation ‘

data.
[ER]

A dIN

GO+o2TR0S 22T T LD EPIEBEPQIRNG 222 'C

NaLiial, ”

SETTIN

",
¥ opeg,

Py

-
20t et

1.0164e+060168e+060172e+060176e+06018e+06
CMP_X

tion angle by again using Headermath with the rotate option. Figure 5.9 shows the different

60

CHAPTER 5. EXAMPLE FLOWS

orientations. Once we have chosen an appropriate rotation angle (-7 degrees in this case), we
can reset the origin of our data again using Headermath. We can also look at things like the
acquisition layout, Figure 5.10.

Rotation (5)

A dND

SO+2ZEDFCEDF V@D 2CED #2908 ¥

1.058e+068.0584e+06.0588e+086.0592¢+06.0596e+06

Rotation (—8)

A dND

e gssy
FRTTTICIA LN *
Loerrelid

ey epeeht
perserta [Rids ,‘1.‘;.‘:5'51~r~:~x
’ A3

“
RUPTIITL,

PYRLAL
!Inlluxull&ﬂ“~‘~"|‘“"'
sonnd

GO0 +277LG00H28F LGOS 922G LG P9GLT@+294S69

9.346+059.344e +059.348¢ +050.352¢ + 059356+ 05
CMP_X

AdND

G0+ 292.04PF GO 98 FAOH9 2 L0099 LE201PBLO 9

A dND
©G0+270TEQ@+280TEQ@+2STIE@+2911V'9

Rotation (—5)

9.672€+059.676e+059.68e+059.684¢+059.688e+05
CMP_X

CHEOEE O LRIy

SO O L SRR

A I I T T T L T TG S LA AL

Rotation (—7)

ARSI IR

45264059 4560+ 059.466+059.464e+05.468e+05

CMP_X

Figure 5.9: Four different rotation angles from the original orientation shown in Figure 5.8.

examples-rotate ‘ [ER,M]

Things to modify/watch out for Be aware of:

e Headermath also allows you to delete keys.

e Attr3dhead and pis3dhead will display all headers by default. By using key_1ist

you can display only specific headers.

e Window_key allows you to window data based and minimum and maximum values

of specific keys.

e Increasing maxsize increases the number of headers processed at a time and can

significantly speed up Headermath.

5.2. SEP3D DATASETS 61

0007

0
I

Figure 5.10: Graph of off- %
set_x and offset_y for the data. <L
examples-offset ‘ [ER] g
|
73600 72600 71600 6
CMP_X

5.2.3 Sorting and binning

Once we have the headers in acceptable form it is time to place some type of grid over them.
In this case we will sort the data into a five dimensional space: time, cmp_x, cmp_y, offset_x,
and offset_y. With our given binning parameters more than one trace falls into some bins so
we end up with a six dimensional grid, with the second dimension being a trace_in_bin axis.
By running Fo1d3d we can look at the bin count for our given binning parameters. Figure 5.11
shows the bin count as a function of CMP, while Figure 5.12 shows it as a function of offset.
By using the program stack3d we can look at a subset of the actual data.

Cmp_y(km)
[¢] 200 400 600 800
o ; ; ‘ ;
= g
5
o
. . Q® o
Figure 5.11: Fold as a function of £e] =
‘ o,
CMP. examples—fold—cmp‘ [ER] /;\5 N
ER=)
- ©
> |
g s
[AN]
o |
g o

Things to modify/watch out for Be aware of:

e You can easily find approriate binning extents by running sort3d with the verb
option and looking at what bin numbers the data falls in given the current o and d
parameters.

e When you don’t have a trace_in_bin axis use Infi113d rather than sort3d

e Fold3d must be able to hold the entire output space in memory.

62 CHAPTER 5. EXAMPLE FLOWS

Offset_y(km)

| —2000 —1000 0 1000
n L I I L
o
o
o
o
| ©
L =
o
2" 3
Figure 5.12: Fold as a function of off- 4 S
- y
set. | examples-fold-offset ‘ [ER] = 5
5 8
S |
s 2
N
o |
o o
o

5.2.4 Reading and writing to SEGY/SU

We can convert our data in modified form back to SEG-Y using sep2segy and to and from SU
using sep2su and su2sep.

Things to modify/watch out for Be aware of:

e We can convert our altered hearder parameters by either using Headermath to
remap the new values into the SEG-Y standard sx, sy, etc. or by using the header
mapping capibilities in the su2sep library.

e We can use the superset library to convert a regular cube dataset to a sep3d dataset
and perform headermath on the axes on the fly. See the reg_segy.H example in
‘examples/segy’ directory.

5.2.5 Velocity analysis/NMO

We have already seen a flow for velocity analysis and normal moveout correction. Now let’s
see how to carry out this flow for a SEP3D dataset.

Flow General procedure:

Velan3d Velan3d creates a semblance panel from the input CMP gather. More impor-
tantly, it can do so for a 3-D dataset, allowing you to specify which axis (x or y)
the velocity analysis should be done on.

Nmo3d Nmo3d uses velocity functions determined from the results of Velan3d to carry
out normal moveout corrections.

Things to modify/watch out for: Be aware that:

e velan3d does not have the option to output a semblance panel in slowness, as
velan does.

5.3. TRAVEL TIMES 63

5.2.6 Creating synthetics

Creating a synthetic SEP3D dataset can be done in several ways. If you have a SEPIib dataset
already, you can make it into a SEP3D dataset using Create3d.

Flow General procedure:

Create3d We have already created synthetic datasets with SEPIib. create3d will make
a SEP3D file from either two SEPIib files or a single SEPIib file.

Things to watch: Be aware of:

e The input file headers must NOT be out. H@ @.
Another method to create a SEP3D dataset is as follows:

Flow General procedure:
Scat3d This creates one of the files needed for input to Kirmod3d. It generates a plane
of scatterers.

Marine_geom3d Kirmod3d also requires a file containing the trace headers for either
CMP gathers or shot gathers.

Gfgradz This calculates the Green’s functions for a v(z) medium. Yet another input for
Kirmod3d.

Wavelet We have already used wavelet in a previous example.

Kirmod3d This is a Born/Kirchhoff modeling program for SEP3D. It requires the stan-
dard input to contain the sep3d headers of geometry to be modeled (result from
Marine_geom3d), a Reflector file (result from Scat3d), a Green file that contains
the Green’s function (result from Gfgradz, which is not a SEP3D file), and a
Wavelet file (result from Wavelet, once again not a SEP3D file).

Things to watch: Be aware of:

e sScat3d assumes a 3-D model with regular sampling in all 3 directions.

5.3 Travel times

In the previous section we saw that you can get traveltimes using Gfgradz, however this is not
the optimum method since it assumes the velocity model is just v(z). A better method is to use
FMeikonal, SEPlib’s fast-marching Eikonal solver.

Flow General procedure:

64 CHAPTER 5. EXAMPLE FLOWS

Velocity model You must have a velocity model to feed into FMeikonal. In this ex-
ample, we will just use the velocity model created in the synthetic velocity model

section.

FMeikonal Feed the velocity model into FMeikonal. In this example we put one shot
at the center of the top of the velocity cube (Figure 5.13).

Things to watch : Be aware that:

e rMeikonal Will take a “shotfile” containing locations of all of the shots you want.

e rMeikonal Will take a velocity cube or a slowness cube.

e FMeikonal uses constant velocity ray-tracing inside an initial box that you can set
dimensions for, or until it detects a velocity variation, whichever is greater.

e You may need to smooth the velocity model in order to preserve stability.

b 1.500 b 7500

(umnp)yrdeqg
(umnp)yrdeg

D123 4561890
X Postin{im) I Potion{km)

Figure 5.13: Traveltime cube generated by FMeikonal. ‘examples—eikonal ‘ [ER,M]

Ray tracing in closely related to traveltime estimation. We can create a ray database through
the velocity model via Huygens’ wavefront tracing.

Flow General procedure:
Velocity model Once again, we start with the synthetic velocity model created earlier.

Window We will just do 2-D ray tracing, so we take just one slice from the third axis.

5.4. PEFS 65

Hwt2d Feed the 2-D velocity model into Hwt2d and stand back. We chose to do one
shot over the gaussian anomaly on the right side of the model. We have control
over the starting angle of the first ray, the angle increment between rays, and the
number of rays (Figure 5.14).

Things to watch : Be aware that:

e Hwt3d is a Huygens’ ray tracing program that will produce a ray database or trav-
eltime cube for a 3-D velocity model.

X Position(km)
0 1 2 3 4 5 6 7 8 9

() yrdsa
=

=

Y T 1 \
54 -3-2-101 2 3 45

Figure 5.14: Ray tracing generated by Hwt2d. [ER,M]

54 PEFs

Prediction error filters (PEFs) can be useful for many different geophysical processes such
as interpolation and multiple suppression. The SEPlib program pef will calculate a multi-
dimensional PEF from a given data set. The following example shows how to calculate a PEF
from a dataset with a large hole in it and use that PEF to fill in the data.

Flow General procedure:

Input data For this example we are borrowing a figure from GEE. The input data con-
sists of crossing plane waves with a hole carved out.

66 CHAPTER 5. EXAMPLE FLOWS

Pef Now the program Pef calculates a PEF on all of the data around the hole. Pef lets
us specify areas to ignore during the calculation of the PEF by using the optional
input file maskin and will show the area it does calculate the PEF over in the
optional output file maskout.

Use PEF Once we have a PEF, we use a program from GEE that uses the PEF to fill in
the missing data. This program is called Miss . x.

Things to watch: Be aware of:

e Pef has the optional input and output mask files.
e Pef has the option to do multiple iterations to calculate the PEF.

e Pef has the option to set the zero-lag position and the filter gap.

original restored selector

Figure 5.15: Filling in missing data with a prediction error filter (PEF). ‘examples—hole90
[ER,M]

5.4.1 Texture synthesizing and seismic decon with prediction-error filters

keywords: PEF, causal, helix transform, known data mask, autoregression, convolution, de-
convolution, polynomial division, texture, missing data.

Primary programs used: pef, Helicon

Secondary programs used: spike, Noise, Smooth, Attr, Add, Rtoc, Ft3d, Cabs, Clip,
Math.

The prediction-error filter, or PEF, is estimated from input data by a least-squares autore-
gression. The filter coefficients are adjusted such that the energy of the convolution of data
and filter, the prediction error, is minimized in a least-squares sense. The PEF captures the

5.4. PEFS 67

gross spectral qualities of the data from which it was estimated. The PEF discussed here is
causal, with a fixed “1” at zero lag. To learn about the concept of causality in more than one
dimension, see (cite GEE).

SEPIlib program pef utilizes the Helix transform (cite) to estimate an n-dimensional PEF
from data of dimension > n. A main advantage of PEF-based techniques over other spectral
techniques occurs when some data is missing. pef handles missing data through the use of
a user-supplied known data mask. Special care must be taken to ensure that enough data
is present to estimate a PEF. To understand which data contributes to the PEF estimation,
imagine that a filter-shaped template is slid around the gridded data. Only at places where all
coefficients of the template fall on known data does pef use the data in the estimation. pef
outputs a “output filter mask”, computed from the known data mask, which illustrates which
data was used in the inversion.

Once a PEF has been estimated, SEPIib program He1icon can apply convolution or inverse
convolution (deconvolution) to n-dimensional data, assuming the PEF is of dimension < n.
The deconvolution operation is implemented as polynomial division (cite).

Flow 1-D PEF estimation and seismic decon - General procedure:

Make a 1-D synthetic Firstlook at this command: spike n1=64 k1=-1 | Noise type=1
seed=13891 | Smooth rectl=3 > 0.H
It uses spike to create a 1-D cube with 64 samples, all zeros. Noise makes random
noise. The seed parameter ensures that we get the same “random” numbers each
time we regenerate the data. Finally, smooth smoothes out the random numbers
into something more predictable.
We would prefer that our synthetic data be zero-mean. We could use Attr to com-

pute the mean, then use Add, with a hard-coded makerule to subtract the mean
value. However, we will use some trickery to do this automatically. Look at this

command:
< 0.H Add scale=-1 | Add add=‘'< 0.H Attr param=1 | Get parform=n mean-—
val? | Add scale=-1 > randld.H

First we scale 0.1 by -1. Then we play a shell script trick, using the attr com-
mand, to extract the mean value from 0.1, and then add to add the mean value
back to 0.n. Last, we scale the result by -1. The random data is displayed in the
top panel of Figure 5.16.

View the data’s spectrum The second panel of Figure 5.16 shows the spectrum of the
smoothed-random input data. It was made by the following command:
< randld.H Rtoc | Ft3d signl=-1.0 centerl=1.0 | Cabs > ispc.H
Rtoc creates a dummy complex-valued dataset using randid.H, where the real
partis randid.H and the imaginary part is zero. rt3d is a general purpose Fourier
Transform program. cabs can compute the power spectrum of the FT ed data:
“data*conjugate(data)”.

Estimate a 1-D PEF From the input data (top panel of Figure 5.16), we can estimate a
one-dimensional PEF with the following command:

68 CHAPTER 5. EXAMPLE FLOWS

< randld.H Pef a=4 > pefl.H

a=4 tells us that the filter is one-dimensional and that it has four coefficients in
total, or three free coefficients, since the first coefficient is constrained to be one.
In general, a is a comma-delimited array of filter dimensions. A 5x3x2 PEF would
require a=5,3,2. See the pef documentation for a full list of parameters. The
most important additional parameter is the center parameter, which controls the
location of the constrained “1” in a multidimensional filter template.

View the PEF Spectrum The bottom three panels of Figure 5.16 show, the power
spectra of the inverse impulse responses of 4, 10, and 24-coefficient PEFs esti-
mated from the input data. To do this, we create a spike using the spike program,
deconvolve it by the PEF using Helicon, and finally compute the power spectrum
using Ft3d and cabs as discussed above. Deconvolution with Helicon uses the
following syntax:
< spk.H Helicon filt=pefl.H div=1 > irl.H

Things to modify/watch out for Be aware of:

e rt3d accepts data with lengths of powers of two only; use pad when neces-
sary.

e pref - Note from Figure 5.16 that as the filter gets longer, the quality of PEF
approximation to the true data spectrum improves. In the limit N, — Nya14,
the two are equivalent. The PEF tradeoff is between speed (number of filter
coefficients) and accuracy.

Input,nlk64
Figure 5.16: From top to bottom: 1)

IHPUt?Eiiff?\hv/\/\/VA/VA//\/\\AV\AV\A\/\V‘A\/\\/
Smoothed random 1-D function, 64
samples. 2) Power spectrum of in-
put function. 3-5) Spike deconvolved v, PEM
by 1-D PEFs of length 4,10, and 24,

respectively, and then Fourier Trans-
formed. ‘examples—randld—spec ‘

[ER]
[nv. PEF Spectrum, Na=10
[nv. PEF Spectrum, Nf(ji{ﬁ/\/N\//\\//\\\//\V/\/\g\\ﬂ\‘

5.4. PEFS 69

Seismic data decon with a 1-D PEF The spectrum of a PEF is the inverse of the spec-
trum of the data on which was estimated. Therefore if you convolve the PEF with
the data using Helicon with the option div=0, you will have done decon on the
data. PEF estimation can use up a lot of computer time and of memory when the
PEF and the dataset are large. You do not need to use the entire dataset for a single
PEF estimation, do it on small data portions (which can be as small as a single
trace) at various midpoint and offsets, and if the PEFs look very similar then you
can simply stack them to get a more representative one and to get rid of small local
errors. Memory limitations or other problems may require you to cut the data into
parts, such as common-offset sections, when applying the filter too, and reassem-
ble it at the end. Do not forget to apply a Bandpass — deconvolution will whiten
the spectrum all the way up to Nyquist. See an example in Figure 5.17.

Flow 2-D PEF estimation and texture synthesizing - General procedure:

Texture Library - Some small digitized textures are available in SEP’s data library for
testing on small 2-D filtering problems. The so-called “herringbone fabric” texture
is shown in the upper-left panel of Figure 5.18.

PEF Estimation - The command to estimate a 10x10 PEF from the herringbone texture
is the following:
< herr.H Pef a=10,10 maskout=mis.herr.H > pef.herr.H
Note the maskout argument. mis.herr.H shows which portions of the data were
used in the PEF estimation, and is plotted in Figure 5.18. On this 2-D filter, the
constrained “1” lies at the default location, (5,1). Thus the null area on mis.herr
is 9 points on the left, 5 points on the top and bottom, and zero points on the right.
The inverse impulse response of the PEF, shown in the panel marked “1/PEF” in
Figure 5.18. As shown earlier, this panel is computed with program selicon, via
deconvolution (polynomial division). As hoped, this panel looks similar to the
input data. As a confirmation, note that the prediction error, the panel marked
“PEF*Data”, is nicely decorrelated.
The bottom two panels on Figure 5.18 illustrate the texture synthesis process. The
logic can be stated simply: if convolution of PEF and Data produces white noise,
then deconvolution of a different panel of white noise by the PEF should produce
something grossly similar to the data. From the figure, we see that this is so.
While the synthesized texture has the same “feel” as the herringbone texture, the
synthesized result doesn’t have the same “dip” discrimination as the input. This is
due to the nonstationarity of the input’s dip field.

Missing Data 1 Figure 5.19 illustrates what happens when some of the input data is
missing. A tree-shaped hole has been cut out of the original herringbone texture.
While the output filter mask illustrates that around half of the data has not been
used in the PEF estimation, the inverse impulse response, the prediction error, are
all similar to Figure 5.18, illustrating that the PEF still captures the gross character
of the data.

