
Image-space wave-equation tomography in the

generalized source domain

Yaxun Tang, Claudio Guerra, and Biondo Biondi

ABSTRACT

We extend the theory of image-space wave-equation tomography to the general-
ized source domain, where a smaller number of synthesized shot gathers are gen-
erated either by data-space phase encoding or image-space phase encoding. We
demonstrate how to evaluate the wave-equation forward tomographic operator
and its adjoint in this new domain. We compare the gradients of the tomography
objective functional obtained using both data-space and image-space encoded
gathers with that obtained using the original shot gathers. We show that with
those encoded shot gathers we can obtain a gradient similar to that computed in
the original shot-profile domain, but at lower computational cost. The saving in
cost is important for putting this theory into practical applications. We illustrate
our examples on a simple model with Gaussian anomalies in the subsurface.

INTRODUCTION

Wave-equation tomography has the potential to accurately estimate the velocity
model in complex geological scenarios where ray-based traveltime tomography is
prone to fail. Wave-equation-based tomography uses band-limited wavefields instead
of infinite-frequency rays as carriers of information, thus it is robust even in the pres-
ence of strong velocity contrasts and immune from multi-pathing issues. Generally
speaking, wave-equation tomography can be classified into two different categories
based on the domain where it minimizes the residual. The domain can be either
the data space or the image space. The data-space approach directly compares the
modeled waveform with the recorded waveform, and is widely known as waveform
inversion, or data-space wave-equation tomography (Tarantola, 1987; Mora, 1989;
Woodward, 1992; Pratt, 1999). The main disadvantage of the data-space approach
is that in complex areas, the recorded waveforms can be very complicated and are
usually of low signal-to-noise ratio (S/N), so matching the full waveform might be
extremely difficult. On the other hand, the image-space approach, also known as
image-space wave-equation tomography, minimizes the residual in the image domain
obtained after migration. The migrated image is often much simpler than the original
data, because even with a relatively inaccurate velocity, migration is able to (partially)
collapse diffractions and enhance the S/N; thus the image-space wave-equation to-
mography has the potential to mitigate some of the difficulties that we encounter in
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the data-space approach. Another advantage of the image-space approach is that the
more efficient one-way wave-equation extrapolator can be used. In waveform inver-
sion, however, the one-way propagator is difficult (if not impossible) to use because of
its inability to model the multiple arrivals, although some tweaks can be employed so
that the one-way propagator can be applied to turning-wave tomography (Shragge,
2007).

However, despite its theoretical advantages, image-space wave-equation tomog-
raphy is still computationally challenging. Each iteration of tomographic velocity
updating is computationally expensive and often converges slowly. Practical appli-
cations are still rare and small in scale (Biondi and Sava, 1999; Shen et al., 2005;
Albertin et al., 2006). The goal of this paper is to extend the theory of image-space
wave-equation tomography from the conventional shot-profile domain (Shen, 2004;
Shen et al., 2005) to the generalized source domain, where a smaller number of syn-
thesized shot gathers make the tomographic velocity update substantially faster.

The generalized source domain can be obtained either by data-space phase encod-
ing or image-space phase encoding. For the data-space phase encoding, the synthe-
sized shot gathers are obtained by linear combination of the original shot gathers after
some kind of phase encoding; in particular, here we mainly consider plane-wave phase
encoding (Whitmore, 1995; Zhang et al., 2005; Duquet and Lailly, 2006; Liu et al.,
2006) and random phase encoding (Romero et al., 2000). As the encoding process is
done in the data space, we call it data-space phase encoding. For the image-space
phase encoding, the synthesized gathers are obtained by prestack exploding-reflector
modeling (Biondi, 2006, 2007; Guerra and Biondi, 2008b), where several subsurface-
offset-domain common-image gathers (SODCIGs) and several reflectors are simulta-
neously demigrated to generate areal source and areal receiver gathers. To attenuate
the cross-talk, the SODCIGs and the reflectors have to be encoded, e.g., by random
phase encoding. Because the encoding process is done in the image space, we call it
image-space phase encoding. We show that in these generalized source domains, we
can obtain gradients, which are used for updating the velocity model, similar to that
obtained in the original shot-profile domain, but with less computational cost.

This paper is organized as follows: We first briefly review the theory of image-space
wave-equation tomography. Then we discuss how to evaluate the forward tomographic
operator and its adjoint in the original shot-profile domain. The latter is an important
component in computing the gradient of the tomography objective functional. We
then extend the theory to the generalized source domain. Finally, we show examples
on a simple synthetic model.