Missing Data 2 Figure 5.20 shows a different kind of missing data problem. A missing
data mask was designed via the following command:

70 CHAPTER 5. EXAMPLE FLOWS

DATA SPECTRUM BEFORE DECON

s -

T T T
50 0

H
5 -

[S—)

DATA SPECTRUM AFTER DECON AND BANDPASS

T T T

E]
=
]
H]
H
5|

)

PEF SPECTRUM

(s)eourry
(s)suzty

T T T
©]

Homelsh

PREDICTION-ERROR FILTER (TIME DOMAIN)

VWV W

DATA BEFORE DECON DATA AFTER DECON AND BANDPASS J . i “ w :

Figure 5.17: Left: CMP gather (courtesy of Gulf Science and Technology Company) before
and after decon. There is less ringing now. Right: Data spectra before and after decon, PEF
spectrum and time-domain plot. ‘examples—seis_decon ‘ [ER]

5.4. PEFS 71

< tree-hole.HH Add scale=0 | Noise type=0 | Add scale=0.5 | Add add=0.5
| Clip chop=less clip=0.025 > mask0.H

Math exp="filel/filel" filel=maskO.H >

Uniformly-distributed noise is first generated by the Noise program. By default,
the distribution is over the interval [—1 1]. To shift the random numbers to the

[0 1] distribution, the noise is scaled by 0.5 then shifted up by 0.5. The c1ip pro-
gram is then used to clip any values in the noise less than 0.025 to zero. Finally,
the result is divided by itself, to create a mask of mostly ones, with a few zeros.
The zeros correspond to the missing data.

Although very few points are missing, we see from the output filter mask in Figure
5.20 that these tiny holes are expanded greatly. Apparently, only in very few places
will the 10x10 filter template fit on all known data points. While in the previous
example with the tree-shaped hole, we were able to get a good PEF estimation,
here we have not been so lucky. The PEF has only picked up one of the dominant
dips in the data. We see this from the inverse impulse response and the synthesized
texture.

The moral of this story: even for tiny holes, we may not be able to get a good
PEF estimation. One solution is to use a smaller PEF. Chances are that a 7x3 PEF
would have sufficed to whiten the data in this case, and it would have fit much
better in between the small holes.

Things to modify/watch out for Be aware of:

e pef - Even if holes in your data are small, you may not get a good filter esti-
mation. Use maskout to see how much data contributes to the PEF estimation.

e Math - When dividing two files (or a file by itself), any divisions by zero are
set to zero, although the program will warn the user.

72 CHAPTER 5. EXAMPLE FLOWS

1/PEF PEF*Data

Output Filter Mask Random Noise Noise /PEF

Figure 5.18: Top row: 1) Herringbone fabric texture, 2) Inverse impulse response of PEF
estimated from texture. 3) Prediction error: PEF convolved with data. Bottom row: 1) Output
filter mask. Only this data is used in the PEF estimation. 2) Random Noise. 3) “Synthesized
texture”; the noise deconvolved (colored) by the PEF. ‘examples—pede ‘ [ER]

1/PEF PEF*Data

Input Filter Mask Output Filter Mask

Figure 5.19: Top row: 1) Herringbone fabric texture, 2) Inverse impulse response of PEF
estimated from texture. 3) Prediction error: PEF convolved with data. Bottom Row: 1) Known
data mask. 2) Output filter mask. Only this data is used in the PEF estimation. 3) “Synthesized
texture”; the noise deconvolved (colored) by the PEF. ‘examples—pede.hole.tree ‘ [ER]

5.4. PEFS 73

Input Data 1/PEF PEF*Data

sy ;

Input Filter Mask Output Filter Mask

Figure 5.20: Top row: 1) Herringbone fabric texture, 2) Inverse impulse response of PEF
estimated from texture. 3) Prediction error: PEF convolved with data. Bottom Row: 1) Known
data mask. 2) Output filter mask. Only this data is used in the PEF estimation. 3) “Synthesized
texture”’; the noise deconvolved (colored) by the PEF. ‘examples—pede.hole.rand‘ [ER]

74

CHAPTER 5. EXAMPLE FLOWS

Chapter 6

Tricky things

6.1 Piping in SEP3d

Piping is an incredibly useful feature to avoid creating numerous junk files in your directory
and on the scratch disks. The general rule for piping SEPIlib programs (not SEP3D) is that
you can’t seek on anything going through a pipe. For example, if you run < in.H First.x
|Second.x >out.H , First.x can seek its input and second.x can seek its output but the
converse is not possible. The same rule applies to SEP3D. As long as you are doing sequential
accessing of the headers, grid, and data, you can pipe from one SEP3D program to another. For
example, you can pipe <in.H Headermath | Headermath >out.H,butnot<in.H Headermath
| sort3d >out.H because sort3d does backward and forward seeks on its input and output
when reordering the traces.

6.2 Handling large files

One problem when handling 3-D data is the large size. Much of SEPIib used an int to specify
the location within a file. Unfortunately, the dynamic range of an int is limited to 2GB. As
a result, many of the SEPIlib library had to be rewritten to handle the additional file size in
a rather opaque manner! that could still efficiently access files. In addition to dealing with
the 2GB limit in our own software, we had to overcome problems with Unix systems and
standards that did not account for more than 2GB file sizes. For example, only recently has
Linux begun to support file sizes over 2GB and portable tar’s are limited to 2GB files. To
get around these limitations Dave Nichols wrote some preliminary support for multiple-file
datasets. This support has been expanded upon to allow the user to create a dataset composed
of multiple files, each not exceeding a user provided file size in Megabytes filesize.

The support for multiple file dataset provided two other benefits. First, the dreaded File
system full error is avoided. By specifying multiple directories for the datapath datap-

I'There is no machine independent way to specify an integer with more dynamic range.

75

76 CHAPTER 6. TRICKY THINGS

ath=/scrkal/bob/; /scrka2/bob/ SEPIib will switch the directory it’s writing its binary data
to when the file system is full or when a user-specified size limit (dirsize) is reached. Sec-
ond, cat3d can create a virtual SEPIib dataset by concatenating and updating grid and header
pointers, but leaving the large binary data files untouched.

The initial implementation of SEP3D did not allow piping between programs. As a result,
many large, intermediate results were required. The new version of SEPIlib allows piping by
opening up additional sockets for the header and the grid. However piping is only allowed
between SEP3D programs when certain conditions are met:

e init_3d() is called at the beginning of the program

e sep_3d_close() is called before the first writing of data

e no parameters (such as the number of traces) are changed after sep_3d_close

e data is written sequentially by the first program and read sequentially by the second

o the first and second programs read and write the same type of information (data, header,
and/or grid)

6.3 Fancy plotting

6.3.1 Advanced plotting

Now we would like to introduce you to some tricks that might help you to demonstrate your
results better. Often it is useful and spectacular to plot a wiggle plot on top of a raster plot.
That is a little tricky, but not too hard. First make our windowed input data again (if we don’t
still have it):

Window < Txx.HH minl=.4 maxl=.8 max2=1. > Txx_Windowed.H
Now run Ta2vplot once to make the “background” raster plot:

Byte < Txx_Windowed.H pclip=100 | \
Ta2vplot par=plotpar.p minl=.4 maxl=.8 max2=1. min2=.05 \
out=filel.v head=/dev/null

The out=filel.v tells Ta2vplot to write the output to “filel.v”; the head=/dev/null throws
the output history file away to the UNIX garbage-can device “/dev/nu11”.) Finally we run
Wiggle twice, once with thick “invisible” traces and once with half as thick standard yellow
ones:

6.3. FANCY PLOTTING 77

Wiggle < Txx_Windowed.H par=plotpar.p minl=.4 maxl=.8 max2=1. min2=.05 \
poly=no out=file2.v head=/dev/null plotcol=0 plotfat=10

Wiggle < Txx_Windowed.H par=plotpar.p minl=.4 maxl=.8 max2=1. min2=.05 \
poly=no out=file3.v head=/dev/null plotfat=5

Note how we had to specify all four limits to be sure that the plots produced by the very
different plotting programs Ta2vplot and wiggle would be compatible. (For some other plot
programs even this isn’t enough; we also have to turn off the “padding” between plot and
axes.) Now for the “advanced graphics”: to combine the three plots, we use a special pen
filter called “vppen”, which reads in and writes out the vplot graphical files used by SEPIib
programs.

vppen filel.v file2.v file3.v erase=once vpstyle=no | tube

vppen is not itself a SEPlib program, hence the lower-case initial letter and why we had to use
out= above. (There is a SEPIib version called vppen that we could have used, but history files
become less useful at this point.) Note that we didn’t really need to use vppen above; we could
have just done

tube filel.v file2.v file3.v erase=once

directly. It is useful to do such manipulations with vppen because it lets us save the composite
plot as a single vplot file, in effect “flattening” the composite into a single plot. There is no
magic involved here; vppen is a vplot pen filter just like tube, and shares almost all the same
code. The only difference is that while tube draws plots on screens, vppen writes out “vplot
graphical language”. Suppose you plot something on your screen using tube with complex
options and multiple input files, and want to somehow save your graphical masterpiece in
such a way that you can reproduce it again later without so much trouble with options and
files. Simple: just replace tube with vppen and redirect the output. You have now saved your
masterpiece as a single vplot file. If you are looking at our example plot on your screen right
now you might be wondering why we went to the trouble of creating the “invisible wiggles”
file fi1e2.v. We hope that after you examine the hardcopy version in Figure 6.1 the reason
should become evident! Examining Figure 6.1 you may also notice there are two titles. While
various plot programs like wiggle and Ta2vplot are consistent in their options for things like
where to put the title, which way to put axes, etc, for historical reasons they are not consistent
in their defaults. So if you want to get plots from different programs to exactly overlay in
general you have to specify everything. Since we did not specify whether to put the title above
or below the plot, we got the (different) default for each. You shouldn’t have trouble getting
around such annoyances. (Usually you just turn off the axes and labels for all the parts but
one.)

6.3.2 Plot matrices

Perhaps the previous example seemed a little technical for you. How about this one then?
Often you want to compare two plots side by side (or squeeze more figures into your expanded

78 CHAPTER 6. TRICKY THINGS

Offset, kilometers
0.2 0.4 TxxX0.56 0.8

¥'0

©
9
=
3
o
w &
o D
o)
o
jm]
o,
0
e
~2
©
fos
0.2 0.4 Txx0.6 0.8
Offset, kilometers
fﬁgure 6.1: vppen filel.v file2.v file3.v erase=once vpstyle=no | pspen

|tricky-Overplot| [ER]

abstract). vppen can do that too, but you may find it easier to use a utility shell that calls vppen
with the correct arguments for you:

vp_SideBySideIso filel.v file3.v | tube
Figure 6.2 shows the results. Don’t forget to
rm file[1l-3].v

with a lower-case rm when done!

6.4 Headermapping on the fly

Any program written with the superset library automatically allows on the fly header manipu-
lation. This manipulation includes all of the functionality of Headermath with the added ability
to convert header axis coordinates. The manipulation is done within the sep3d_grab_headers
routine. In the parameters, specify tag-extra_keys (Where tag is the tag from which you are
trying to read) to a ":" deliminated list of new keys to create when reading in this dataset.

For each key you must then specify a parameter tag-key-eqn. The equation must be in
the same form as those for Headermath. In addition to keys, an axis might be specified. For

6.5. SU SUPPORT 79

Offset, kilometers

o 0.2 0.4 0.8 0.8 1 o
IS IS
q
o o { 2
(o)) (o))
=
: 5
w © o
o o & § %
o
o]
5 %
a
1%}
o o ?
-2 -2 <
o o
e Txx @ 0.2 0.4 0.8 0.8 1

Figure 6.2: vp_SideBySideIso filel.v file3.v | pspen ‘tricky—SidebySide‘[ER]

example, to convert a regular SEP dataset (with the third axis CMP) to a SEP3d dataset your
parameters would include:

in-extra_keys="cmp_x"

in-cmp_x-egn=axis3

A more sophisticated example can be found in the examples/segy directory in the rules to
make reg_segy.su and reg_segy.segy.

6.5 SU support

The creation of the superset library made possible another new element included in this
release of SEPIib: the ability to use SU programs with SEPIib data. A SEP3D dataset with a
header is similar but more free form than the SU format. SEP3D allows the user to have any
number of keys in any order, named arbitrarily, and doesn’t require them to be in the same
order as the data. SU data is a single file containing a series of traces. Each trace is made up
to 82 keys and data. Access is done almost exclusively sequentially, through the puttr and
gettr routines. The routines gettr and puttr are in turn aliased to fgettr and fputtr, where
the f refers to a file. The library sepsu contains two new routines: tgettr and tputtr, which
instead use the sep3dtag to access the data. These two routines are calls to the superset
library read and write routines with a conversion to and from the SU segy structure. To add a
little more flexibility the library provides some additional command line arguments:

nmem the library buffers as it reads and writes. nmem is the number of traces that are
buffered

sukey=sepkey tells the library that sepkey should be treated as this sukey

sukey.fract=val tells the library to scale the key value it reads by val and writes by 1./val

80 CHAPTER 6. TRICKY THINGS

suinput tells the program that the input file is in SU format

suoutput tells the program that the output file should be in SU format

The following program converts from SEP3D to SU, and shows just how easy it is to write
code that can take advantages of both software packages.

6.5.1 Example

segy tr;
int main(int argc, char **argv)
{
int 1i;
int 1i;
int verb;
/* hook up getpar */
initpar (argc,argv); getch_add_string ("suoutput=1");
initargs (argc, argv);
verb=1000000;
getch ("verb","d", &verb) ;
requestdoc (1) ; i=0;
if (!'gettr(&tr)) err("can’t get first trace");
do { i++;
fputtr (stdout, (&tr));
if (i%verb==1) fprintf (stderr,"converted %d traces \n",1i);
} while (gettr(&tr));
return EXIT_SUCCESS;

In the above, the gettr reads SEP3D and the fputtr writes out SU data. One thing to note
is the Ex1T_success. In order to make SEP3D data work the total number of traces must
be known. The ex1sT_succEess call is aliased to a call to finish_susep which updates the
number of traces if it has changed within the program. To compile and run SU programs you
need to:

e have the SEPIib include directory specified before the SU include directory

e link with 1ibsepsu.a and libsuperset.a before linking with any of the SU libraries

Chapter 7

Makerules

Make is a smart scripting language for generating commands. The syntax for make can be
quite simple or quite complex. Schwab (1996) provides information on SEP’s philosophy
and how we use make for our reproducible documents. For a complete description of make
features type xinfo (or look in /usr/local/src/gnu/make-* the files of the form make.info-*
contain the source for xinfo). Another good source for examples are old SEP reports.

7.1 Compile Rules

SEP has a fairly sophisticated set of make rules to make compiling programs easier. To use
SEP’s make rules you need to put at the top of your makefile:

include ${SEPINC}/SEP.top
and at the bottom of your Makefile:
include ${SEPINC}/SEP.bottom

All of SEP’s compiling rules are based on using a standard suffix convention so let’s start by
listing the acceptable suffixes:

e c:Ccode

o .C:C++code

e .java: java code
e Fortran77

— .f: strict fortran77 code

81

82 CHAPTER 7. MAKERULES

.I : ratfor code

.1s : ratfor with SAW conventions

st : ratfor with SAW conventions and temporary arrays

.1t : ratfor code with temporary arrays
e Fortran90

— 190 : strict fortran90 code
— 190 : ratfor90 code (similar to ratfor)

— 1590 : ratfor90 code + saw conventions

As your program becomes more complex (more files, libraries, compiling options, etc.) your
Makefile complexity increases similarly.

¢ In the simplest case, when you write a program that is contained in a single C, Fortran77,
Fortran90, or C++ file (for example program.c) you just have to type gmake program.x
to compile the program and to link it with SEP and system libraries.

e If you want to link additional object files to create the executable add the rule:
program.x: subs.o

where subs.suffix (the list above) is another source file in which you wish the exe-
cutable to be linked with.

o If this level of sophistication is not sufficient there exist a number of predefined variables
that you can add to your Makefile that perform special functions. Below is a list of the
variables, what they do, and where they must be placed in the mMakefile. All of the
variables need to be assigned in the following manner:

VAR = mydefinition

— Debugging/Optimization

— pEBUG [before SEP.top], set it equal to anything and the program will compile in
debug mode. If you plan to use a debugger on your code YOU MUST set this flag.

* OLEVEL [before SEP.top] sets the optimization to manual control. It defaults
to a fairly intelligent value, so you should normally not set this.

x No_r1x [before SEP.top], keeps .f90 files (created from .r90 and .rs90 files).
You need this if you’re using a debugger.

— Adding libraries : when you write more complex programs you will often create
your own library. To link with this library using the standard make rules you need
to define the following variables:

7.2. EXAMPLE AND TRANSLATION 83

* UF90LIBDIR, UF77LIBDIR, UCLIBDIR [after]: by using this option you can
add a path to the list of directories. The linker looks for libraries of the form
—lmylib.a.

* UF90LIBS, UF77LIBS, UcLIBS [after]: you can add additional libraries to
link with. You can use either the standard form -1mylib.a, which will search
the system, SEP, and any library path you defined for the libray 1ibmy1ib.a or
you can explicitly link in a library using the -1/my/1ib/is/here/libmylib.a.

— Adding compiling flags : sometimes you might want to have additional compiling
flags. Three common reasons are: to add an additional directory to look for include
files (of the form -1/my/include/dir); to specify the form of a fortran90 code
(fixed or free); or to define some preprocessors flags (of the form -pMYPREFLAG).

* UF90FLAGS, UF77FLAGS, UCLFLAGS [after] :to add compile flags for a given
type of a compiler.

7.2 Example and translation

Makefiles have a very specific form that must be followed. It is probably easiest to explain in
an example.

7.2.1 Example Makefile

include ${SEPINC}/SEP.top

UF90LIBS=-1geef90

BINDIR=/net/kana/marie/bin/${MIYPE}

RESDIR=./Figs

RESULTSER=small

S{RESDIR}/small.v: data.H S${BINDIR}/Nmo.x
Window max2=50 < data.H > junk.H
${BINDIR}/Nmo.x < junk.H > junk2.H
Grey < junk2.H > /dev/null out=53@

clean:jclean

include ${SEPINC}/SEP.bottom

This is a very simple Makefile. Now if you were to type "make Figs/small.v" on the command
line, it will look for data.H and compile Nmo.x (if it doesn’t already exist), cut data.H down
to 50 samples on the second axis, perform the NMO coded in Nmo.x (all of the dependencies
are taken care of automatically), prepare it to be viewed, and save it in the Figs directory as
small.v.

84 CHAPTER 7. MAKERULES

7.2.2 Translation

This is a line-by-line translation of the example Makefile.

include ${SEPINC}/SEP.top and include ${SEPINC}/SEP.bottom : these must be included
to use SEP’s make rules.

UF90LIBS=-1geef90 : this adds a Fortran90 library to link to. You can also use UF90LIBDIR
to provide a path to extra Fortran90 libraries. You may also use UF77LIBS/DIR and UCLIBS/DIR.
See the Libraries chapter for descriptions of the contents of each library.

BINDIR=/net/kana/marie/bin/${MTYPE} : this tells the make rules where to find the exe-
cutables you want to use. In this case, I am using files on marie’s personal device in her bin
directory and the MTYPE lets the make rules decide which subdirectory it needs (Machine
TYPE).

RESDIR=./Figs : this tells the make rules where to put your results, in this case the "Figs"
directory.

RESULTSER=small : the only Easily Reproducible RESULT you get from this Makefile is
"small". You could also have RESULTSNR (Non-Reproducible) and/or RESULTSCR (Con-
ditionally Reproducible).

${RESDIR}/small.v: data.H ${BINDIR}/Nmo.x : here you state what your target is (we want
to make Figs/small.v) and what it depends on (we must have data.H and /net/kana/marie/bin/SGI64/Nmo.x).

Window max2=50 < data.H > junk.H : this pulls a section of the data out and puts it in
junk.H. IMPORTANT NOTE: after the line which contains the target and dependencies, all of
the lines for this target MUST begin with a TAB. You can’t use spaces, you must use TAB.
Remember when you copy and paste the tab may become spaces - you must replace them with
a TAB.

${BINDIR}/Nmo.x < junk.H > junk2.H : now we feed junk.H into the NMO program and
get the result junk2.H.

Grey < junk2.H > /dev/null out=$@ : finally we can prepare the file for viewing. Rather
than having to restate the target’s name, here you can simply call it se. Note that when using
"Grey" to make a .v file you must specify the results as "out=" and output to /dev/null.

clean:jclean : this is the clean rule. When you type "make clean" on the command line this
will remove all intermediate files to clean up your directory.

REFERENCES

Schwab, M., Karrenbach, M., and Claerbout, J., 1996, Making scientific computations repro-
ducible: submitted for publication in Computer in Physics, ??, 7?7

Chapter 8

Libraries

SEPIlib and SEP3D are designed to carry out fairly simple, commonly used operations on
datasets. Through the years many additional subroutines/functions have been written to per-
form more complicated processing on SEPIlib and SEP3D datasets, or to be used by other
programs. Many of these have been organized in various libraries. This chapter gives brief
descriptions of many of the subroutines/functions available in our libraries. Better descriptions
can be obtained through self-documentation (not available for everything listed here) or on-
line at http://sepwww.stanford.edu/software/seplib/html_docs/index.html. Knowing
which subroutines/functions are in which library becomes important when you write complex
programs and use makefiles, as described in the Makerules chapter.

8.1 Summary of libraries

sep This is the SEPIib base library.

sep3d This is the SEP3D base library.

sep2df90 This is the library containing the Fortran90 interface for handling sep2d datasets.
supersetf90 This is the library containing the Fortran90 interface for handling SEP3D datasets.
sepaux This is the library that catches all of the useful functions that don’t fit anywhere else.

sepauxf90 This is the library that catches all of the useful Fortran90 functions that don’t fit
anywhere else.

geef90 This is the Fortran90 GEE (Geophysical Estimation by Example) operator library.
sepfilter This is the library containing functions that deal with filtering.
sepfilterf90 This is the Fortran90 library containing functions that deal with filtering.

sepfft This is the library containing functions that do FFTs.

85

86 CHAPTER 8. LIBRARIES

septravel This is the library containing functions that calculate traveltimes.
sepvelanf This is the library containing Fortran77 functions that deal with velocity.
sepvelanf90 This is the library containing Fortran90 functions that deal with velocity.
sepmath This library contains math functions, especially complex C functions.
sepmathf90 This library contains Fortran90 math functions.

sepsu This library contains functions that allow SEPlib and SU to interface.
sepoclibf90 This is the Fortran90 out-of-core inversion library.

sepweif90 Library for performing wave equation migration.

sepmpi/sepmpif/sepmpif90 Library for doing mpi with SEPIib files.

8.2 Library: sep

This is the SEPIlib base library.

auxclose Close a SEPIib history file

auxpar Get a parameter from auxiliary file

sepwarn Print a string and return a specified value
evaluate_expression Evaluate a mathematical expression
puthead Put a formatted string to SEPIib history file
auxputhead Put a formatted string to SEPIlib auxiliary history file
make_unpipe Unpipe a SEPIib file (therefore back seekable)
getch Grab a parameter from command line
getch_add_string Add parameters to the command line
fetch Grab a parameter from the command line or history file
hetch Grab a parameter from input history file

putch Put an argument in output history file

doc Program self documentation

sreed Read in an array from a SEPIib file

8.3. LIBRARY: SEP3D

sseek Seek to a position in a SEPIlib dataset

sseek_block Seek to a position in a SEPIlib dataset by blocks
seperr Print line and exit with a failure code

initpar Initiate SEPlib I/O parameter handling

datapath The datapath to put seplib binaries

copy_history Copy the contents of one history file to another.
srite Write an array to SEPIlib tag

ssize Obtain the size of a SEPIib file

ssize_block Obtain the number of blocks in a SEPIib file
auxputch Put a parameter into auxiliary file

sreed_window Read a window of a SEPIib dataset

srite_ window Write a SEPlib window

fullnm Expand a filename to a fully qualified name with all path prefixes
alloc Allocate a C array with error checking

slice Write an array to the screen (through Grey etc)

h2¢ Convert from helical to cartersian coordinates

c2h Convert from cartesian to helical coordinates

hclose Close the SEPIib output history file

8.3 Library: sep3d

This is the SEP3D base library.

sep_put_number_keys Put the number of keys

sep_get_val_headers Get the header values

sep_put_val_by_index Puts the header value into the header values file by index
sep_reorder_data Reorder the traces of a SEPIib dataset

sep_get_number_data_axes Get the number of data axes

87

88 CHAPTER 8. LIBRARIES

sep_get_number_header_axes Get the number of header axes
sep_get_number_grid_axes Get the number of grid axes
copy_data_pointer Copy the data pointer from one file to another
sep_set_no_headers Set no headers to an output tag

sep_set_no_grid Set that the output tag does not have a grid
sep_copy_gff Copy the grid format file from one SEP3D file to another
sep_copy_hff Copy the header format file from one SEP3D file to another
sep_extract_val_by_index Extract a header value by its index
sep_get_key_name Get the key name associated with a key index
sep_get_val_by_name Get the header value by name

sep_3d_close Close SEP3D format files

sep_get_number_keys Get the number of keys

sep_get_key_fmt Get the format of a key

sep_put_val_headers Write a header block

init 3d Initialize SEP3D 1/O

sep_get_key_index Get the index of a key

sep_copy_header_keys Copy keys from one SEP3D file to another
sep_put_key Write the key info to a tag

sep_put_grid_window Write a window of the grid
sep_get_grid_window Read a window of the grid

sep_copy_grid Copy a grid from one tag to another
sep_get_data_axis_par Grab data’s n,o,d and 1abel
sep_get_header_axis_par Grab headers’s n, o, d and 1abel
sep_get_grid_axis_par Grab grid’s n, o, d and 1abel
sep_get_key_type Get the key type associated with an index
sep_put_header_axis_par Putn,o,d, label of the headers to output tag
sep_put_data_axis_par Putn,o,d, label of the data to output tag

sep_put_grid_axis_par Putn,o,d, 1abel of the grid to output tag

8.4. LIBRARY: SEP2DF90

8.4 Library: sep2df90

This is the library containing the Fortran90 interface for handling sep2d datasets.

from_history Grab parameters from the history file

from_aux Grab parameters from an auxiliary file

from_param Grab parameters from the command line or parameter file
from_either Grab parameters from the command line, parameter file or history file
to_history Store parameters in the output history file

sep_read Read a SEPIib dataset

sep_write Write a SEPIib dataset

sep_init Initialize a SEPIib dataset

sep_close Close a SEPIib format file

sep_dimension Returns the number of dimensions in dataset

8.5 Library: supersetf90

This is the library containing the Fortran90 interface for handling SEP3D datasets.

sep3df SEP3D Fortran90 structure (superset)

init_sep3d Initialize a SEP3d type

sep3d_grab_key_vals Grab header values from a C structure
sep3d_set_key_vals Set header values in a C structure
sep3d_read_data Read in data

sep3d_write_data Write out data

sep3d_grab_sep3d Synchronize f90 structure with C structure
sep3d_set_sep3d Synchronize C structure with f90 structure
valid_structure Check if SEP3d structure is valid
sep3d_grab_headers Grab the headers

sep3d_write_description Write out the format file info

89

90 CHAPTER 8. LIBRARIES

sep3d_add_drn Add data record number

sep3d_Kkey_index Try to find a key in a structure
sep3d_axis_index Try to find a axis in a structure
sep3d_set_number_headers Set the number of headers to store

sep3d_store_grid_values Store a grid

8.6 Library: sepaux

This is the library that catches all of the useful functions that don’t fit anywhere else.

pad_it Pad an array
cent nth percentile of an array
pqueue Heap priority queue

sgainpar Gain seismic data

8.7 Library: sepauxf90

This is the library that catches all of the useful Fortran90 functions that don’t fit anywhere
else.

interpolate_mod Linear interpolation

quick_sort Quick sort

8.8 Library: geef90

This is the Fortran90 GEE (Geophysical Estimation by Example) operator library. Expanded
descriptions can be found in GEE, which is on-line.

mspef Find a multi-scale prediction error filter
lopef Estimate a pef in patches
pef Find a prediction error filter

npef Find a non-stationary prediction error filter

8.8. LIBRARY: GEEF90

createhelix Create a helix filter

helix Module containing allocate and deallocate of a helix filter
createnhelix Create a non-stationary helix filter

nhelix Module containing allocate and deallocate of a nhelix filter
createmshelix Create a multi-scale helix filter

compress Compress a helix filter

helderiv Helix derivative filter

nhelicon Non-stationary convolution

helicon Convolution using helix filters

heliarr Two helix convolutions

regrid Convert a helix filter from one data space to another
helixcartmod Convert to and from cartesian/helix space

conv Convolve helix filters

hconest Convolution using helix filters, adjoint is filter

nhconest Non-stationary convolution using helix filters, adjoint is filter
mshconest Convolution using multi-scale helix filters, adjoint is filter
wilson Wilson’s factorization

cross_wilson Wilson factorization of cross-correlation

mshelicon Convolution using multi-scale helix filters

pefest Find a prediction error filter, avoiding bursty noise

mis2 Fill in missing data

nmis2 Fill in missing data using a non-stationary filter

bound Find the boundaries of a filter on given map

nbound Find the boundaries of a multi-scale filter on given map
conjgrad One step of the conjugate gradient solver

cdstep One step of the conjugate direction solver

cgstep One step of the conjugate gradient solver

91

92 CHAPTER 8. LIBRARIES

cgmeth Conjugate gradient method

gauss Solve a system by gaussian elimination

Isqr Solve a system of using lsqr method

solver Solve a system of equations

solver_reg Iteratively solve a regularized system of equations
solver_prec Iteratively solve a preconditioned system of equations
nonlin_solver Generic non-linear solver program
irls Weighting functions for least-squares

lintl 1-D linear interpolation

lint2 2-D linear interpolation

dottest Perform a dot product test on an operator
ddot Calculate double precision dot product
autocorr Compute a filter’s auto-correlation
binpulll Nearest neighbor interpolation

binpull2 Nearest neighbor interpolation, 2D

invint Inverse linear interpolation

lapfac Factor a 2-D Laplacian

signoi Signal and noise separation

partan Partan step

box Filter to hypercube

cartesian Convert to and from cartesian coordinates
chain Create a chain of 2,3, or 4 operators

array Create an array operator

polydiv Polynomial division

npolydiv Non-stationary polynomial division
steering 2-D steering filters

weight Simple weighting operator

8.9. LIBRARY: SEPFILTER

misinput Find a mask of missing filter inputs
adj_mod Simple adjnull function

causint Causal integration

cdoubint Double causal integration
matmult Matrix multiplication

triangle Triangle smoothing

trianglel Triangle smoothing

triangle2 Triangle smoothing

quantile Find quantile of the data

igradl 1D gradient operator

igrad2 2D gradient operator

refine2 Refine mesh

msmis Fill in missing data using a multi-scale filter
steepdip Find a steep dip decon filter

patch Extract and put back patches

8.9 Library: sepfilter

This is the library containing functions that deal with filtering.

energy Calculate energy in running windows along fast data axis

8.10 Library: sepfilterf90

This is the Fortran90 library containing functions that deal with filtering.

burg Burg deconvolution
burg2 Burg 2D convolution
butter Find a Butterworth filter
halfdifa Half causal derivative

boxconv Smooth by applying a box filter

93

94 CHAPTER 8. LIBRARIES

8.11 Library: sepfft

This is the library containing functions that do FFTs.

refft Real FFT along one trace
rvift Real vector FFT
cefft Complex FFT along one trace

cvfft Complex vector FFT

8.12 Library: septravel
This is the library containing functions that calculate traveltimes.

hwt_trace_rays Ray tracing using Huygens wavefront tracing
hwt_travel_cube Get travel times by Huygens wavefront tracing and then interpolate

fastmarch Get travel times using eikonal solver

8.13 Library: sepvelanf
This is the library containing Fortran77 functions that deal with velocity.

veltran Velocity transform with anti-aliasing and viw
rms2int Convert to and from rms/interval velocity

velsimp Simple velocity transform

8.14 Library: sepvelanf90

This is the library containing Fortran90 functions that deal with velocity.

nmo_mod Perform NMO

velan_subs_mod Do semblance analysis

8.15. LIBRARY: SEPMATH

8.15 Library: sepmath

This library contains math functions, especially complex C functions.

cmplx Create a complex number

cspow Raise a complex number to real power
cadd Add complex numbers

csqrt Take the square root of a complex number
csub Subtract complex numbers

cdiv Divide complex numbers

csmult Multiply a complex number by a scalar
cmult Multiply complex numbers

cexp Returns exp(complex number)

ciexp Returns exp(imaginary number)

cinv Inverse of a complex number

clog Complex log

cneg Negative of a complex number

conj Complex conjugate

sqroot Square root

8.16 Library: sepmathf90

This library contains Fortran90 math functions.

hermtoep Solve a hermitian toeplitz system

95

96 CHAPTER 8. LIBRARIES

8.17 Library: sepsu

This library contains functions that allow SEPIlib and SU to interface.

tputtr Put a given trace next in the output stream
tgettr Get the next trace from a SEP3d dataset
tgettr Read a specified trace from a SEP3d dataset

finish_susep Finish I/O for a SU like program using SEP3d data

8.18 Library: oclib

Paul Sava has written an out-of-core inversion library in Fortran90 that provides out-of-core
versions of the in-core inversion functions described as part of the GEE library. See the "How
to write a program" chapter for details on using these modules.

8.18.1 Summary of oclib

Algebraic operations on files module oc_file_mod
module of_filealgebra_mod
module oc_filter mod

Out-of-core operators module oc_adjnull_mod
module oc_scale_mod
module oc_weight_mod
module oc_helicon_mod
module oc_polydiv_mod
module oc_laplacian_mod
module oc_helocut_mod
module oc_dottest_mod
module oc_combine_mod

Out-of-core gradient solvers module oc_solver_mod
module oc_solverreg_mod
module oc_solverpre_mod
module oc_sd_mod
module oc_cg_mod
module oc_cgstep_mod
module oc_cd_mod
module oc_gmres_mod

Out-of-core LSQR solvers module oc_1sqr_mod
module oc_lsgrreg_mod
module oc_lsgrpre_mod

8.18. LIBRARY: OCLIB

8.18.2 oclib

Module oc_file mod

1. Purpose: defines the fileinfo type and basic operations on files.

2. Types
‘ member ‘ type | description
name | character (len=128):: fﬂetag
nd integer:: | number of file dimensions
esize integer:: | file element size
(@) fileinfo: n integer (nd) :: SEPl%b n for file
o real(nd):: | SEPIib o for file
d real(nd):: | SEPIlib d for file
blon integer:: | number of blocks
bloe integer:: | number of elements in a block
blob integer:: | number of bytes in a block

3. Functions and subroutines

(a) subroutine oc_allocatefile(file, t_, maxmem)
Purpose: allocate an object of type fileinfo
(b) subroutine oc_deallocatefile(file)
Purpose: deallocate an object of type fileinfo
(C) subroutine oc_infofile (file)
Purpose: print the file informations
(d) subroutine oc_checksimilarity(filel, file2,caller)
Purpose: check if two files have identical spaces and elements
e caller: string identifying the caller (optional)
(e) subroutine oc_checkspace (filel,file2,caller)
Purpose: check if two files have identical spaces
e caller: string identifying the caller (optional)
OD function oc_allocate (tmp,name,esize,n,o,d) result (t_)
Purpose: allocate a new file
o t_: filetag
e tmp: flag for temporary files
e name: file name
e csize: SEPIib esize (optional)
e n,o,d: SEPIlib n,o0,d (optional)

98 CHAPTER 8. LIBRARIES

(g) function oc_clone (tmp, tO_,name, maxmem) result (t_)
Purpose: duplicate the structure of a file in a new file
e t_: new file tag
tmp: flag for temporary files

e t0_: old file tag

e name: new file name

(h) subroutine oc_append(t_,s_, maxmem)

Purpose: append the contents of file s_ at the end of file t_

ﬁ) subroutine oc_adddim(t_, nnew)

Purpose: add a new axis to a file

e nnew: SEPlibn

G) subroutine oc_shapeheader (t_, esize, n,o,d)

Purpose: shape a file header
o t_: filetag

e name: file name

e esize: SEPIib esize

e n: SEPlibn

e o,d: SEPIib o,d (optional)

(k) subroutine oc_print (t_, maxmem)