IMAGE-SPACE WAVE-EQUATION TOMOGRAPHY

Image-space wave-equation tomography is a non-linear inverse problem that tries to
find an optimal background slowness that minimizes the residual field, ∆I, defined in
the image space. The residual field is derived from the background image, I, which
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is computed with a background slowness (or the current estimate of the slowness).
The residual field measures the correctness of the background slowness; its minimum
(under some norm, e.g. `2) is achieved when a correct background slowness has been
used for migration. There are many choices of the residual field, such as residual
moveout in the Angle-Domain Common-Image Gathers (ADCIGs), differential sem-
blance in the ADCIGs, reflection-angle stacking power (in which case we have to
maximize the residual field, or minimize the negative stacking power), etc.. Here we
follow a definition similar to that in Biondi (2008), and define a general form of the
residual field as follows:

∆I = I− F(I), (1)

where F is a focusing operator, which measures the focusing of the migrated image.
For example, in the Differential Semblance Optimization (DSO) method (Shen, 2004),
the focusing operator takes the following form:

F(I) = (1−O) I, (2)

where 1 is the identity operator and O is the DSO operator either in the subsurface
offset domain or in the angle domain (Shen, 2004). The subsurface-offset-domain
DSO focuses the energy at zero offset, whereas the angle-domain DSO flattens the
ADCIGs.

In the wave-equation migration velocity analysis (WEMVA) method (Sava, 2004),
the focusing operator is the linearized residual migration operator defined as follows:

F(I) = R[ρ]I ≈ I + K[∆ρ]I, (3)

where ρ is the ratio between the background slowness ŝ and the true slowness s, and
∆ρ = 1− ρ = 1− bs

s
; R[ρ] is the residual migration operator (Sava, 2003), and K[∆ρ]

is the differential residual migration operator defined as follows (Sava and Biondi,
2004a,b):

K[∆ρ] = ∆ρ
∂R[ρ]

∂ρ

∣∣∣∣
ρ=1

. (4)

The linear operator K[∆ρ] applies different phase rotations to the image for different
reflection angles and geological dips (Biondi, 2008).

In general, if we choose `2 norm, the tomography objective function to minimize
can be written as follows:

J =
1

2
||∆I||2 =

1

2
||I− F(I)||2, (5)

where || · ||2 stands for the `2 norm. Gradient-based optimization techniques such as
the quasi-Newton method and the conjugate gradient method can be used to minimize
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the objective function J . The gradient of J with respect to the slowness s reads as
follows:

∇J = <
((

∂I

∂s
− ∂F(I)

∂s

)′

(I− F(I))

)
, (6)

where < denotes taking the real part of a complex value and ′ denotes the adjoint.
For the DSO method, the linear operator O is independent of the slowness, so we
have

∂F(I)

∂s
= (1−O)

∂I

∂s
. (7)

Substituting Equations 2 and 7 into Equation 6 and evaluating the gradient at a
background slowness yields

∇JDSO = <
((

∂I

∂s

∣∣∣∣
s=bs

)′

O′OÎ

)
, (8)

where Î is the background image computed using the background slowness ŝ.

For the WEMVA method, the gradient is slightly more complicated, because in
this case, the focusing operator is also dependent on the slowness s. However, one
can simplify it by assuming that the focusing operator is applied on the background
image Î instead of I, and ∆̂ρ is also picked from the background image Î, that is

F(̂I) = Î + K[∆̂ρ]̂I. (9)

With these assumptions, we get the ”classic” WEMVA gradient as follows:

∇JWEMVA = <
(
−

(
∂I

∂s

∣∣∣∣
s=bs

)′

K[∆̂ρ]̂I

)
. (10)

The complete WEMVA gradient without the above assumptions can also be derived
following the method described by Biondi (2008).

No matter which gradient we choose to back-project the slowness perturbation,
we have to evaluate the adjoint of the linear operator ∂I

∂s

∣∣
s=bs, which defines a linear

mapping from the slowness perturbation ∆s to the image perturbation ∆I. This is
easy to see by expanding the image I around the background slowness ŝ as follows:

I = Î +
∂I

∂s

∣∣∣∣
s=bs (s− ŝ) + · · · . (11)

Keeping only the zero and first order terms, we get the linear operator ∂I
∂s

∣∣
s=bs as

follows:

∆I =
∂I

∂s

∣∣∣∣
s=bs ∆s = T∆s, (12)
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where ∆I = I − Î and ∆s = s − ŝ. T = ∂I
∂s

∣∣
s=bs is the wave-equation tomographic

operator. The tomographic operator can be evaluated either in the source and receiver
domain (Sava, 2004) or in the shot-profile domain (Shen, 2004). In next section we
follow an approach similar to that discussed by Shen (2004) and review the forward
and adjoint tomographic operator in the shot-profile domain. In the subsequent
sections, we generalize the expression of the tomographic operator to the generalized
source domain.