Purpose: print the contents of a file
Module oc_filealgebra_mod

1. Purpose: defines algebraic operations on files
2. Functions and subroutines

(a) function oc_rdp(tl_,t2_,maxmem) result (dp)
Purpose: dot product of two real files

e t1_: vector of file tags
e t2_: vector of file tags

(b) function oc_cdp(tl_,t2_,maxmem) result (dp)

Purpose: dot product of two complex files

e t1_: vector of file tags
e t2_: vector of file tags

(C) subroutine oc_assign(t_, sca, maxmem)

Purpose: assign a value to an entire file

e sca: scalar (real or complex)

8.18. LIBRARY: OCLIB 99

(d)

(e)

(®)

(@)

(h)

@)

@

subroutine oc_linear (t0O_, ti_, scai, maxmem)

Purpose: linear combinations of files

e t_: output file tag

e ti_: vector of input file tags

e scai: vector of scalars to multiply the file tags
subroutine oc_random(t_, scale, maxmem)
Purpose: fill a file with random numbers (real or complex)

e scale: scaling factor for the ramdom numbers
subroutine oc_complexify (t_, maxmem)
Purpose: complexify a file
subroutine oc_mask (k_,t_, maxmem)
Purpose: mask a file with another file

e k_: mask file tag

e t_: data file tag
subroutine oc_product (t0_, ti_, maxmem)
Purpose: product of files

e t0_: product file tag

e ti_: vector of input file tags
function oc_norm(t_, maxmem) result (norm)
Purpose: return the norm of a vector

e t_: vector of file tags

e norm: (real) norm of the data in file t_
subroutine oc_normalize (t_, magnitude, maxmem)
Purpose: normalize a file

e t_: vector of file tags

e magnitude: magnitude of the data in file t_

Module oc_filter _mod

1. Purpose: definitions of the out-of-core helix filters

2. Types
‘ member ‘ type ‘ description ‘
(a) rfilter: fit real(:) | filter coefficients
lag | integer(:) | filter lags
‘ member ‘ type ‘ description ‘
(b) cfilter: fit | complex(:) | filter coefficients
lag | integer(:) | filter lags

100 CHAPTER 8. LIBRARIES

3. Functions and subroutines

(a) subroutine allocatehelix (aa, nh)

Purpose: allocate space for the filter coefficients

e za: helix filter (real or complex)

e nh: number of coefficients

(b) subroutine deallocatehelix (aa)

Purpose: deallocate filter space
e za: helix filter (real or complex)

(C) subroutine buildfilter (ff,x_, fbox, nf, maxmem)

Purpose: build a helix filter

e t£: output filter (real or complex)
e x_: file tag for the filtering space
e fbox: multidimensional array with the filter coefficients

e nf: number of coefficients

(d) subroutine printfilter (ff,nf)

Purpose: print the filter coefficients

o f£: filter (real or complex)
e nf: number of coefficients

Module oc_adjnull_mod

1. Purpose: nullify the output of an operator
2. Functions and subroutines
(a) subroutine oc_adjnull (adj,add, x_,yy_)
Purpose: nullify operator output

Module oc_scale _mod

1. Purpose: scaling operator
2. Functions and subroutines
(a) subroutine oc_scale_init (eps,maxmem)
Purpose: initialize the scaling operator

e cps: scaling parameter (real or complex)

(b) function oc_scale(adj,add, x_,yy_,opl ...op9) result (stat)
Purpose: scaling operator

8.18. LIBRARY: OCLIB 101

Module oc_weight_mod

1. Purpose: weighting operator
2. Functions and subroutines

(a) subroutine oc_weight_init (w_, maxmem)

Purpose: initialize the weighting operator
e w_: weighting file tag (real or complex)

(b) function oc_weight (adj,add, x_,yy_, opl ...op9) result (stat)
Purpose: weighting operator

Module oc_helicon_mod

1. Purpose: convolution on a helix
2. Functions and subroutines

(a) subroutine oc_helicon_init (aa, maxmem)

Purpose: initialize the helicon operator
e aa: helix filter (real or complex)

(b) function oc_helicon(adj,add, x_,yy_,opl ...op9) result (stat)
Purpose: helical convolution

Module oc_polydiv_mod

1. Purpose: polynomial division on a helix
2. Functions and subroutines

(a) subroutine oc_polydiv_init (aa, maxmem)
Purpose: initialize polydiv
e za: helix filter (real or complex)

(b) function oc_polydiv(adj,add, x_,yy_,opl ...op9) result(stat)
Purpose: helical polynomial division

Module oc_laplacian_mod

1. Purpose: Laplacian and similar operators.

2. Functions and subroutines

102 CHAPTER 8. LIBRARIES

(a) oc_laplacian_init (t_,nf,niter, maxmem)
Purpose: initialize the laplacian operators

e t_: filtering file tag
e nf: number of filter coefficients

e niter: number of Wilson iterations

(b) subroutine oc_laplacian_factor (bb,t_,nf,niter, maxmem)

Purpose: find a laplacian minimum-phase factor

e bb: laplacian minimum-phase factor (real or complex)
e t_: filtering file tag

e nf: number of filter coefficients

e niter: number of Wilson iterations

(C) function oc_laplacian(adj,add, x_,yy_,opl ...op9) result (stat)
Purpose: laplacian operator

(d) function oc_ilaplacian(adj,add, x_,yy_,opl ...op9) result(stat)
Purpose: inverse laplacian operator

(e) function oc_hderivative (adj,add, x_,yy_,opl ...op9) result(stat)
Purpose: helix derivative operator

ﬁ) function oc_ihderivative (adj,add, x_,yy_,opl ...op9) result(stat)

Purpose: inverse helix derivative operator
Module oc_helocut_mod

1. Purpose: Helix low-cut filter
2. Functions and subroutines

(a) subroutine oc_helocut_init (aa, maxmem)

Purpose: initialize the helocut operator
e za: helix filter (real or complex)

(b) function oc_helocut (adj,add, x_,yy_,opl ...op9) result (stat)
Purpose: helix low-cut filter

Module oc_dottest_mod

1. Purpose: dot product test on out-of-core operators
2. Functions and subroutines

(a) subroutine oc_dottest_init (no_add, adj_first, maxmem)

Purpose: init dot product test

8.18. LIBRARY: OCLIB

® no_add: Skip DP test for add=.true.
e adj_first: start DP test with the adjoint

(b) subroutine oc_dottest (oper, x_,yy_,opl ..

Purpose: dot product test

® oper: out-of-core operator

.op9)

103

104 CHAPTER 8. LIBRARIES

Module oc_combine_ mod

1. Purpose: combined out-of-core operators.
2. Functions and subroutines

(a) subroutine oc_chain(A,B,C adj,add, x_,yy_,opl ...op9)

Purpose: chain operators (overloaded)

D=+Am
D=ASBm
D=ABCm
e 12,B,C: out-of-core operators
(b) subroutine oc_row(Al,A2, adj,add, x1_,x2_,yl_,opl ...op9)

Purpose: row combined operator

m;
[A1 Az][}:D
my

e 21,A2: out-of-core operators

(C) subroutine oc_columnll (Al,eps,A2, adj,add, x_,vyl_,y2_, maxmem,opl ...op9)

o lm={02]

e A1,A2: out-of-core operators

Purpose:

e cps: scaling factor

(d) subroutine oc_column20(Al,Bl,eps, adj,add, x_,yl_,y2_, maxmem,opl ...op9)

i e [e]

e 21,B1: out-of-core operators

Purpose:

e cps: scaling factor

(e) subroutine oc_column2l1 (Al,Bl,eps,A2, adj,add, x_,yl_,vy2_, maxmem,opl

A1 B D,
m=
€ A2 D2

e Al1,A2,B1: out-of-core operators

...0p9)
Purpose:

e cps: scaling factor

8.18. LIBRARY: OCLIB

105

(f) subroutine oc_column30(Al,B1,Cl,eps, adj,add, x_,yl_,vy2_, maxmem,opl

...0p9)
Purpose:
A18B1C1 D,
m=
el D2
e 21,B1,C1,: out-of-core operators

e cps: scaling factor

106 CHAPTER 8. LIBRARIES

Module oc_solver_mod

1. Purpose: implements a basic least-squares gradient solver

Lm=~D
I(ZZ:ﬁIﬂo——I)
iterate {
g=L"R
G=JLg
(m,R) «—step(m,R, g,G)
}

2. Functions and subroutines

(a) subroutine oc_solver_init (niter,maxmem, verb, mmovie, dmovie, resstop)

Purpose: initialize the basic solver

e niter: iterations number

e verb: verbose flag (optional)

e mmovie: model movie output flag (optional)

e dmovie: data movie output flag (optional)

e resstop: stop iterations at this residual power (optional)

(b) subroutine oc_solver(L,S, x_,vyy_, x0_,res_,opl ...o0p9)

Purpose: simple solver

e 1.: out-of-core linear operator
e s: gradient step

e x0_: starting model tag

e res_: residual tag

8.18. LIBRARY: OCLIB

Module oc_solverreg mod

1. Purpose: implements a regularized least-squares gradient solver

e~V

2. Functions and subroutines

(a) subroutine oc_solverreg_init (niter, eps,maxmem, verb, mmovie, dmovie,

Purpose: initialize the regularized solver

e niter: iterations number

e cps: scaling factor

e verb: verbose flag (optional)

e mmovie: model movie output flag (optional)

e dmovie: data movie output flag (optional)

e resstop: stop iterations at this residual power (optional)

e rescale: rescale model (optional)

(b) subroutine oc_solverreg(L,A,S, x_,yy_, nreg, W ,k_,x0_,res_,opl
Purpose: regularized solver
e 1.: out-of-core linear operator
e 2: out-of-core regularization operator
e s: gradient step
e nreg: dimension of the regularization output
e 1u: out-of-core weighting operator
e k_: data mask tag
e x0_: starting model tag
e res_: residual tag

107

resstop, rescale)

..op9)

108 CHAPTER 8. LIBRARIES

Module oc_solverpre_mod

1. Purpose: implements a preconditioned least-squares gradient solver

WLP | [WD
el P 0

iterate {
g=[PrLow e[]
-]
([t]) —eeee(e e] -2 [2])
}

m = Fp

2. Functions and subroutines

(a) subroutine oc_solverpre_init (niter, eps,maxmem, verb, mmovie, dmovie, resstop, rescale)
Purpose: initialize the preconditioned solver
e niter: iterations number
e cps: scaling factor
e verb: verbose flag (optional)
e mmovie: model movie output flag (optional)
e dmovie: data movie output flag (optional)
e resstop: stop iterations at this residual power (optional)
e rescale: rescale model (optional)
(b) subroutine oc_solverpre(L,P,S, x_,yy_, npre, W ,k_,p0_,res_,opl ...o0p9)
Purpose: preconditioned solver
e 1: out-of-core linear operator
e p: out-of-core preconditioning operator
e s: gradient step
e npre: dimension of the preconditioning output
e u: out-of-core weighting operator
e k_: data mask tag
e po_: starting model tag
e res_: residual tag

8.18. LIBRARY: OCLIB 109

Module oc_sd_mod

1. Purpose: steepest descent step

sp(m,R,g,G) {
_ _(G'R) m=m-+ouog
*TTEo R=R+aG
}

2. Functions and subroutines

(a) integer function oc_sd(forget,x_,g9_,rr_,g9g_,s_, SS_,maxmem)

e forget: re-initialize operator

e x_: model file tag

e g_: gradient file tag

e rr_: residual file tag

e gg_: conjugate gradient file tag

e s_: previous step file tag

e ss_: conjugate previous step file tag

Module oc_cg_mod

1. Purpose: conjugate-gradient descent step

ce(m,R, g,G) {
g = e’ s=g+ps
llgk—1 112 S=G+p8S
__M m=m-u«os
“="s2 R=R+aS
}

2. Functions and subroutines

(a) integer function oc_cg(forget,x_,g_,rr_,99_,S_,SS_,maxmem)

e forget: re-initialize operator

e x_: model file tag

e g_: gradient file tag

e rr_: residual file tag

e gg_: conjugate gradient file tag

e s_: previous step file tag

e ss_: conjugate previous step file tag

110 CHAPTER 8. LIBRARIES

Module oc_cgstep_mod

1. Purpose: conjugate-gradient descent step
cestER(m,R,g,G) {
A=(G*-G)(S*-8)—($*-G)(G*-9)
a=—%[+(8*-S)(G*-R)—(G*-S)(S*-R)]
B=—1[-(G*-S)(G* R)+(G*-G)(S*-R)]

m=m+ag+ s
R=R+aG+8S

}

2. Functions and subroutines

(a) integer function oc_cgstep(forget,x_,9_,rr_,9g_,S_, SS_,maxmem)

e forget: re-initialize operator

e x_: model file tag

e g_: gradient file tag

e rr_: residual file tag

e gg_: conjugate gradient file tag

e s_: previous step file tag

e ss_: conjugate previous step file tag

Module oc_cd_mod

1. Purpose: conjugate-directions descent step

co(m,R, g,G) {
k—1
s=g+) Bisi
e C)) ‘ T
i = T (SFS) k—1
S=G+)_8S;
1
. _(s*.R) m=m-u«os
(8*-8) R=R+«aS
}

2. Functions and subroutines

(a) integer function oc_cd(forget,x_,g_,rr_,99_,S_,SS_,maxmem)

8.18. LIBRARY: OCLIB 111

e forget: re-initialize operator

e x_: model file tag

e g_: gradient file tag

e rr_: residual file tag

e gg_: conjugate gradient file tag

e s_: previous step file tag

e ss_: conjugate previous step file tag

Module oc_gmres_mod

1. Purpose: generalized minimum-residual descent step

cMrES(M,R,g,G) {

k—1
. g=g+) Big
ﬂl:_%) }< 1
gi‘gi —
G=G+)_ BiG;
1
yo D) s=g+s
(gZ,l'gk—L) S=G+yS
_ (g9 m=m-+as
(8*-5) R=R+a«aS
}

2. Functions and subroutines

(a) integer function oc_gmres (forget,x_,9g_,rr_,gg_, S_, SS_,maxmem)

e forget: re-initialize operator

e x_: model file tag

e g_: gradient file tag

e rr_: residual file tag

e gg_: conjugate gradient file tag

e s_: previous step file tag

e ss_: conjugate previous step file tag

112 CHAPTER 8. LIBRARIES

Module oc_lsqgr mod

1. Purpose simple LSQR solver

m=20
U=D B=VIU? U=4U
v=LU a=IvlE v=1ly
W=V
p=a $=p
iterate {
U=—-aU U=U+Lyv
p=VIUI? U=1u
v=—-8v v=v+L*U
a=VIvI> v=gv
p=yp+p
c:% p=—ca
s:% 0 =sa
¢ =c $=s¢
_¢ —_9
tl—-p Hh = -

m=m-+Hw
W =

|
<
4
E

——

2. Functions and subroutines

(a) subroutine oc_lsgr_init (niter,maxmem, verb,movie)

Purpose: initialize the simple LSQR solver

e niter: iterations number
e verb: verbose flag (optional)

e movie: movie output flag (optional)

(b) subroutine oc_lsqgr(L, x_,vyy_,opl ...op9)
Purpose: simple LSQR solver

e 1.: out-of-core linear operator

Module oc_lsqrreg_mod

8.18. LIBRARY: OCLIB 113

1. Purpose: regularized LSQR solver

e~

m=0

0] ="] p=VIUP U=1u
v=[Lrw eAﬂ[&ﬂ a=VIvIE v=1ly
W=V

p=a =8

iterate {

v=—ou [U]=[8]+[2]s

B=VIU? U=3U

v=—pv V=V [LEW eA] [g;’l]
a=/IIvlZ? v=1ly

p=gﬁ:§5

c==L = —cu

s:g g:sa

¢=%_ é=s%

tIZ:Z QZZ-—E

m=m-+Hw
W=

|
<
4
E

——

2. Functions and subroutines

(a) subroutine oc_lsgrreg_init (niter, eps,maxmem, verb,movie)
Purpose: initialize the regularized LSQR solver
e niter: iterations number
e cps: scaling factor
e verb: verbose flag (optional)
e movie: movie output flag (optional)
(b) subroutine oc_lsqgrreg(L,A, x_,yy_,nreg,W,opl ...op9)
Purpose: regularized LSQR solver
e 1.: out-of-core linear operator
e 2: out-of-core regularization operator

e nreg: dimension of the regularization output

114 CHAPTER 8. LIBRARIES

e u: out-of-core weighting operator
Module oc_lsqrpre_mod

1. Purpose: preconditioned LSQR solver

WwWLP [WD
el p 0

p=0
o] ="] p=VIUE u=1u
v =[P Lrws el][gi] a=/IvIE v=-1ly
W =
p=a §=p
iterate {
0[] [+)
p=VIUP U=1lu
v=—pv v=vi[prLow el][]
a=/|v|]2 v=1ly
p=yp+p
c="2 p=—ca
s:% 0 =sa
p=c =54
tlz:% Q::-—%
P=p+Huw
W=V+HW
}
m=2p

2. Functions and subroutines

(a) subroutine oc_lsgrpre_init (niter, eps,maxmem, verb, movie)
Purpose: initialize the preconditioned LSQR solver
e niter: iterations number
e cps: scaling factor
e verb: verbose flag (optional)
e movie: movie output flag (optional)

8.18. LIBRARY: OCLIB 115

(b) subroutine oc_lsqgrpre(L,P, x_,yy_,npre,W,opl ...op9)
Purpose: preconditioned LSQR solver
e 1: out-of-core linear operator
e p: out-of-core preconditioning operator
e npre: dimension of the preconditioning output

e 1u: out-of-core weighting operator

116 CHAPTER 8. LIBRARIES

Chapter 9
Writing a program

To get the most out of SEPIlib, you need to be able to write programs that will read and
write SEPIib datasets. This chapter contains examples of how to write several different types
of SEPIib programs. Each section represents how to program a simple task in one or more
computer languages.

9.1 How to write a SEPIib program

This section contains examples of a simple scaling program in several languages. The exam-
ples show:

e How to obtain information from the history file and from a parameter file.
e How to read in data.
e Scaling of the data.

e How to write out data.

9.1.1 Language: C

Most of SEPIib is written in C, so this can be considered the classic example.

/*$

Self-doc area

Scale_c.x

Usage

Scale_c.x <input.H scale= >output.H

Input Parameters:

117

118 CHAPTER 9.

scale - real scale value
Output Parameters:
Description
Intro program that simply scales N-D data
>*/
/*
Author: Robert Clapp, ESMB 463, 7230253
Date Created:Mon Jul 5 8:50:57 PDT 1997
esize=1

*/

WRITING A PROGRAM

/* standard seplib include and macro for setting up main programs */

#include<sep.main>

MAIN ()

{

int 11,12;

int n[2],tempi,esize,ndim, mem, logic=0;

float *data, scale;

char temp_ch[3];

/* call to get information from history file */
if (0==hetch ("esize","d", &esize)) esize=4;

/* Error checking mechanism */

if (esize!=4 && esize !=8)

seperr ("Unacceptable esize value \n");

/* Get the number of data axes */

if (0!=sep_get_number_data_axes ("in", &ndim))
seperr ("Trouble obtaining number of data axes \n");
n[l]=1;mem=1;

if (O==hetch("nl","i",&n[0]))

seperr ("can not obtain nl required for SEP datasets\n");

/*read in cube dimensions, calculating what size subcube we

can reasonably read in at one time */
for(il=1;il<ndim;il++) {
sprintf (temp_ch, "%c%d",’'n’,1i1+1);

if (O==hetch (temp_ch,"i", &tempi))

seperr ("trouble obtaining %s from the dataset \n",temp_ch);

if (mem * tempi < 2000000 && logic==0) {
mem=mem*tempi; n[0]=n[0]*tempi;

}

else(

logic=1; n[l]=n[l]*tempi;

}

}

/* fake a real dataset if data is complex */
n[0]=n[0] *esize/4;

/* obtain scale factor from the command line */

9.1. HOW TO WRITE A SEPLIB PROGRAM

if (0==getch("scale","f", &scale))

seperr ("trouble obtaining scale factor. \n");

/* write scale factor to output history file */

if (0!=putch("scale","f", &scale))

seperr ("trouble putting scale factor into output history file.
/* close the output history file */

hclose () ;

/* allocate storage array */

data= (float *) malloc (n[0] * sizeof(float));

/* loop over calculated subcubes */

for (1i2=0; 12 < n[l]; 1i2++){

/* read in data from stdin ("in")*/
if(n[0]*4 != sreed("in", data , n[0] *4))

seperr ("trouble reading in data \n");

/* scale the data */

for (11=0; 11<n[0]; il++) data[il]l=datal[il]*scale;

/* write out data to stdout ("out")*/
if(n[0]1*4 != srite("out", data , n[0] *4))
seperr ("trouble writing data \n");

}

/* free memory */
free (data);

}

9.1.2 Language: Fortran77

119

\n") ;

This example shows how to implement the same program in Fortran77. Note how the lack of

dynamic allocation is dealt with.

C<

Cscale_it

C

CUsage:

Cscale_it.x <in.H >out.H scale=
C

CInput Parameters:

C scale - real scale value

C

C

CDescription:

120

CHAPTER 9. WRITING A PROGRAM

C Intro program that simply scales the dataset

C
C
Cc>

$end of self-documentation

O
C
CAuthor: Robert Clapp, ESMB 463, 7230253
C
Chate Created:Mon Jul 7 16:22:44 PDT 1997
C
CPurpose:
C
C
integer il , 12 , nl , n2,n3
real data (40906)

real scale
integer hetch,getch
call initpar/()

call doc (source)

call noieeeinterupt ()

idum=hetch (' Gobbledegook’,’s’,’Lets get started.’)

if (hetch(’'nl’,’d’",nl) .eqg. 0) then
call erexit ("nl must be supplied")

end if

if(nl .gt. 4096) then

call erexit("nl can not be greater than 4096")

end if

if (hetch('n2’,’d’,n2)
nz2=1

end if

if (hetch('n3’,’d’,n3)
n3=1

end if

n2=n2*n3

.eq. 0) then

.eq. 0) then

if (getch(’scale’,’r’,scale).eq.0)then
call erexit ('need scale:scale’)
endif

call putch(’From par: scale scale’,
call hclose ()
do 20 i2=1,n2

call sreed("in",data,nl*4)

"r’,scale)

9.1. HOW TO WRITE A SEPLIB PROGRAM 121

do 15 il=1,nl
data(il)=data(il) *scale

15 end do
call srite("out", data , nl *4)
20 end do
end

9.1.3 Language: Ratfor

Next, using ratfor and SEP’s saw package, we see how dynamic allocation and simpler param-
eter and history file accessing can be accomplished.

#<

#scale_it

#

#Usage:

#scale_it.x <in.H >out.H scale=
#

#Input Parameters:

scale - real scale value

#

#

#Description:

Intro program that simply scales the dataset
#

#

#>

%$end of self-documentation

#Author: Robert Clapp, ESMB 463, 7230253
#

#Date Created:Mon Jul 7 16:22:44 PDT 1997
#

#Purpose:

#

#

integer nl,n2 ,il,esize,ndim, logic, mem
real o,d

character*128 temp_ch, label

integer sep_get_number_data_axes, tempi

integer sep_get_data_axis_par

#call to get information from the history file

122 CHAPTER 9. WRITING A PROGRAM

from history: integer esize=4
#error checking mechanism
if(esize !=4 && esize !=8) call erexit ("Unacceptable esize value")
#Get the number of data axes
if (0 !'= sep_get_number_data_axes ("in",ndim))
call erexit ("Trouble obtaining number of data axes")
n2=1; mem=1;
from history: integer nl
#read in cube dimensions, calculating what size subcube we
can reasonably read in at one time
do il=2,ndim{
if(0 !'= sep_get_data_axis_par("in",il,tempi,o,d, label))
call erexit ("trouble obtaining dimension the dataset ")
if (mem * tempi < 2000000 && logic==0) {
mem=mem*tempi
nl=nl*tempi;
telse(
logic=1
nz2=n2*tempi;
}
}
#fake a real dataset if data is complex
nl=nl*esize/4
#allocate storage array
allocate: real data(nl)
subroutine scale_it (nl,n2,data)
integer i1,12,nl,n2
real data(nl)
real scale
from param: real scale
#close the output history file
call hclose()
#loop over calculated subcubes
do i2=1,n2{
call sreed("in",data,nl*4)
#scale the data
do il=1,nl
data(il)=data(il) *scale
#write out data to stdout ("out")
call srite("out", data , nl *4)
}

return; end

9.1. HOW TO WRITE A SEPLIB PROGRAM

9.1.4 Language: Fortran90

This example shows how to write the same code in Fortran90
namic allocation and array operations is demonstrated.

1<
!scale_1it
!
!Usage:
!'scale_it.x <in.H >out.H scale=
!
!Tnput Parameters:
! scale - real scale value
!
1
!Description:
! Intro program taht simply scles the dataset
|
!
1>

!%end of self-documentation

'Author: Robert Clapp, ESMB 463, 7230253
!
!Date Created:Mon Jul 7 16:22:44 PDT 1997
!
!Purpose:
|
1
program scale_it
implicit none
integer :: n(2) ,il,i2,esize,ndim,logic,mem
real,dimension(:),pointer:: data
real scale,o,d
character (len=128) :: temp_ch, label
integer :: tempi
integer sep_get_number_data_axes

integer getch,hetch,putch, sep_get_data_axis_par

!'start sep parameter grabbing

call initpar()

'call to get information from the history file

if(0 .eq. hetch("esize","d",esize)) esize=4

123

. Fortran90’s ability to do dy-

124 CHAPTER 9. WRITING A PROGRAM

lerror checking mechanism
if(esize .ne. 4 .and. esize .ne. 8) &
call erexit ("Unacceptable esize value")
!Get the number of data axes
if(0 .ne. sep_get_number_data_axes ("in",ndim)) &
call erexit ("Trouble obtaining number of data axes")
n(2)=1; mem=1;
if(0 .eg. hetch("nl","d",n(l))) &
call erexit ("can not obtain nl required for SEP datasets")
'read in cube dimensions, calculating what size subcube we
! can reasonably read in at one time
do il=2,ndim
if(0 .ne. sep_get_data_axis_par ("in",il,tempi,o,d,label)) &
call erexit ("trouble obtaining dimension the dataset ")
if (mem * tempi < 2000000 .and. logic==0) then
mem=mem*tempi
n(l)=n(l)*tempi;
else
logic=1
n(2)=n(2)*tempi;
end if
end do
!fake a real dataset if data is complex
n(l)=n(l) *esize/4
!lobtain scale factor from the command line
if(0 .eqg. getch("scale","f",scale)) &
call erexit ("trouble obtaining scale factor.")
'write scale factor to output history file
if(0 .ne. putch("scale","f",scale)) &
call erexit ("trouble putting scale factor into output history file.")
!close the output history file
call hclose()
'allocate storage array
allocate(data(n(1l)))
'loop over calculated subcubes
do i2=1,n(2)
call sreed("in",data,n (1) *4)
!scale the data
data=data*scale
!write out data to stdout ("out")
call srite("out", data , n(l) *4)
end do
!free memory
deallocate (data)

end program scale_it

9.1. HOW TO WRITE A SEPLIB PROGRAM

9.1.5 Language: Ratfor90

The same code written in Ratfor90.

#<

#scale_it

#

#Usage:

#scale_it.x <in.H >out.H scale=
#

#Input Parameters:

scale - real scale value
#

#

#Description:

Intro program that simply scales the dataset

#
#
#>

%$end of self-documentation

#Author: Robert Clapp, ESMB 463, 7230253
#

#Date Created:Mon Jul 7 16:22:44 PDT 1997

#

#Purpose:

#

#

program scale_it{
integer :: n(2) ,il,1i2,esize,ndim, logic,mem
real,dimension(:),pointer:: data

real scale,o,d
character (len=128) :: temp_ch,label
integer sep_get_number_data_axes, tempi

integer sep_get_data_axis_par

#call to get information from the history file

from history: integer esize=4

#error checking mechanism

if (esize !=4 && esize !=8) call erexit ("Unacceptable esize value")

#Get the number of data axes

if (0 !'= sep_get_number_data_axes ("in",ndim))

call erexit ("Trouble obtaining number of data axes")

n(2)=1; mem=1;

125

126 CHAPTER 9. WRITING A PROGRAM

from history: integer nl:n (1)
#read in cube dimensions, calculating what size subcube we
can reasonably read in at one time
do 11=2,ndim{
if(0 !'= sep_get_data_axis_par("in",il,tempi,o,d, label))
call erexit ("trouble obtaining dimension the dataset ")
if (mem * tempi < 2000000 && logic==0) {
mem=mem*tempi

n(l)=n(l)*tempi;

lelse(

logic=1

n(2)=n(2)*tempi;
}
}
#fake a real dataset if data is complex
n(l)=n(l) *esize/4
#obtain scale factor from the command line
from par: real scale
#close the output history file
call hclose()
#allocate storage array
allocate(data(n(l)))
#loop over calculated subcubes
do i2=1,n(2){
call sreed("in",data,n (1) *4)

#scale the data
data=data*scale

#write out data to stdout ("out")

call srite("out", data , n(l) *4)
}
#free memory
deallocate (data)
}

9.1.6 Language: C calling Fortran

Sometimes it is useful to have a C main program and a Fortran subroutine (Fortran is more
efficient than C). Here is an example. Note the compiling options in the Makefile.

C main

/*$

Self-doc area

9.1. HOW TO WRITE A SEPLIB PROGRAM 127

scale_1it.x
Usage

scale_it.x <input.H scale= >output.H

Input Parameters:

scale - real scale value
Output Parameters:
Description

Intro program that simply scales N-D data
>*/

/*
Author: Robert Clapp, ESMB 463, 7230253
Date Created:Mon Jul 5 8:50:57 PDT 1997

esize=1

*/

/* standard seplib include and macro for setting up main programs */
#include<sep.main>

#include <cfortran.h>

/*we need to prototype our calls to fortran*/

#if defined (LINUX)
PROTOCCALLSFSUB3 (SCALE_TRACE, scale_trace_, INT, FLOATV, FLOAT) #define SCALE_TRACE (n,data, scale) C
FSUB3 (SCALE_TRACE, scale_trace_, INT,FLOATV, FLOAT, n,data, scale)
#else
PROTOCCALLSFSUB3 (SCALE_TRACE, scale_trace_, INT,FLOATV, FLOAT)
#define SCALE_TRACE (n,data, scale) CCALLSFSUB3(SCALE_TRACE, scale_trace, INT,FLOATV,FLOAT, n,data,
#endif
MATIN ()

{
int 11,12;
int n[2],tempi,esize,ndim, mem, logic=0;
float *data, scale;
char temp_ch[3];
/* call to get information from history file */
if (0O==hetch ("esize","d", &esize)) esize=4;
/* Error checking mechanism */
if(esize!=4 && esize !=8)
seperr ("Unacceptable esize value \n");
/* Get the number of data axes */
if (0!=sep_get_number_data_axes ("in", &ndim))
seperr ("Trouble obtaining number of data axes \n");
n[l]=1;mem=1;
if (0O==hetch("nl","i",&n[0]))
seperr ("can not obtain nl required for SEP datasets\n");
/*read in cube dimensions, calculating what size subcube we
can reasonably read in at one time */

for(il=1;il<ndim;il++) {

128 CHAPTER 9. WRITING A PROGRAM

sprintf (temp_ch, "%c%d",’'n’,1i1+1);

if (O==hetch (temp_ch,"i", &tempi))

seperr ("trouble obtaining %s from the dataset \n",temp_ch);
if (mem * tempi < 2000000 && logic==0) {
mem=mem*tempi; n[0]=n[0]*tempi;

}

else(

logic=1l; n[l]=n[l]*tempi;

}

}

/* fake a real dataset if data is complex */
n[0]=n[0] *esize/4;

/* obtain scale factor from the command line */
if (O==getch("scale","f", &scale))

seperr ("trouble obtaining scale factor. \n");
/* write scale factor to output history file */
if (0!=putch("scale","f", &scale))

seperr ("trouble putting scale factor into output history file. \n");
/* close the output history file */

hclose () ;

/* allocate storage array */

data= (float *) malloc (n[0] * sizeof(float));
/* loop over calculated subcubes */

for (i2=0; 12 < n[1l]; i2++){

/* read in data from stdin ("in")*/
if(n[0]1*4 != sreed("in", data , n[0] *4))

seperr ("trouble reading in data \n");

/* scale the data */
SCALE_TRACE (n[0],data, scale);

/* write out data to stdout ("out")*/
if(n[0]*4 != srite("out", data , n[0] *4))
seperr ("trouble writing data \n");

}

/* free memory */
free(data);

}

Fortran subroutine

9.1.

15

HOW TO WRITE A SEPLIB PROGRAM

subroutine scale_trace (n,data, scale)
integer i,n
real data (n)
real scale

do 15 i=1,n

data (i)=data (i) *scale

end do

return

end

9.1.7 Language: Fortran calling C

And for completeness the other possibility: a Fortran program calling C.

<

Fortran main

!scale_it

!Usage:

!scale_it.x <in.H >out.H scale=

!Input Parameters:

! scale - real scale value

!Description:

! Intro program that simply scales the dataset

>

!$end of self-documentation

'Author: Robert Clapp, ESMB 463, 7230253

'Date Created:Mon Jul 7 16:22:44 PDT 1997

!Purpose:

program scale_it

implicit none

129

130 CHAPTER 9. WRITING A PROGRAM

integer :: n(2) ,il,i2,esize,ndim, logic,mem, tempi
real,dimension(:),pointer:: data

real scale,o,d

character (len=128) :: temp_ch, label

integer sep_get_number_data_axes

integer getch,hetch,putch, sep_get_data_axis_par

!'start sep parameter grabbing

call initpar()

'call to get information from the history file
if(0 .eg. hetch("esize","d",esize)) esize=4
'error checking mechanism
if(esize .ne. 4 .and. esize .ne. 8) &
call erexit ("Unacceptable esize value")
!Get the number of data axes
if(0 .ne. sep_get_number_data_axes ("in",ndim)) &
call erexit ("Trouble obtaining number of data axes")
n(2)=1; mem=1;
if(0 .eq. hetch("nl","d",n(l))) &
call erexit ("can not obtain nl required for SEP datasets")
'read in cube dimensions, calculating what size subcube we
! can reasonably read in at one time
do i1=2,ndim
if(0 .ne. sep_get_data_axis_par("in",il,tempi,o,d,label)) &
call erexit ("trouble obtaining dimension the dataset ")
if (mem * tempi < 2000000 .and. logic==0) then
mem=mem*tempi
n(l)=n(l)*tempi;
else
logic=1
n(2)=n(2)*tempi;
end if
end do
!fake a real dataset if data is complex
n(l)=n(l) *esize/4
lobtain scale factor from the command line
if(0 .eqg. getch("scale","f",scale)) &
call erexit ("trouble obtaining scale factor.")
'write scale factor to output history file
if(0 .ne. putch("scale","f",scale)) &
call erexit ("trouble putting scale factor into output history file.")
!close the output history file
call hclose()

'allocate storage array

9.2. HOW TO WRITE A SEP3D PROGRAM

allocate(data(n(l)))
'loop over calculated subcubes
do i2=1,n(2)
call sreed("in",data,n (1) *4)
!scale the data

call scale_trace(n,data, scale)

'write out data to stdout ("out")

call srite("out", data , n (1)
end do
!free memory
deallocate (data)

end program scale_it

C subroutine

#include<seplib.h>

#include<cfortran.h>

int scale_trace(int, float*, float);

FCALLSCFUN3 (INT, scale_trace, SCALE_TRACE, scale_trace, INT, PFLOAT, FLOAT)

/*g77 adds an extra underscore */

FCALLSCFUN3 (INT, scale_trace, SCALE_TRACE_, scale_trace_, INT,PFLOAT, FLOAT)

int scale_trace(int n,float *data,
{

int 1i;

for (i=0; i < n; i++) data[i]l=data[i]*scale;

return 0;

}

9.2 How to write a SEP3D program

float scale)

131

Writing SEP3D programs is different from writing SEPlib programs because of the SEP3D

header keys. In this case along with scaling the data we will modify the headers.