THE TOMOGRAPHIC OPERATOR IN THE
SHOT-PROFILE DOMAIN

For the conventional shot-profile migration, both source and receiver wavefields are
downward continued with the following one-way wave equations (Claerbout, 1971):{ (

∂
∂z

+ i
√

ω2s2(x)− |k|2
)

D(x,xs, ω) = 0

D(x, y, z = 0,xs, ω) = fs(ω)δ(x− xs)
, (13)

and { (
∂
∂z

+ i
√

ω2s2(x)− |k|2
)

U(x,xs, ω) = 0

U(x, y, z = 0,xs, ω) = Q(x, y, z = 0,xs, ω)
, (14)

where the overline stands for complex conjugate; D(x,xs, ω) is the source wavefield
for a single frequency ω at image point x = (x, y, z) with the source located at
xs = (xs, ys, 0); U(x,xs, ω) is the receiver wavefield for a single frequency ω at image
point x for the source located at xs; s(x) is the slowness at x; k = (kx, ky) is the
spatial wavenumber vector; fs(ω) is the frequency dependent source signature, and
fs(ω)δ(x− xs) defines the point source function at xs, which serves as the boundary
condition of Equation 13. Q(x, y, z = 0,xs, ω) is the recorded shot gather for the shot
located at xs, which serves as the boundary condition of Equation 14. To produce
the image, the following cross-correlation imaging condition is used:

I(x,h) =
∑
xs

∑
ω

D(x− h,xs, ω)U(x + h,xs, ω), (15)

where h = (hx, hy, hz) is the subsurface half offset.

The perturbed image can be derived by a simple application of the chain rule to
Equation 15:

∆I(x,h) =
∑
xs

∑
ω

(
∆D(x− h,xs, ω)Û(x + h,xs, ω)+

D̂(x− h,xs, ω)∆U(x + h,xs, ω)
)

, (16)

where D̂(x − h,xs, ω) and Û(x + h,xs, ω) are the background source and receiver
wavefields computed with the background slowness ŝ(x); ∆D(x−h,xs, ω) and ∆U(x+
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h,xs, ω) are the perturbed source wavefield and perturbed receiver wavefield, which
are the results of the slowness perturbation ∆s(x). The perturbed source and receiver
wavefields satisfy the following one-way wave equations, which are linearized with
respect to slowness (see Appendix A for derivations):

(
∂
∂z

+ i
√

ω2ŝ2(x)− |k|2
)

∆D(x,xs, ω) = −iω∆s(x)r
1− |k|2

ω2bs2(x)

D̂(x,xs, ω)

∆D(x, y, z = 0,xs, ω) = 0

, (17)

and 
(

∂
∂z

+ i
√

ω2ŝ2(x)− |k|2
)

∆U(x,xs, ω) = −iω∆s(x)r
1− |k|2

ω2bs2(x)

Û(x,xs, ω)

∆U(x, y, z = 0,xs, ω) = 0

. (18)

Recursively solving Equations 17 and 18 gives us the perturbed source and receiver
wavefields. The perturbed source and receiver wavefields are then used in Equation
16 to generate the perturbed image ∆I(x,h), where the background source and re-
ceiver wavefields are precomputed by recursively solving Equations 13 and 14 with a
background slowness ŝ(x). Appendix B gives a more detailed matrix representation
of how to evaluate the forward tomographic operator T.

To evaluate the adjoint tomographic operator T′, we first apply the adjoint of the
imaging condition in Equation 16 to get the perturbed source and receiver wavefields
∆D(x,xs, ω) and ∆U(x,xs, ω) as follows:

∆D(x,xs, ω) =
∑
h

∆I(x,h)Û(x + h,xs, ω), (19)

∆U(x,xs, ω) =
∑
h

∆I(x,h)D̂(x− h,xs, ω). (20)

Then we solve the adjoint equations of Equations 17 and 18 to get the slowness
perturbation ∆s(x). Again, in order to solve the adjoint equations of Equations 17

and 18, the background source wavefield D̂(x,xs, ω) and the background receiver

wavefield Û(x,xs, ω) have to be computed in advance. Appendix C gives a more
detailed matrix representation of how to evaluate the adjoint tomographic operator
T

′
.

TOMOGRAPHY WITH THE ENCODED WAVEFIELDS

It is clear from previous sections that the cost for computing the gradient of the ob-
jective function J in the original shot-profile domain is at least twice the cost of a
shot-profile migration, because to compute the perturbed wavefields, the background
wavefields are required. Because minimizing the objective function J requires a con-
siderable number of gradient and function evaluations, image-space wave-equation
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tomography in the conventional shot-profile domain seems to be infeasible for large-
scale 3-D applications, even with modern computer resources. To reduce the cost
and make this powerful method more practical, we extend the theory of image-space
wave-equation tomography to the generalized source domain, where a smaller num-
ber of synthesized shot gathers are used for computing the gradient. We discuss
two different strategies to generate the generalized shot gathers, i.e., the data-space
phase-encoding method and the image-space phase-encoding method, both of which
can achieve considerable data reduction while still keeping the necessary kinematic
information for velocity analysis.