9.2.1 SEP3D

The first example is uses only the base SEP3D calls.

I<

!read_geometry

! read in some data and extract some headers using SEPlib3d

132

CHAPTER 9. WRITING A PROGRAM

! USAGE:

! read_geometry < in.H > out.H

'%end of self-documentation

PROGRAM read_geometry

! access the sep module

IMPLICIT NONE

! allocatable arrays

REAL,
REAL,
REAL,
REAL,

integer,

ALLOCATABLE, DIMENSION(:,:) HEe} ! input seismic data
ALLOCATABLE, DIMENSION(:,:) :: headers ! HEADER BLOCK
ALLOCATABLE, DIMENSION(:) 1 XS,Vs,zZs ! source coordinates
ALLOCATABLE, DIMENSION((:) :: Xg,v9,z9 ! group coordinates
ALLOCATABLE, DIMENSION (:) :: drn ! data record number

! LOCATION OF VARIOUS

KEYS IN THE HEADER STRUCTURES

INTEGER

::xs_key,ys_key, zs_key, xg_key,yg_key, zg_key,drn_key

! simple variables

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
logical

nt
nkeys
ntrace
nh
maxmem
maxtr_per_block
ntr_per_block
nblocks
jblock
fwind

ierr

have_drn

number of input samples

number of keys

total number of input traces

number of headers per trace

memory available for storage in words.
maximum number of traces in a block of data.
number of traces in current block of data.
number of blocks of needed to read all the traces.
block index

first trace of the data window to be read.
return value checker

WHETHER OR NOT DRN EXISTS

! control variables

INTEGER
INTEGER

allocation_status

stderr=0

! return code for Fortran90 allocate command

! standard error unit

9.2. HOW TO WRITE A SEP3D PROGRAM 133

! DUMMY VARIALBES

REAL i o,dd
INTEGER HIN i ! LOOP VARIABLE
character (len=1025) :: label

!EXTERNAL SHOULD BE USED FOR ALL C CALLS, SOME F90 COMPILERS GET
!MAD WITHOUT IT

INTEGER, external :: getch ! SEPlib get param from parameter file

INTEGER, external :: hetch ! SEPlib get param from history file

INTEGER, external :: fetch ! SEPlib get from either parameter or history file
INTEGER, external :: putch ! SEPlib put to history file

INTEGER, external :: sep_get_number_keys !SEPlib number of keys

INTEGER, external :: sep_get_key_index !SEPlib index of given header key
INTEGER, external :: sseek_block !SEPlib SEEK FILE ROUTINE

INTEGER, external :: sreed !SEPlib READ ROUTINE

INTEGER, external :: srite !SEPlib WRITE ROUTINE

INTEGER, external :: sep_get_header_axis_par ISEP1lib HEADER AXIS ROUTINE
INTEGER, external :: sep_get_number_header_axes I!SEP1lib HEADER AXIS ROUTINE

! initialize the input seismic data file.

! do i need to specify any arguments?

!TO INITIALIZE SEP IO/ PARA HANDLING

call initpar()

SO SELF DOC WORKS
call doc (SOURCE)

!TO INITIALiZE SEP3D IO
CALL init_3d()

! read in important parameters from the history or parameter file

IF (hetch('nl’,’d’,nt) <= 0) CALL seperr(’cant read nl from history file!’)

IF (getch ('maxmem’ ,’d’ ,maxmem) <= 0) maxmem=1000000

134 CHAPTER 9. WRITING A PROGRAM

!THE NUMBER OF TRACES IS IN THE HEADER FILE
'TT DOESN’T HAVE TO BE THE SAME IS IN THE HISTORY FILE
! THEREFORE

if(0.ne. sep_get_number_header_axes ("in",ierr)) &

call seperr ("trouble obtaining the number of header axes")

if (ierr .ne. 2) call seperr("for right now only works with 2-D header file")

if(0.ne. sep_get_header_axis_par("in",2,ntrace,o,dd, label)) &

call seperr ("trouble obtaining the number of headers")

! read in important parameters from the hff file

if (0.ne. sep_get_number_keys ("in", nkeys)) &

call seperr ("trouble obtaining number of keys from hff")

if(0 .ne. sep_get_key_index ("in", "s_x",xs_key)) &

call seperr ("trouble obtaining s_x key number")

if (0 .ne. sep_get_key_index("in","s_y",ys_key)) &

call seperr("trouble obtaining s_y key number")

if(0 .ne. sep_get_key_index ("in","s_elev", zs_key)) &

call seperr ("trouble obtaining s_elev key number")

if (0 .ne. sep_get_key_index("in","g_x",xg_key)) &

call seperr ("trouble obtaining g_x key number")

if(0 .ne. sep_get_key_index("in","g_y",vyg_key)) &

call seperr("trouble obtaining g_y key number")

if(0 .ne. sep_get_key_index ("in","g_elev", zg_key)) &

call seperr ("trouble obtaining g_elev key number")

ierr=sep_get_key_index ("in", "data_record_number",drn_key)
if (ierr.ne. 0) then !DRN DOESN’T EXIST;
if (1==getch ("same_record_number","d",ierr)) then !IF SAME RECORD NUMBER IN HIS
if (ierr==0) &
call seperr("no data_record_number but traces out of order with data")

end if

9.2. HOW TO WRITE A SEP3D PROGRAM 135

have_drn=.false.
else
have_drn=.true.

end if

determine how many traces can fit into maxmem words of memory.
! determine how many blocks will need to be read in to read through

! all the input data.

maxtr_per_block=(maxmem-1)/ (ntrace*nt)+1

nblocks= (ntrace-1) /maxtr_per_block+1l
|

! ALLOCATE arrays

! note that output arrays are of length nt (the same as the input).
! arrays used in Fourier transform are of length nt_fft >= nt.

ALLOCATE (d(0:nt-1,maxtr_per_block),headers (nkeys,maxtr_per_block), &
xs (maxtr_per_block),ys (maxtr_per_block),zs (maxtr_per_block), &
xg (maxtr_per_block),yg(maxtr_per_block), zg(maxtr_per_block), &
drn (maxtr_per_block), &

STAT=allocation_status)
IF (allocation_status /= 0) THEN
WRITE (stderr, *) ’space for d,xs,ys,zs,xg9,y9,zg9 '’ &
//" could not be allocated!’
WRITE (stderr, *) ’program aborted!’
STOP 9666
END IF

! write out the history files defining the size of the output.

!LETS DEAL WITH THE OUTPUT

!WE ARE GOING TO REORDER THE TRACES, SO LETS TELL THE PROGRAM THAT
!THE TRACES ARE IN THE SAME ORDER

if(0 .ne. putch ("same_record_number","d",1l)) &

136 CHAPTER 9. WRITING A PROGRAM

call seperr ("trouble putching same_record_number")

!'TN THIS PROGRAM THE OUTPUT IS THE SAME SIZE OF

!THE INPUT. THE HiSTORY FILE IS BY DEFAULT IS THE SAME
!SIZE AS THE INPUT SO WE DON’T NEED TO DO ANY MANIPULATION
!

!THE HFF FILE DOES NEED TO BE CREATED. SAYING WE

'HAVE THE SAME KEYS. WE CAN JUST COPY THE HFF FILE

call sep_copy_hff ("in", "out")

! close sep data files

call hclose()

! loop over the blocks of data.

loop_over_blocks: DO jblock=1l,nblocks

! calculate the number of traces in this block.
|

ntr_per_block=maxtr_per_block

IF (jblock == nblocks) ntr_per_block=ntrace- (nblocks-1)*maxtr_per_block

! grab the next ntr_per_block trace headers from the trace header file.

! 7’in’ = standard in?

! headers = a fortran90 structure

! nh = the number of headers in the structure.

! fwind = the sequential trace position in the trace header file.

! or 1s the area where the next position on the file will be

! mapped?

fwind=(jblock-1) *maxtr_per_block

'READ IN THE HEADERS IN THIS BLOCK

call sep_get_val_ headers ("in", fwind+1l,ntr_per_block, headers)

! echo out how many headers are out there on this file.

! grab a subset of desired headers using the header key words.

9.2. HOW TO WRITE A SEP3D PROGRAM 137

xs=headers (xs_key, :
ys=headers (ys_key, :
zs=headers (zs_key, :

xg=headers (xg_key, :

yg=headers (yg_key, :
zg=headers (zg_key,)

!TF WE HAVE A DATA RECORD NUMBER WE NEED TO GRAB THE
!CORRESPONDING TRACE NUMBERS. THE HEADER BLOCK IS
!REAL, DRN ARE INTS. WE THEREFORE NEED TO CONVERT

if (have_drn) then

drn(l:ntr_per_block)=transfer (headers (drn_key, :ntr_per_block),0,ntr_per_block)

do i=1,ntr_per_block

! now let’s try to read ntr_per_block traces of seismic data.

!SEEK TO THE BEGINING OF THE GIVEN TRACE
if(0> sseek_block("in",drn(i)-1, 4*nt,0))&
call seperr ("trouble seeking trace")
if(4*nt .ne.sreed("in",d(:,1i),4*nt)) &

call seperr ("trouble reading trace ")

drn(i)=i+fwind !RESET DRN TO ITS NEW POSITION

end do

else !TRACES ARE IN ORDER SO JUST READ THEN

! now let’s try to read ntr_per_block traces of seismic data.

if (4*nt*ntr_per_block .ne. sreed("in",d,4*nt*ntr_per_block)) &
call seperr ("trouble reading trace block")

end if

! now lets do something simple. like add 2000m to the group and source

! elevations

zs=zs+1000.

zg=zg+1000.

!AND FOR FUN LETS SCALE THE DATA

138 CHAPTER 9. WRITING A PROGRAM

d=d*.5

!LETS ACTUALLY WRITE OUT ARE CHANGES TO THE OUTPUT
headers (zs_key,l:ntr_per_block)=zs (:ntr_per_block)
headers (zg_key,l:ntr_per_block)=zg(:ntr_per_block)

if (have_drn) &

headers (drn_key, l:ntr_per_block)=transfer (drn(:ntr_per_block),0. &

,ntr_per_block)

!PUT THE HEADERS BACK OUT

call sep_put_val_headers ("out", fwind+1l,ntr_per_block, headers)
!WRITE THE DATA

if (4*nt*ntr_per_block .ne. srite("out",d,4*nt*ntr_per_block)) &
call seperr("trouble writing out data")

END DO loop_over_blocks

WRITE (stderr, *) 'normal completetion. routine read_geometry’

STOP 0

END PROGRAM read_geometry

9.2.2 Superset

The same program using the superset library.

<
!read_geometry

! read in some data and extract some headers using SEP1lib3d

! USAGE:
! read_geometry < in.H > out.H

!$end of self-documentation

PROGRAM read_geometry

! access the sep module

USE sep3d_struct_mod
use sep

IMPLICIT NONE

9.2. HOW TO WRITE A SEP3D PROGRAM 139

! define the data structure (do i know what i am doing here? Yep)

type (sep3d) :: input,output

! allocatable arrays

REAL, ALLOCATABLE, DIMENSION(:, :) HENe! ! input seismic data
REAL, ALLOCATABLE, DIMENSION((:) :: xXs,ys,zs ! source coordinates
REAL, ALLOCATABLE, DIMENSION(:) i Xg,v9,z9 ! group coordinates

! simple variables

INTEGER :: nt ! number of input samples

INTEGER :: ntrace ! total number of input traces

INTEGER :: nh ! number of headers per trace

INTEGER :: maxmem ! memory available for storage in words.

INTEGER :: maxtr_per_block ! maximum number of traces in a block of data.
INTEGER :: ntr_per_block ! number of traces in current block of data.

INTEGER :: nblocks ! number of blocks of needed to read all the traces.
INTEGER :: jblock ! block index

INTEGER :: fwind ! first trace of the data window to be read.

! control variables

INTEGER :: allocation_status ! return code for Fortran90 allocate command
INTEGER :: stderr=0 ! standard error unit
logical :: grid_exists ! Whether or not grid exists

! initialize the input seismic data file.

! do i1 need to specify any arguments?

!INITIALIZE SEP PARAMETER HANDLING/SELF DOC
call sep_init (SOURCE)

!'INITIALIZE SEP3D IO HANDLING
CALL init_3d()

! read in important parameters from the history or parameter file

call from_param("maxmem",maxmem, 1000000)

!READ IN THE SEP3D STRUCTURE FROM INPUT TAG
call init_sep3d("in", input, "INPUT")

140 CHAPTER 9. WRITING A PROGRAM

!CHECK TO SEE IF THE INPUT HAS AN HFF
if (input%file_format == "REGULAR") then

call seperr("code will only work if headers exist")
else if (input%file_format=="GRID") then
grid_exists=.true.
else
grid_exists=.false.

end 1if

'INITIALIZE THE OUTPUT
call init_sep3d(input, output, "OUTPUT")
call sep3d_set_inorder (output%tag) !SPECIFY THAT THE OUTPUT HEADERS SYNCHED WITH DATA

call sep3d_write_description ("out", output)
!WE DON’T CARE ABOUT ADDITIONAL STRUCTURE IN THE HEADER OR GRID FILE INPUT
!THEREFORE JUST GO n2=n2*n3*n4*n... N3=3 n4=1 n_=1

!FOR NOW ONLY AVAILBLE IN C SO USE THE C TAG CORRESPONDING TO F90
call sep3d_change_dims (input%tag,2, (/1,input%$ndims/))

!AND RESYNC THE F90
call sep3d_grab_sep3d(input%tag, input)

!FOR CONVENIENCE

nt=input%n (1)
ntrace=input%n(2)

! determine how many traces can fit into maxmem words of memory.
! determine how many blocks will need to be read in to read through

! all the input data.

maxtr_per_block=(maxmem—-1)/ (ntrace*nt)+1

nblocks= (ntrace-1) /maxtr_per_block+1l

! ALLOCATE arrays
! note that output arrays are of length nt (the same as the input).

! arrays used in Fourier transform are of length nt_fft >= nt.

9.2. HOW TO WRITE A SEP3D PROGRAM

ALLOCATE (d(0:nt-1,maxtr_per_block),

xs (maxtr_per_Dblock),ys (maxtr_per_block),zs (maxtr_per_block),

xg (maxtr_per_block),yg(maxtr_per_block), zg(maxtr_per_block),

STAT=allocation_status)
IF (allocation_status /= 0) THEN
WRITE (stderr, *) ’space for d,xs,ys,zs,x9,vg,zg9 '
//" could not be allocated!’
WRITE (stderr, *) ’program aborted!’
STOP 9666
END IF

! write out the history files defining the size of the output.

! loop over the blocks of data.

loop_over_blocks: DO jblock=1l,nblocks

! calculate the number of traces in this block.

ntr_per_block=maxtr_per_block

IF (jblock == nblocks) ntr_per_block=ntrace- (nblocks-1) *maxtr_per_block

! grab the next ntr_per_block trace headers from the trace header file.

' 7in’ = standard in?

! headers = a fortran90 structure

! nh = the number of headers in the structure.

! fwind = the sequential trace position in the trace header file.

! or 1s the area where the next position on the file will be

! mapped?

fwind=(jblock-1) *maxtr_per_block
CALL sep3d_grab_headers(’in’, input, nh, &
fwind=(/fwind/), nwind=(/ntr_per_block/))

! echo out how many headers are out there on this file.

! FOR DATA WITHOUT A GRID nh will always = ntr_per_block

WRITE (stderr, *) ’'number of headers read in = ’,nh

! grab a subset of desired headers using the header key words.

CALL sep3d_grab_key_vals (input, "s_x",xs(l:nh))

141

142 CHAPTER 9. WRITING A PROGRAM

CALL sep3d_grab_key_vals (input,"s_y",ys(l:nh))
CALL sep3d_grab_key_vals (input,"s_elev",zs(1l:nh))
CALL sep3d_grab_key_vals (input, "g_x",xg(l:nh))
CALL sep3d_grab_key_vals (input, "g_y",yg(l:nh))
CALL sep3d_grab_key_vals (input,"g_elev",zg(l:nh))

! now let’s try to read ntr_per_block traces of seismic data.
|

!WE ALWAYS READ IN THE DATA ASSOCIATED WITH PRE READ HEADERS
SO IT ISN’'T NECESSARY TO PUT WINDOWING PARAMETERS UNLESS WE
!WANT A SUBSECTION OF THE FIRST AXIS
IF (.not. sep3d_read_data(’in’,input,d(0:nt-1,1l:ntr_per_block))) &

CALL seperr ('error in sep3d_read_data!’)