Data-space encoded wavefields

The data-space encoded shot gathers are obtained by linear combination of the origi-
nal shot gathers after phase encoding. For simplicity, we mainly consider plane-wave
phase-encoding (Whitmore, 1995; Zhang et al., 2005; Duquet and Lailly, 2006; Liu
et al., 2006) and random phase-encoding (Romero et al., 2000). Because of the linear-
ity of the one-way wave equation with respect to the wavefield, the encoded source and
receiver wavefields also satisfy the same one-way wave equations defined by Equations
13 and 14, but with different boundary conditions:{ (

∂
∂z

+ i
√

ω2s2(x)− |k|2
)

D̃(x,ps, ω) = 0

D̃(x, y, z = 0,ps, ω) =
∑

xs
fs(ω)δ(x− xs)α(xs,ps, ω)

, (21)

and { (
∂
∂z

+ i
√

ω2s2(x)− |k|2
)

Ũ(x,ps, ω) = 0

Ũ(x, y, z = 0,xs, ω) =
∑

xs
Q(x, y, z = 0,xs, ω)α(xs,ps, ω)

, (22)

where D̃(x,ps, ω) and Ũ(x,ps, ω) are the encoded source and receiver wavefields
respectively, and α(xs,ps, ω) is the phase-encoding function. In the case of plane-
wave phase encoding, α(xs,ps, ω) is defined as

α(xs,ps, ω) = eiωpsxs , (23)

where ps is the ray parameter for the source plane waves on the surface. In the case
of random phase encoding, the phase function is

α(xs,ps, ω) = eiγ(xs,ps,ω), (24)

where γ(xs,ps, ω) is a random sequence in xs and ω. The parameter ps defines the
index of different realizations of the random sequence (Tang, 2008). The final image
is obtained by applying the cross-correlation imaging condition and summing the
images for all ps’s:

Ide(x,h) =
∑
ps

∑
ω

|c|2D̃(x− h,ps, ω)Ũ(x + h,ps, ω), (25)
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where c = ω for plane-wave phase encoding and c = 1 for random phase encoding
(Tang, 2008). It has been shown by Etgen (2005) and Liu et al. (2006) that plane-
wave phase-encoding migration, by stacking a considerable number of ps, produces
a migrated image almost identical to the shot-profile migrated image. If the original
shots are well sampled, the number of plane waves required for migration is generally
much smaller than the number of the original shot gathers (Etgen, 2005). Therefore
plane-wave source migration is widely used in practice. Random-phase encoding
migration is also an efficient tool, but the random phase function is not very effective
in attenuating the crosstalk, especially when many sources are simultaneously encoded
(Romero et al., 2000; Tang, 2008). Nevertheless, if many realizations of the random
sequences are used, the final stacked image would also be approximately the same
as the shot-profile migrated image. Therefore, the following relation approximately
holds:

I(x,h) ≈ Ide(x,h). (26)

That is, with the data-space encoded gathers, we obtain an image similar to that com-
puted by the more expensive shot-profile migration. From Equation 25, the perturbed
image can be easily obtained as follows:

∆Ide(x,h) =
∑
ps

∑
ω

|c|2
(

∆D̃(x− h,ps, ω)
̂̃
U(x + h,ps, ω)+

̂̃
D(x− h,ps, ω)∆Ũ(x + h,ps, ω)

)
, (27)

where
̂̃
D(x,ps, ω) and

̂̃
U(x,ps, ω) are the data-space encoded background source and

receiver wavefields; ∆D̃(x,ps, ω) and ∆Ũ(x,ps, ω) are the perturbed source and re-
ceiver wavefields in the data-space phase-encoding domain, which satisfy the per-
turbed one-way wave equations defined by Equations 17 and 18. The tomographic
operator T and its adjoint T′ can be implemented in a manner similar to that dis-
cussed in Appendices B and C by replacing the original wavefields with the data-space
phase encoded wavefields.

Image-space encoded wavefields

The image-space encoded gathers are obtained using the prestack exploding-reflector
modeling method introduced by Biondi (2006) and Biondi (2007). The general idea
of this method is to model the data and the corresponding source function that
are related to only one event in the subsurface, where a single unfocused SODCIG
(obtained with an inaccurate velocity model) is used as the initial condition for the
recursive upward continuation with the following one-way wave equations:{ (

∂
∂z
− i

√
ω2ŝ2(x)− |k|2

)
QD(x, ω; xm, ym) = ID(x,h; xm, ym)

QD(x, y, z = zmax, ω; xm, ym) = 0
, (28)
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and { (
∂
∂z
− i

√
ω2ŝ2(x)− |k|2

)
QU(x, ω; xm, ym) = IU(x,h; xm, ym)

QU(x, y, z = zmax, ω; xm, ym) = 0
, (29)

where ID(x,h; xm, ym) and IU(x,h; xm, ym) are the isolated SODCIGs at the horizon-
tal location (xm, ym) for a single reflector, and are suitable for the initial conditions
for the source and receiver wavefields, respectively. They are obtained by rotating the
original unfocused SODCIGs according to the apparent geological dip of the reflector.
This rotation maintains the velocity information needed for migration velocity anal-
ysis, especially for dipping reflectors (Biondi, 2007). By collecting the wavefields at
the surface, we obtain the areal source data QD(x, y, z = 0, ω; xm, ym) and the areal
receiver data QU(x, y, z = 0, ω; xm, ym) for a single reflector and a single SODCIG
located at (xm, ym).

Since the size of the migrated image volume can be very big in practice and
there are usually many reflectors in the subsurface, modeling each reflector and each
SODCIG one by one may generate a data set even bigger than the original data set.
One strategy to reduce the cost is to model several reflectors and several SODCIGs
simultaneously (Biondi, 2006); however, this process generates unwanted crosstalk.
As discussed by Guerra and Biondi (2008b,a), random phase encoding could be used
to attenuate the crosstalk. The randomly encoded areal source and areal receiver
wavefields can be computed as follows:{ (

∂
∂z
− i

√
ω2ŝ2(x)− |k|2

)
QD(x,pm, ω) = ĨD(x,h,pm, ω)

QD(x, y, z = zmax,pm, ω) = 0
, (30)

and { (
∂
∂z
− i

√
ω2ŝ2(x)− |k|2

)
QU(x,pm, ω) = ĨU(x,h,pm, ω)

QU(x, y, z = zmax,pm, ω) = 0
, (31)

where ĨD(x,h,pm, ω) and ĨU(x,h,pm, ω) are the encoded SODCIGs after rotations.
They are defined as follows:

ĨD(x,h,pm, ω) =
∑
xm

∑
ym

ID(x,h, xm, ym)β(x, xm, ym,pm, ω), (32)

ĨU(x,h,pm, ω) =
∑
xm

∑
ym

IU(x,h, xm, ym)β(x, xm, ym,pm, ω), (33)

where β(x, xm, ym,pm, ω) = eiγ(x,xm,ym,pm,ω) is chosen to be the random phase-encoding
function, with γ(x, xm, ym,pm, ω) being a uniformly distributed random sequence in
x, xm, ym and ω; the variable pm is the index of different realizations of the random
sequence. Recursively solving Equations 30 and 31 gives us the encoded areal source
data QD(x, y, z = 0,pm, ω) and areal receiver data QU(x, y, z = 0,pm, ω), which can
be collected on the surface.
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The synthesized new data sets are downward continued using the same one-way
wave equation defined by Equations 13 and 14 (with different boundary conditions)
as follows: { (

∂
∂z

+ i
√

ω2s2(x)− |k|2
)

D̃(x,pm, ω) = 0

D̃(x, y, z = 0,pm, ω) = QD(x, y, z = 0,pm, ω)
, (34)

and { (
∂
∂z

+ i
√

ω2s2(x)− |k|2
)

Ũ(x,pm, ω) = 0

Ũ(x, y, z = 0,xs, ω) = QU(x, y, z = 0,pm, ω)
, (35)

where D̃(x,pm, ω) and Ũ(x,pm, ω) are the downward continued areal source and areal
receiver wavefields for realization pm. The image is produced by cross-correlating the
two wavefields and summing images for all realization pm as follows:

Ime(x,h) =
∑
pm

∑
ω

D̃(x,pm, ω)Ũ(x,pm, ω). (36)

The crosstalk artifacts can be further attenuated if the number of pm is large; there-
fore, approximately, the image obtained by migrating the image-space encoded gath-
ers is kinematically equivalent to the image obtained in the shot-profile domain.

From Equation 36, the perturbed image is easily obtained as follows:

∆Ime(x,h) =
∑
pm

∑
ω

(
∆D̃(x− h,pm, ω)

̂̃
U(x + h,pm, ω)+

̂̃
D(x− h,pm, ω)∆Ũ(x + h,pm, ω)

)
, (37)

where
̂̃
D(x,pm, ω) and

̂̃
U(x,pm, ω) are the image-space encoded background source

and receiver wavefields; ∆D̃(x,pm, ω) and ∆Ũ(x,pm, ω) are the perturbed source and
receiver wavefields in the image-space phase-encoding domain, which satisfy the per-
turbed one-way wave equations defined by Equations 17 and 18. The tomographic op-
erator T and its adjoint T′ can be implemented in a manner similar to that discussed
in Appendices B and C, by replacing the original wavefields with the image-space
phase-encoded wavefields.