! now lets do something simple. like add 2000m to the group and source

! elevations

zs=zs+1000.
zg=zg+1000.
d=d*.5

! LETS SET THE OUTPUT UP
!FIRST COPY ALL OF THE HEADERS
call sep3d_copy_headers (input%tag, outputstaqg)

!THEN SET OUR NEW HEADERS
CALL sep3d_set_key_vals (output,"s_elev",zs(1l:nh))
CALL sep3d_set_key_vals (output, "g_elev", zg(l:nh))

INOW LETS WRITE OUT

if(.not. sep3d_write_data("out",output,d,write_headers=.true.,write_grid=grid_exists)) &

call seperr ("trouble writing out data")

END DO loop_over_blocks

WRITE (stderr, *)’'normal completetion. routine read_geometry’

! close sep data files

!CALL sep_close()

STOP O

9.3. HOW TO WRITE A VPLOT PROGRAM 143

END PROGRAM read_geometry

9.3 How to write a vplot program

A simple program to draw a multi-color box and ‘Hello World’ (Figure 9.1)

Figure 9.1: Hello world with vplot. @)

[ER]

O
43%

o

program colorize

integer, external :: output
real :: min(2),max(2),s(2),x,y
integer :: outfd

call initpar ()
call noieeeinterupt ()
call doc (SOURCE)

outfd = output ()
call vpfilep(outfd)
call hclose()

min=0; max=1;

!'SET UP COORDINATE TRANSFORM min, max to vplot coordinates
s(1l) = (10.24/.75) / (max(l)-min(1))
s(2) = 10.24 / (max (2)-min(2))

call vppenup ()
x = s(l) * (.3 —min(1l));y = s(2) * (.3 —-min(2))
call vpmove (X,V)

x = s(l) * (.3 -min(1l));y = s(2) * (.8 -min(2))
call vpdraw (x,Vy)
call vpcolor (6)
x = s(l) * (.8 —min(l));y = s(2) * (.8 -min(2))

call vpdraw (x,Vy)

144 CHAPTER 9. WRITING A PROGRAM

call vpcolor (5)
x = s(l) * (.8 -min(1l));y
call vpdraw(x,Vy)

I
0
N

*

.3 —min(2))

call vpcolor (4)
x = s(l) * (.3 —min(1l));y = s(2) * (.3 —-min(2))
call vpdraw(x,y)

call vpcolor (3)

x = s(l) * (.4 —-min(1l));y = s(2) * (.5 —-min(2))
call vptext(x,y,15,40, "HELLO")

call vpcolor(2)

x = s(l) * (.5 -min(1l));y = s(2) * (.5 -min(2))
call vptext(x,y,12,-40, "WORLD")

call vppenup ()

end program

9.4 Writing in SEP’s Fortran90 inversion library

94.1 Out-of-core

Geophysical processing is often complicated by the large datasets, particularly when dealing
with 3-D data. A solution for the large size problems is to implement inversion in an out-
of-core fashion, where only limited chunks of the model and data are kept in memory at any
given time. This is the purpose of the oc1ib optimization library introduced in the Libraries
chapter and further explained here.

Generally speaking, the types of problems that can be solved using this library are regu-
larized inversion in standard form

WL WD
m ~ , 9.1)
€A 0
or in its preconditioned form
WLP wD
p~ : 9.2)
el 0

where #4 is a regularization operator, W is a weighting operator, J is a preconditioning oper-
ator, and p is the preconditioned form of m.

The operators £, A, W, P are application-dependent and therefore have to be externally
implemented, likely in an out-of-core manner, by the user of the library. All other operations
needed to solve the inversion problem are build into oclib.

9.4. WRITING IN SEP’S FORTRAN90 INVERSION LIBRARY 145

Although other languages allow for more creative implementation, this entire library is
implemented in Fortran90 mainly because this is still the programming language of choice
in scientific computing and also the language most commonly used at SEP (Claerbout, 1998).
Applications Several applications, including some presented in the current report, use this
library. Here is a very brief description of some:

o Wave-equation migration velocity analysis

The inversion solves the problem in Equation (9.1), where the model m is represented
by slowness perturbation, and the data D is given by the measured image perturbation
(Biondi and Sava, 1999; Sava and Biondi, 2000).

o Least-squares inversion

The inversion solves the problem in Equation (9.1), where the model m is the seismic
image in the angle-domain, and D is the recorded seismic data (Prucha et al., 2001;
Rickett, 2001).

Interface design The library operates with two fundamental objects, model/data vectors and
operators. All vectors are SEP files stored on a disk, and are represented inside the library
as SEP file tags (Nichols et al., 1994). The operators are function calls that must conform
with the fOllOWing interface: function oc_operator (adj,add, x_,yy_, opl ...op9) re-
sult (stat)

where

e stat[logical] is a success flag

e adj [logical] is a flag signaling the adjoint operator

e add [logical] is a flag specifying if the result of the operator is to be added to the output
e x_[char(len=128)] is a file tag in the model space

e vy [char(len=128)] is a file tag in the data space

e opl ...op9[integer,optional] are (9) secondary operators used by the main operator.

oclib program

program OCsimple
use sep
use oc_global_mod
use oc_file_mod
use oc_dottest_mod
use oc_cgstep_mod
use oc_solver_mod

use oc_laplacian_mod

implicit none

146 CHAPTER 9.

logical :: verb

character (len=128) X_,yy_,t_, name

integer :: maxmem, stat, niter, nf, operation
type (fileinfo) :: file

type (cfilter) :: aa

real i eps

call sep_init ()

call from_param("operation", operation,0)
call from_param("maxmem", maxmem)

call from_param("verb",verb, .false.)
call from _param("nf",nf,5)

call from param("niter",niter, 10)

call from_param("eps",eps,1.0)

Xx_= "model"; call auxinout (x_)
yy_="data" ; call auxinout (yy_)
name="test.H"; t_=oc_clone(F, x_,name,maxmem)

call sep_close()

!'l operator init
call oc_allocatefile(file, x_, maxmem)
call oc_infofile(file)
do while (2*nf+1 > file%n (1))
nf=nf-1
end do
call oc_deallocatefile(file)

call oc_laplacian_init(x_,nf,10,0.0,maxmem)

select case (operation)
case (0) !! dot product test
call oc_dottest_init (maxmem=maxmem)
call oc_dottest (oc_laplacian, x_,yy_)
case(l) !! simple forward operator
stat = oc_laplacian(F,F,x_,vyy_)
case(2) !! inversion
call oc_solver_init (niter,maxmem, verb)
call oc_solver (oc_laplacian,oc_cgstep,x_,vyy_)
case default
call seperr ("missing operation")

end select

call exit (0)

end program OCsimple

94.2 In-core

WRITING A PROGRAM

Smaller optimization problems can be handled with the in-core functions in the GEE library.

In-core inversion program

program Carlos

| L O O O |

Invstack

9.4. WRITING IN SEP’S FORTRAN90 INVERSION LIBRARY

! Ilustrates CG inversion of Nearest neighbor modeling

| T T I O Y A A O

! v = velocity (if constant)

! niter = number of steps of the CG inversion

! out = input model + modeling +result of transpose of mod

! + subsequent steps of CG

! written by carlos and jon 6-11-91

use sep
use solver_mod
use cgstep_mod

use imospray

implicit none

integer

real

real, dimension (:), allocatable

call sep_init ()

call from_history (nl)
call from_history ("d1",dl)
call from_history ("ol",o01,0.)

call from_par
call from_par
call from_par
call from_par

call from_par

("n2",n2,20)
("niter",niter,nl)
("v",v,1000.)
("d2",d2,200.)
("o2",02,0.)

n2out=niter+4+n2

call to_history ("n2",n2out)

call sep_close

0

allocate (dat (nl*n2), model (nl), out (nl))

slow=1./v

call sep_read (model)

out = 0.0 ! dummy trace

call imospray_init (slow, o02,d2, ol,dl, nl,n2)

stat = imospray_lop (.false.,.false.,model,dat) ! modeling

call sep_write (model)

call sep_write (out)

call sep_write (dat)

call sep_write (out)

do iter=1,niter + 1 ! CG solver
call solver (imospray_lop, cgstep, x=out, dat = dat, niter = iter)

call cgstep_close ()

call sep_write (out)

nl,n2,niter,n2out, stat,iter
dl,d2,01,02,v,slow
model, out, dat

147

148 CHAPTER 9. WRITING A PROGRAM

end do

deallocate (model, dat, out)
call exit (0)

end program Carlos

9.5 How to use MPI

SEP has a Linux cluster, making it easier to process large datasets, assuming you write your
code to take advantage of the multiple nodes. The following Makefile and program are an
example of how to use MPI.

9.5.1 Makefile

include ${SEPINC}/SEP.top
MPI=/usr/pgi/linux86/1ib/libmpichf90.a /usr/pgi/linux86/1lib/libfmpich.a /usr/pgi/linux86/1ib
UF90LIBS= ${MPI} -1sep2df90 -1sep3df90 -1lsep3d -1lsepf90 -lsep
UF90FLAGS=-Mbounds
test.H: matrix.H ${BINDIR}/matrix.x
/usr/pgi/linux86/bin/mpirun -np 4 -machinefile machinefile \
S{BINDIR}/matrix.x < matrix.H >$@
matrix.H: spike.P
Spike par=spike.P | ©Noise par=spike.P >$@
include ${SEPINC}/SEP.bottom

9.5.2 MPI program

program dumb_example
use sep
use mpi_sep
integer ithread,nthread, ierr
integer :: n(2),ndo,i2,ireceived
integer :: remaining,work
real, allocatable :: array(:,:),read_buffer(:)
real :: total,big_tot

integer,allocatable :: isend(:)

9.5. HOW TO USE MPI 149

integer :: stat (MPI_STATUS_SIZE) !status buffer
call sep_init (SOURCE)
'initialize mpi enviro
call mpi_init (ierr)
call mpi_comm_rank (MPI_COMM_WORLD, ithread, ierr) 'the process number
call mpi_comm_size (MPI_COMM_WORLD, nthread, ierr) 'the number of processors
!read in size
if (ithread==0) then !'if the first processors
call from_history("n",n)

end if

!'send the size to all the prcesses at once
! var, size,type, init_thread, handle, err
call MPI_Bcast(n,2,MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
call MPI_Barrier (MPI_COMM_WORLD ,ierr) !Stop until all processes are ok
!figure out how much work each processor is going to do
allocate(isend(n(2))) !marker to what thread owns what i2
remaining=n (2)
do i2=1,nthread
work=remaining/ (nthread-i2+1)
if (i2-1==ithread) ndo=work
isend((n(2)-remaining+1l):)=1i2 !fill in thread ownership buffer
remaining=remaining-work
end do
do i2=1,n(2)
end do
'allocate arrays
allocate(array(n(l),ndo))
!storage buffer for reading
allocate (read_buffer(n(l)))

ireceived=0 'how many packets this thread has received
do i2=1,n(2)
if (ithread==0) then
!first processor read in data
call sreed("in",read_buffer,4*n (1))
if(isend(i2)==1) then !if we own this thread just store in our own buffer
ireceived=ireceived+l
array (:,ireceived)=read_buffer
else !send it to the appropriate thread
! buffer, amount, type, to, tag , handle, err
call MPI_Send(read_buffer,n(l),MPI_REAL,isend(i2)-1,12+500,MPI_COMM_WORLD, ierr)
call MPI_WAIT(0,stat,ierr) !wait for transfer to finish before continue
end if

else if (isend(i2)-1 == ithread) then !we are receiving this part

150 CHAPTER 9. WRITING A PROGRAM

call MPI_Recv (read_buffer,n(l),MPI_REAL,0,1i2+500,MPI_COMM_WORLD, stat, ierr)
call MPI_WAIT(0,stat,ierr) !wait for transfer to finish before continue

ireceived=ireceived+l

array (:,ireceived)=read_buffer

end if

end do

!do some simple math

total=sum(array*array)

!combine by summing all the parts

call MPI_Reduce (total,big_tot,1,MPI_REAL,MPI_SUM, 0,MPI_COMM_WORLD, ierr)
if (ithread==0) write(0,*) "total energy",big_tot

call mpi_finalize(ierr) !finish mpi

end program

REFERENCES

Biondi, B., and Sava, P., 1999, Wave-equation migration velocity analysis: SEP—100, 11-34.

Claerbout, J. Geophysical Estimation by Example: Environmental soundings image enhance-
ment:. http://sepwww.stanford.edu/sep/prot/, 1998.

Nichols, D., Karrenbach, M., and Urdaneta, H., 1994, What’s new in SEPLIB?: SEP-82,
257-264.

Prucha, M. L., Clapp, R. G., and Biondi, B. L., 2001, Imaging under salt edges: A regularized
least-squares inversion scheme: SEP-108, 91-104.

Rickett, J., 2001, Model-space vs data-space normalization for finite-frequency depth migra-
tion: SEP-108, 81-90.

Sava, P., and Biondi, B., 2000, Wave-equation migration velocity analysis: Episode II: SEP-
103, 19-47.

Chapter 10

Preprocessors

10.1 Introduction

Fortran is generally accepted as the most universal computer language for computational
physics. However, for general programming, it has been surpassed by C. Ratfor is Fortran with
C-like syntax. Ratfor was invented by the Kernighan and Plauger(1976), the same people who
invented C. Ratfor uses C-like syntax, the syntax that is also found in the popular languages
C++, Perl, and Java. Ratfor source is approximately 25-30% smaller than the equivalent For-
tran source, so it is equivalently more readable.

Recently SEP has been shifting to the newest version of Fortran, Fortran90 (Clapp and
Crawley, 1996; Fomel and Claerbout, 1996). Fortran90 allows for dynamic memory alloca-
tion and adds useful programming features such as structures, but still forces a verbose coding
style. To take advantage of Fortran90’s new features, while maintaining the concise cod-
ing style provided by Ratfor, we wrote a new Ratfor preprocessor, Ratfor90, which produces
Fortran90 rather than Fortran77 code. The newest Ratfor “compiler”, ratfor9o, is a sim-
ple word-processing program (written in Perl and freely distributed') that inputs an attractive
Fortran-like dialect and outputs Fortran90.

10.2 Ratfor basics

You should be able to read Ratfor if you already know Fortran, C, or any similar computer
language. The Ratfor processor is not a compiler but a simple word-processing program that
converts the Ratfor dialect to Fortran. To maximize your use of Ratfor, you will need to know
its rules:

Thttp://sepwww.stanford.edu/src/ratfor90.html

151

152 CHAPTER 10. PREPROCESSORS
Function Ratfor Fortran90 C
multiple statements | May be separated by “;”. Equivalent Equivalent
on one line
do Multi-line statements DO/ END DO construct, Equivalent

bracketed with { }. may be named.
if Multi-line statements Multi-line require THEN/ | Equivalent
bracketed { } END IF.
else/ Multiple statements in { } | Requires THEN/ELSE Equivalent
else if single statements per THEN/ END IF construct
construct do not require { }.
while while () {} DO WHILE () /END DO Equivalent
break if/while break exit Equivalent
iterate do next CYCLE continue
relation operators ==, = >, .eq.or ==, / = or .ne. Equivalent
<, >=, > .gt.or >, <or.lt.,

.ge.or >=, le.or <=

possible with po.

Comments #, to the end of the is a Same functionality enclosed by
comment with !. [* %/
and and or && , || .and., .or. Equivalent
line _ & end of line
continuation delineated
with “;”
for statement for(initial; end; update) Some of the functionality | Equivalent

10.3 Changes from Ratfor77

10.3.1 Backward compatibility issues

We were forced to make some changes to Ratfor77 because of new features in Fortran90. Rat-
for77 allows & and | for the logical operators && and ||. While attractive, it is not part of the
C family of languages and we had to drop it because Fortran90 adopts & for line continuation.

Because we are not compiler writers, we dropped a rarely used feature of Ratfor77 that
was not easy for us to implement: Ratfor77 recognizes break 2 which escapes from {{ }}.
Breaking out of multiple loops is still possible using the loop naming feature provided by
Fortran90.

Changing all the code that generated illustrations for four textbooks (of various ages) also
turned up a few more issues: Fortran90 uses the words scale and matmul as intrinsics. Old
Fortran77 programs using those words as variable names must be changed. Ratfor77 unwisely
allowed variables of implicit (undeclared) types. Ratfor90 includes an implicit none state-
ment in all programs, eliminating a common programming bug.

10.4. SEP EXTENSIONS 153

10.3.2 Extensions

New features in Ratfor90 are bracketed type, subroutine, function, where, and module state-
ments. In some ways this a further step towards the C, C++, Java model. It makes complicated
modules, subroutines inside subroutines, and other advanced features of Fortran90 easier to
interpret. Ratfor90 has better error messages than Ratfor77. Besides the use of stderr, a new
file (ratfor_problem) indicates where problems with interpreting programs are encountered.

In many geophysical applications we perform operations of the form:
c(il,12) = c(il,1i2) + scale * e(il,13,14)

Because this type type of operation is so common we borrowed from C the += and -= operators,
which changes the above line into:

c(il,1i2) += scale * e(1i1,1i3,14)

10.4 SEP extensions

The large amount of code written in Ratfor77 and SEP’s saw and sat pre-processors required
that Ratfor90 handle the conventions that they introduced. By including the flag -sep on
the command line rat for90 simulates the functions of saw and sat (memory allocation and
parameter handling.)

10.4.1 Memory allocation

The main method at SEP for dynamic memory allocation under Ratfor77, saw, and sat was
the allocate statement:

allocate: real x(nl,n2)

When Ratfor90 finds this statement, along with the corresponding main program/subroutine
structure of saw and sat, it translates the allocate: statement into a Fortran allocatable
array, allocates the array, and passes it, along with all other relevant variables to the subroutine.

In subroutines SEP allowed dynamic memory allocation through the use of the temporary
keyword, for example:

temporary real*4 data(nl,n2,n3), convolution(j+k-1)
Automatic arrays are supported in Fortran90 so rRat for90 simply translates this statement to:

real*4 data(nl,n2,n3), convolution (j+k-1).

154 CHAPTER 10. PREPROCESSORS

10.4.2 Parameter handling

In addition, saw and sat, and now Ratfor90, simplify parameter handling. Ratfor90 calls an
essential SEPIib initialization routine initpar (), organizes the self-doc, and allows for vari-
ouspanHHMBrhandhngkeywmmds(from history, from par, from either, from aux, to
aux, to history). For example, the line:

from either: integer nl,n2:ns,n3:nv=1
is translated into the much more verbose:

if (0==fetch('nl’,’d’,nl)) then

call seperr(’Could not obtain nl from either’)
end if
if (0/=putch('From either: nl’,’d’,nl)) then

call seperr(’'trouble writing nl to history file’)
end if
if (0==fetch('n2’,’d’,ns)) then

call seperr (’Could not obtain n2 from either’)
end if
if (0/=putch('From either: n2’,’d’,ns)) then

call seperr (’'trouble writing n2 to history file’)
end if
if (O0==fetch('n3’,’d’,nv)) then

nv=1
end if
if (0/=putch('From either: n3’,’d’,nv)) then

call seperr(’'trouble writing n3 to history file’)

end if

10.4. SEP EXTENSIONS 155

As an illustration, here is a simple program to convert from interval to RMS velocities in
Ratfor90 and the corresponding Fortran90 code.

10.4.3 Ratfor90 code

#<
#dix
#
#Usage:
#dix <in.H >out.H
#
#Description
Converts from interval to RMS velocity
#>
%end of self-documentation
program dix{
integer 1i1,12,i3,nl,n2,n3
real,allocatable,dimension(:,:) :: array
real time,val,dt,dx
from history: integer nl,n2,n3 #grab the size of the dataset
#from the history file
from history: real dl:dx #get the sampling interval, store in dx
allocate(array(nl,n2))
do i3=1,n3{
call sreed("in",array,nl*n2*4)
array=1./array #Fortran90 array manipulation
do i2=1,n2{
time=0.;val=0.
do il=1,nl{
dt=dx/array (il,i2)
val+=dt*array (il,i2) **2 #add sum Ratfor90 feature
time+=dt

array (il, i2)=sqrt (val/time)

}

call srite("out",array,nl*n2%*4)

}

} #bracketed programs

10.4.4 Translated Fortran90 Code

1<

dix

156 CHAPTER 10

|
!Usage:
'dix <in.H >out.H
!
!Description
! Converts from interval to RMS velocity
>
!%end of self-documentation
program dix
implicit none
integer i1,12,i3,nl,n2,n3
real,allocatable,dimension(:,:) :: array
real time,val,dt,dx
integer hetch, putch
call initpar()
call doc ('’ /homes/sep/bob/papers/ratfor90/dix.rs90")
if (0==hetch('nl’,’d’,nl)) then
call seperr (’Could not obtain nl from history’)
end if
if (0/=putch('From history: nl’,’d’,nl)) then
call seperr (’'trouble writing nl to history file’)
end if
if (O==hetch('n2’,’d’,n2)) then
call seperr (’Could not obtain n2 from history’)
end if
if (0/=putch('From history: n2’,’d’,n2)) then
call seperr(’'trouble writing n2 to history file’)
end if
if (O==hetch('n2’,’d’,n2)) then
call seperr (’Could not obtain n2 from history’)
end if
if (0/=putch('From history: n2’,’d’,n2)) then
call seperr(’'trouble writing n2 to history file’)
end if
!'from the history file
if (0==hetch(’’,’f’,)) then

call seperr(’Could not obtain from history’)

end if
if (0/=putch('From history: ’,’f’,)) then
call seperr(’trouble writing to history file’)
end if
if (O==hetch(’'’,’f’,)) then

call seperr (’Could not obtain from history’)
end if
if (0/=putch('From history: ’,’f’,)) then

. PREPROCESSORS

10.4. SEP EXTENSIONS 157

call seperr(’trouble writing to history file’)
end if
allocate (array(nl,n2))
do i3=1,n3
call sreed("in",array,nl*n2*4)
array=1./array !'Fortran90 array manipulation
do i2=1,n2
time=0.
val=0.
do il=1,nl
dt=dx/array(il,1i2)
val = val + dt*array(il,i2)**2 ladd sum Ratfor90 feature
time = time + dt
array (il,12)=sqgrt (val/time)
end do
end do
call srite("out",array,nl*n2%*4)
end do
end program

!'bracketed programs

158 CHAPTER 10. PREPROCESSORS

10.5 Downloading/installing

You can download Ratfor90 from http://sepwww.stanford.edu/sep/bob/ratfor90/ratfor90. You
might need to change the first line of the code indicating where perl is on your system. You
can convert from Ratfor90 to Fortran90 on the command line by:

ratfor90 < input.r90 > output.f90

If you wish to use expanded SEP command line, history file manipulation, and self-documentation
abilities add the —-sep -SOURCE /my/source/location flags. An alternate approach is to use
the SEP makefile rules which are explained in Reproducible electronic documents?. If you
follow this approach you will need to:

o install ratfor90 in /usr/local/bin/ratfor90 or edit the Prg.defs.top file.

e set the environmental variable RATF90 to yes (setenv RATF90 yes). If you are using
the SEP setup you can add this line to your setup/cshrc.machinetype [€.g. cshrc.sgi,
cshrc.1586, etc.]

e name your Ratfor90 files:

— using Fortran90 syntax .r90.

— using Fortran90 and SEP allocation conventions .rs90.

By setting the environmental variable raTr90, SEP style ratfor77 code, normally indicated by
the .rt, .rs, and . rst suffixes will converted to Fortran90 by rat for90 and compiled. These
rules are in the updated version of the SEP makefile rules so if you have a previous version
you will need to download a new one.

Zhttp://sepwww.stanford.edu/redoc

10.6. ERROR HANDLING 159

10.6 Error handling

Ratfor90 creates a file called rat for_problem wWhenever it encounters and error in the source
code. The ratfor_problem file contains the processed source code, with the line that caused
the processor problems clearly delineated. For example if you misspelled if in a source file:

iff(a .eq. b){
and ran the Ratfor90 processor you would see:

ERROR:

Problem finding acceptable bracket statement

I was looking for do, module, subroutine, etc before a {
and couldn’t find it (spelling?????)

wrote file as far as I got to ratfor_problem
written to stderr and in the file ratfor_problem

ERROR BEFORE ERROR
iff(a .eq. b){
ERROR AFTER

the location of the error is clearly indicated. The next time rat for90 is run, the rat for_problem
file is removed.

REFERENCES
Clapp, R. G., and Crawley, S., 1996, SEPF90: SEP-93, 293-304.
Fomel, S., and Claerbout, J., 1996, Simple linear operators in Fortran 90: SEP-93, 317-328.

Kernighan, B. W., and Plauger, P. J., 1976, Software tools: Addison-Wesley.

160 CHAPTER 10. PREPROCESSORS

Chapter 11

SEPIlib outside SEP

11.1 Installing SEPlib

SEPIib now uses a GNU-style configure mechanism for installation. So far this installation
mechanism has been tested on:

e Linux (Redhat 5.0,5.2,6.0,6.1,6.2,7.0,7.1,7.2)
e IRIX6.5
e DecAlpha (fortran support doesn’t work)

e Solaris
Follow the following steps to install SEPlib

e Download the software from ftp://sepftp.stanford.edu/pub/sep-distr/seplib-6.0.tar.gz

gunzip seplib-6.0 -c Itar xf -

cd seplib-6.0

Jconfigure

e gmake install

Following the above procedure should install the core seplib libraries and programs into the
directory /ust/local/SEP. There are many additional options and variables that can be set to
configure SEPIib ...

—prefix=/other/directory Specify another directory to install SEPIib in

161

162 CHAPTER 11. SEPLIB OUTSIDE SEP

-bindir,-mandir,-includedir,-libdir Location to put the binaries, manual pages, include
files, and libraries. If you are going to try to compile SEP reports, old SEPlib code,
etc. it is important that you set these rather than doing copy or mv commands. See
MAKERULES for more details. The directories default to default to [prefix]/bin, [pre-
fix]/include, [prefix]/man, [prefix]/lib

—with-local Install the less tested, newer portions of SEPlib

—with-su=/su/directory Compile SU support. You must specfiy the SU directory (e.g. /ust/local/SU)
after —with-su.

—with-motif/~without-motif Specify whether or not you have motif. By default your include
and library path is searched for the motif include and library files. If additional include
directories or library paths are need you can specify them by setting Mp1_rraGs and
vpI_1D. Motif is only needed to compile Rickmovie and Ricksep.

—with-vtk, —without-vtk Whether or not compile VTK' software. If additional include direc-
tories or library paths are need you can specify them by setting vTk_r1aGs and VTK_LD.
Vik is only needed to compile Vitkplot.

—with-fftw Compile SEPlib with FFTW rather than the CWP’s pfact. You must set the env-
iorenmental variable (FFTW_F90LD) to the appropriate Fortran 90 fftw libraries.

—with-static Will try to compile a static version of the programs. For SOLARIS machines
this is only an approximation because of system libraries

—with-ppm/-without-ppm Whether or not compile PPM utilites. If additional include direc-
tories or library paths are need you can specify them by setting pPM_F1.AGS and PPM_LD.
PPM is only needed to compile ppmpen and vplot2gif.

—with-omp Whether or not to compile with OMP?. If additional compiler and/or linking flags
are needed to compile and/or link set the environmental variables ovp_r90rLaGs and
OMP_F90LD.

—with-mpi Whether or not to compile with MPI? If additional compiler and/or linking flags
are needed to compile and/or link set the environmental variables Mp1_r1.AGSs and MPT_F90LD.

—with-mansupport some systems don’t include the packages neqn, tbl, etc. If your system
does, use this option.

If you run into problems (for example you need to add an additional library path when com-
piling programs) you can often solve your problem by setting environmental variables that the
configure script will then use. For example:

F90 The F90 compiler

Thttp://public kitware.com/VTK/
Zhttp://www.openmp.net
3http://www-unix.mcs.anl.gov/mpi/

11.2. HOW TO MODIFY AND COMPILE SEPLIB 163

F77 The FO0 compiler

LDFLAGS Directories and libraries to link when compiling C programs
F77LDFLAGS Directories and libraries to link when compiling F77 programs
F9OLDFLAGS Directories and libraries to link when compiling F77 programs
CFLAGS Flags to pass to the C compiler

LIBS C Libs to include by default

FLIBS F77 Libs to include by default

FI0LIBS F90 Libs to include by default

F77FLAGS Flags to pass to the F77 compiler

FI0FLAGS Flags to pass to the F90 compiler

DEFAULT_DOC_PATH Location of SEPIib software, useful if you move source code
CPPFLAGS C Processor flags

etc Look at configure.in in the main directory to find other variables that can be set in the
environment

11.2 How to modify and compile SEPlib

If you modify the self-doc for a program you don’t need to do any recompiling. If you modify
a main program make sure to run gmake install in the program directory. If you modify a
library that other SEPIib program, cd into the base SEPIlib directory and type gmake clean;
gmake; gmake install. If you created a subdirectory under the main SEPIib source and then
ran . ./configure all compile commands must be done under this tree.

11.3 Setting up the SEP environment

Before running SEPIib do the following:
create /.datapath

SEPIib files are composed of ascii/binary pairs. The ascii portion describes the data (the size,
the type, and the location of the binary). The binary portion is the actual data. The two
are separated to allow processing to be done in a centralized location (a home directory for
example) while the data is written where ever there is space. The datapath file tells SEPIib
where to put binary data and should look something like this:

164 CHAPTER 11. SEPLIB OUTSIDE SEP

datapath=/scrka3/bob/; /scrka2/bob/
spur datapath=/scrka2/bob/

oas datapath=/scrsal/bob/
vesuvio datapath=/SDA/bob/
santorin datapath=/scrsa4/bob/

By default SEPIib first checks the command line for datapath= , then the directory where the
program is run for a .datapath file, and finally the home directory. The above .datapath
files tells SEPIib to put binary data by default in /scrka3/bob and if it runs out of space in
/scrka2/bob, but when on the computer "santorin" to put the data in /scrsa4/bob.

setenv VPLOTSPOOLDIR /tmp The next step is to tell SEPlib where to put temporary
vplot files. It is best to put these in a location such as /tmp/ which is periodically cleaned.

setenv VPLOTFONTDIR includedir The location of the vplot fonts. Again set this to the
location of the SEP include files.

setenv MANPATH “${MANPATH}:mandir” and setenv PATH “${PATH}:pathdir Set your
path and manual path to include the location of the SEP manual pages and binaries.

setenv SEPINC includedir This final step is only necessary if you want to compile and run
programs from SEP reports, theses, or books. This environmental variable is needed by

our Makefile’s to find out its compile and install rules. It should be set to the location of
the SEP include files.

In Europe you might want to set:

setenv DEFAULT_PAPER_SIZE The default paper size (a3)

setenv DEFAULTS_PAPER_UNITS ’¢’ For centimeters rather than inches

11.4 How to compile and run SEP reports remotely

Step 1: Set the environmental variables

e Step 2: Test your make setup

Step 3: Test the basic rebuild commands

Step 4: Download a simple paper with ER Figures and test

11.5. CONVERTING OLD VERSIONS OF SEPLIB 165

11.5 Converting old versions of SEPlib

From Joe Dellinger, to convert an old SEPIlib program (before 1992):

e Need to replace "reed(infd, ...)" with "sreed("in", ...)".

Need to replace "rite(outfd, ...)" with "srite("out", ...)".

Need to replace "getpar" with "getch".

vp_filep(outstream);
to the start of any program that calls -lvplot.

SEPIib libraries have changed names frequently in the last few years. The library from
Claerbout (1992) and ? are called -1pvi and -1pei. They are not included as part of SEPlib
and must be downloaded from Jon Claerbout’s professor page. The libraries for Claerbout
(1998) are included as part of SEPlib as -1gee£90. The SEPIib fortran fortran wrapper libraries
are called -1sepf and -1sepf90. Much of the functionality of -1sepmath and -1sepmathf
has been Split into —lsepfft, -lsepfftf90, -lsepaux, -lsepauxf90, -lsepvector, and
-1sepvector£90. In many old make and cake files these are referred to by variables such as
GEE, GEEF90, PVI, BEI, SEPF, SEPF77, SEPF90, SEPLIBF, SEPLIBF77, SEPLIBF90, SEP-
MATH, SEPFFT, SEPMATHF90, SEPFFTF90, VPLOT, VPLOTF,etc. The current conventions can
be found in your SEPlib make include directory in the sEp.1ib.defs file.

11.6 Basic Troubleshooting

Here is a list of some of the common installation problems.

e You must use GNU make. The system make on unix platforms is not sufficient.
e You must have perl, version 5.0006 or later.

e You must have lex installed and in your path.

e You must set all the environmental variables before running.

e To install Ricksep and Rickmovie you must have motif installed on your system.
e If a whole bunch of programs you wanted to use didn’t install:

— Check to see if you have a working Fortran90 compiler.

— Configure with -with-local option.

e If you are looking for the SU and SEGY converters, you must have SU installed and
configure with -with-su=/my/su/dir.

e If you get some weird error from “Tube” about a missing pen, make sure your TERM
variable is set to xterm.

166 CHAPTER 11. SEPLIB OUTSIDE SEP

11.6.1 More specific problems

IRIX-pid multiply defined The autoconf figure script doesn’t recognize that pid is defined
in IRIX on some installations. To fix the problem edit */include/sitedef.h files and
comment out the line

int pid_t

Failure building fonts when cross-compiling The SEPIib installation isn’t designed for cross-
compiling. You can get arround the problem by doing a ‘make clean; make makefont’
in vplot/filters/fonts. Then on the target platform type make in the same direc-
tory. Finally go back to compiling platform and continue with the make from the root
directory.

BSD SEPIib hasn’t been tested on the BSD platform at this time.
make error SEPIib requires GNU make.

configure F90 or C++ error If you don’t have a functioning C++ or Fortran 90 compiler set
the environmental varialbes (CXX or F90) to no before configuring.

... Jinclude/ratsep90: =3D(13ARGV): not found=0A= or something similar You don’t have
a new enough version of Perl.

undefined reference to ‘yywrap’ You must have a working version of lex or flex installed
and in your default library path and/or the path described by the 1.prF1.AGs variable.

11.7 TImportant Contributors

Probably most SEP researchers have contributed in some way to SEPlib. However, some
researchers stand out:

e Robert Clayton introduced the original parameter fetching and did much ground break-
ing work concerning Vplot.

e Jon Claerbout introduced history files.

e Dave Hale wrote the libvplot library.

e Stew Levin got SEPIib pipes to work and ported Vplot to DEC Gigi terminals.
e Joe Dellinger perfected Vplot, the graphics library.

e Steve Cole added dithering of rasterplots to Vplot.

e Dave Nichols reworked the SEPIlib input and output handling and introduced GNU-
makefiles for easy installation.

11.7. IMPORTANT CONTRIBUTORS 167

e Martin Karrenbach had a first SEPIlib extension to handle irregular data.

e Bob Clapp and Biondo Biondi (with the help of current SEP students) truly extended
SEPIib to handle irregular data (SEP3D).

e Sergey Fomel and Paul Sava have made recent additions to the traveltime/ray tracing
abilities of SEPIib.

REFERENCES

Claerbout, J. F., 1992, Earth Soundings Analysis: Processing versus Inversion: Blackwell
Scientific Publications.

Claerbout, J. Geophysical Estimation by Example: Environmental soundings image enhance-
ment:. http://sepwww.stanford.edu/sep/prof/, 1998.

168 CHAPTER 11. SEPLIB OUTSIDE SEP

REFERENCES

Biondo L. Biondi graduated from Politecnico di Milano in 1984
and received an M.S. (1988) and a Ph.D. (1990) in geophysics from
Stanford. SEG Outstanding Paper award 1994. During 1987, he
worked as a Research Geophysicist for TOTAL, Compagnie Fran-
caise des Petroles in Paris. After his Ph.D. at Stanford, Biondo
worked for three years with Thinking Machines Co. on the applica-
tions of massively parallel computers to seismic processing. After
leaving Thinking Machines, Biondo started 3DGeo Development,
a software and service company devoted to high-end seismic imag-
ing. Biondo is now Associate Professor (Research) of Geophysics
and leads SEP efforts in 3-D imaging. He is a member of SEG and
EAGE.

Robert Clapp received his B.Sc.(Hons.) in Geophysical Engi-
neering from Colorado School of Mines in May 1993. He joined
SEP in September 1993, received his Masters in June 1995, and his
Ph.D. in December 2000. He is a member of the SEG and AGU.

169

170 CHAPTER 11. SEPLIB OUTSIDE SEP

Marie Clapp , formerly Marie Prucha, received her B.Sc. in
Geophysical Engineering from Colorado School of Mines in May
1997. She joined SEP in September 1997 and received her MS
in June 1999. She married one of her fellow SEPers in 2001 and
finally changed her last name in the summer of 2002. She is cur-
rently edging towards a Ph.D. in geophysics. She is a member of
SEG.

Paul Sava graduated in June 1995 from the University of
Bucharest, with an Engineering Degree in Geophysics. Between
1995 and 1997, he was employed by Schlumberger GeoQuest. He
joined SEP in 1997, received his M.Sc. in 1998, and continues
his work toward a Ph.D. in Geophysics. His main research inter-
est is in seismic imaging using wave-equation techniques. He is a
member of SEG.