NUMERICAL EXAMPLES

We test the image-space wave-equation tomography in the generalized source do-
main on a simple model which contains only one reflector located at z = 1500
m. Figure 1 shows the correct slowness model. The slowness model consists of a
constant background slowness 1/2000 s/m and two Gaussian anomalies located at
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(x = −800, z = 800) and (x = 800, z = 800) respectively. The left anomaly has 5%
higher slowness, while the right one has 5% lower slowness. We modeled 401 shots
ranging from −4000 m to 4000 m, with a shot interval 20 m. The receiver locations
also range from −4000 m to 4000 m, but with a 10 m interval. The receivers are fixed
for all shots to mimic a land acquisition geometry.

Figure 1: The correct slowness model. The slowness model consists of a constant
background slowness (1/2000 s/m) and two 5% Gaussian anomalies. [ER]

Figure 2 shows the migrated images in different domains computed with a back-
ground slowness ŝ = 1/2000 s/m. Figure 2(a) is obtained by migrating the original
401 shot gathers. Because of the inaccuracy of the slowness model, we can identify the
mispositioning of the reflectors, especially beneath the Gaussian anomalies. Figure
2(b) is obtained by migrating the data-space plane-wave encoded gathers, where 61
plane waves are migrated; the result is almost identical to that in Figure 2(a); Figure
2(c) is obtained by migrating the image-space encoded gathers. The image-space en-
coded areal source and receiver data are generated by simultaneously modeling 100
randomly encoded unfocused SODCIGs, and 4 realizations of the random sequence
are used; hence we have 40 image-space encoded areal gathers (each realization con-
tains 10 areal shots). The kinematics of the result look almost the same as those in
Figure 2(a). However, notice the wavelet squeezing effect and the random noise in
the background caused by the random phase encoding.

Figure 3 shows the image perturbations obtained by applying the forward to-
mographic operator T in different domains. For this example, we assume that we
know the correct slowness perturbation ∆s, which is obtained by subtracting the
background slowness ŝ from the correct slowness s. Figure 3(a) shows the image per-
turbation computed with the original 401 shot gathers; notice the relative 90 degree
phase rotation compared to the background image shown in Figure 2(a). Figure 3(b)
is the result obtained by using 61 data-space plane-wave encoded gathers; the result
is almost identical to Figure 3(a). Figure 3(c) shows the result computed with 40
image-space encoded gathers; the kinematics are also similar to those in Figure 3(a).

Figure 4 illustrates the predicted slowness perturbations by applying the adjoint
tomographic operator T′ to the image perturbations obtained in Figure 3. For com-
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Figure 2: Migrated image cubes with a constant background slowness (ŝ = 1/2000
s/m). Panel (a) is the result obtained in the original shot-profile domain; Panel (b)
is the result obtained by migrating 61 plane waves, while panel (c) is obtained by
migrating 40 image-space encoded areal gathers. [CR]
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Figure 3: The image perturbations obtained by applying the forward tomographic
operator T to the correct slowness perturbations in different domains. Panel (a) shows
the image perturbation obtained using the original shot gathers, while panels (b)
and (c) are obtained using the data-space encoded gathers and image-space encoded
gathers, respectively. [CR]
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parison, Figure 4(a) shows the correct slowness perturbation, i.e., ∆s = s− ŝ; Figure
4(b) is the predicted slowness perturbation by back-projecting Figure 3(a) using all
401 shot gathers; Figure 4(c) is the result by back-projecting Figure 3(b) using all 61
data-space plane-wave encoded gathers and is almost identical to Figure 4(b); Figure
4(d) shows the result by back-projecting Figure 3(c) using all 40 image-space encoded
gathers. The result is also similar to Figure 4(b). However, notice that Figure 4(d)
shows a slightly less focused result than Figure 4(b) and (c), which might be caused
by the unattenuated crosstalk and the pseudo-random noise presented in Figure 3(c).

The final example we show is the comparison among the gradients of the objective
functional obtained in different domains. For simplicity, here we compare only the
negative DSO gradients (−∇JDSO) defined by Equation 8 (we compare −∇JDSO in-
stead of ∇JDSO, because −∇JDSO determines the search direction in a gradient-based
nonlinear optimization algorithm). Figure 5 shows the DSO image perturbations
computed as follows:

∆I(x,h) = |h|2Î(x,h), (38)

or in matrix form:

∆I = O′OÎ, (39)

where O is the DSO operator. Figure 5(a) is the result obtained in the original shot-
profile domain, whereas Figure 5(b) and (c) are obtained in the data-space phase-
encoding domain and the image-space phase-encoding domain, respectively. The
coherent energy at non-zero offests are indicators of velocity errors.

Figure 6 shows the negative gradients of the DSO objective functional (−∇JDSO)
obtained by back-projecting the DSO image perturbations shown in Figure 5. For
comparison, Figure 6(a) shows the exact slowness perturbation, which is the same
as Figure 4(a); Figure 6(b) shows the result obtained in the original shot-profile
domain; Figure 6(c) shows the result obtained in the data-space phase-encoding do-
main, which is almost identical to Figure 6(b); Figure 6(d) shows the result obtained
in the image-space phase-encoding domain. The result is also similar to Figure 6(b),
though the unattenuated crosstalk and the random noise make the gradient less well
behaved than those in Figure 6(b) and (c). Most important, the gradient in Figure
6(d) is pointing towards the correct direction, which is crucial for a gradient-based
optimization algorithm to converge to the correct solution.

CONCLUSIONS

We extend the theory of image-space wave-equation tomography to the generalized
source domain. One important advantage of this new domain is that we are able to
synthesize a much smaller data set while still keeping necessary velocity information
for migration velocity analysis; hence the computational cost of performing image-
space wave-equation tomography can be significantly reduced. We demonstrate how
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Figure 4: The slowness perturbation obtained by applying the adjoint tomographic
operator T′ on the image perturbations in Figure 3. Panel (a) shows the exact
slowness perturbation; Panel (b) shows the slowness perturbation estimated by back-
projecting the image perturbation shown in Figure 3(a); Panel (c) shows the result
obtained using the data-space plane-wave encoded gathers by back-projecting Figure
3(b) and Panel (d) shows the result obtained using the image-space encoded gathers
by back-projecting Figure 3(c). [CR]
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Figure 5: The DSO image perturbations. The coherent energy at non-zero offsets
indicates velocity errors. Panel (a) is obtained using the original shot gathers; Panels
(b) and (c) are obtained using the data-space encoded gathers and the image-space
encoded gathers, respectively. [CR]
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Figure 6: The negative DSO gradients obtained using different methods. Panel (a)
shows the exact slowness perurbation; Panel (b) shows the result obtained using the
original shot gathers; Panels (c) and (d) show the results obtained using the data-
space phase encoded gathers and the image-space phase encoded gathers, respectively.
[CR]
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these new data sets can be generated by using both the data-space phase encoding
method and the image-space phase encoding method. Our preliminary tests on a
simple synthetic model show that with the synthesized gathers, we are able to obtain
a gradient of the tomography objective functional similar to that computed using the
original shot gathers, but at significantly lower cost. The correct gradient is thus
important for the gradient-based optimization algorithm to converge to the correct
solution.
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APPENDIX

This appendix derives the perturbed one-way wave equation with respect to the slow-
ness perturbation. Let us start with the one-way wave equation for the source wave-
field as follows: { (

∂
∂z

+ i
√

ω2s2(x)− |k|2
)

D(x,xs, ω) = 0

D(x, y, z = 0,xs, ω) = fs(ω)δ(x− xs)
, (A-1)

We can rewrite the slowness and the source wavefield as follows:

s(x) = ŝ(x) + ∆s(x) (A-2)

D(x,xs, ω) = D̂(x,xs, ω) + ∆D(x,xs, ω), (A-3)

where ŝ(x) and D̂(x,xs, ω) are the background slowness and background wavefield,
and ∆s(x) and ∆D(x,xs, ω) are small perturbations in slowness and source wavefield,
respectively. If ∆s(x) is small, then the square root in the first equation of A-1 can
be approximated using Taylor expansion as follows:√

ω2s2(x)− |k|2 ≈
√

ω2ŝ2(x)− |k|2 +
ω∆s(x)√
1− |k|2

ω2bs2(x)

. (A-4)

Substituting Equations A-2, A-3 and A-4 into Equation A-1 and ignoring the second-
order terms yield the following linearized one-way wave equation for the perturbed
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source wavefield:
(

∂
∂z

+ i
√

ω2ŝ2(x)− |k|2
)

∆D(x,xs, ω) = −iω∆s(x)r
1− |k|2

ω2bs2(x)

D̂(x,xs, ω)

∆D(x, y, z = 0,xs, ω) = 0

. (A-5)

Similarly, we can also obtain the linearized one-way wave equation for the perturbed
receiver wavefield as follows:

(
∂
∂z

+ i
√

ω2ŝ2(x)− |k|2
)

∆U(x,xs, ω) = −iω∆s(x)r
1− |k|2

ω2bs2(x)

Û(x,xs, ω)

∆U(x, y, z = 0,xs, ω) = 0

. (A-6)

APPENDIX

This appendix demonstrates a matrix representation of the forward tomographic op-
erator T. Let us start with the source wavefield, where the source wavefield Dz at
depth z is downward continued to depth z + ∆z by the one-way extrapolator Ez(sz)
as follows:

Dz+∆z = Ez(sz)Dz, (B-1)

where the one-way extrapolator is defined as follows:

Ez(sz) = e−ikz(sz)∆z = e−i
√

ω2s2z−|k|2 (B-2)

The perturbed source wavefield at some depth level can be derived from the back-
ground wavefield by a simple application of the chain rule to equation B-1:

∆Dz+∆z = Ez(ŝz)∆Dz + ∆Ez(ŝz)D̂z, (B-3)

where D̂z is the background source wavefield and ∆Ez represents the perturbed
extrapolator, which can be obtained by a formal linearization with respect to slowness
of the extrapolator defined in Equation B-2:

Ez(sz) = e−ikz(sz)∆z ≈ e−i∆zbkz + e−i∆zbkz

(
−i∆z

dkz

dsz

∣∣∣∣
sz=bsz

)
∆sz

= Ez(ŝz) + Ez(ŝz)

(
−i∆z

dkz

dsz

∣∣∣∣
sz=bsz

)
∆sz, (B-4)

where k̂z = kz(ŝz) and ŝz is the background slowness at depth z. From Equation B-4,
the perturbed extrapolator reads as follows:

∆Ez(ŝz) = Ez(ŝz)

(
−i∆z

dkz

dsz

∣∣∣∣
sz=bsz

)
∆sz. (B-5)
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Substituting Equation B-5 into B-3 yields

∆Dz+∆z = Ez(ŝz)∆Dz + Ez(ŝz)

(
−i∆z

dkz

dsz

∣∣∣∣
sz=bsz

)
D̂z∆sz. (B-6)

Let us define a scattering operator Gz that interacts with the background wavefield
as follows:

Gz(D̂z, ŝz) =

(
−i∆z

dkz

dsz

∣∣∣∣
sz=bsz

)
D̂z =

−iω∆z√
1− |k|2

ω2bs2z
D̂z. (B-7)

Then the perturbed source wavefield for depth z + ∆z can be rewritten as follows:

∆Dz+∆z = Ez(ŝz)∆Dz + Ez(ŝz)Gz(D̂z, ŝz)∆sz. (B-8)

We can further write out the recursive Equation B-8 for all depths in the following
matrix form:0BBBBBB@

∆D0
∆D1
∆D2

.

.

.
∆Dn

1CCCCCCA =

0BBBBBB@

0 0 0 · · · 0 0
E0 0 0 · · · 0 0
0 E1 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 · · · En−1 0

1CCCCCCA

0BBBBBB@

∆D0
∆D1
∆D2

.

.

.
∆Dn

1CCCCCCA +

0BBBBBB@

0 0 0 · · · 0 0
E0 0 0 · · · 0 0
0 E1 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
0 0 0 · · · En−1 0

1CCCCCCA

0BBBBBB@

G0 0 0 · · · 0
0 G1 0 · · · 0
0 0 G2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 · · · Gn

1CCCCCCA

0BBBBBB@

∆s0
∆s1
∆s2

.

.

.
∆sn

1CCCCCCA ,

or in a more compact notation,

∆D = E(ŝ)∆D + E(ŝ)G(D̂, ŝ)∆s. (B-9)

The solution of Equation B-9 can be formally written as follows:

∆D = (1− E(ŝ))−1 E(ŝ)G(D̂, ŝ)∆s. (B-10)

Similarly, the perturbed receiver wavefield satisfies the following recursive relation:

∆Uz+∆z = Ez(ŝz)∆Uz + Ez(ŝz)Gz(Ûz, ŝz)∆sz, (B-11)

where Gz(Ûz, ŝz) is the scattering operator, which interacts with the background
receiver wavefield as follows:

Gz(Ûz, ŝz) =

(
−i∆z

dkz

dsz

∣∣∣∣
sz=bsz

)
Ûz =

−iω∆z√
1− |k|2

ω2bs2z
Ûz. (B-12)

We can also write out the recursive Equation B-12 for all depth levels in the following
matrix form:0BBBBBB@

∆U0
∆U1
∆U2

.

.

.
∆Un

1CCCCCCA =

0BBBBBB@

0 0 0 · · · 0 0
E0 0 0 · · · 0 0
0 E1 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 · · · En−1 0

1CCCCCCA

0BBBBBB@

∆U0
∆U1
∆U2

.

.

.
∆Un

1CCCCCCA +

0BBBBBB@

0 0 0 · · · 0 0
E0 0 0 · · · 0 0
0 E1 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
0 0 0 · · · En−1 0

1CCCCCCA

0BBBBBB@

G0 0 0 · · · 0
0 G1 0 · · · 0
0 0 G2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 · · · Gn

1CCCCCCA

0BBBBBB@

∆s0
∆s1
∆s2

.

.

.
∆sn

1CCCCCCA ,
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or in a more compact notation,

∆U = E(ŝ)∆U + E(ŝ)G(Û, ŝ)∆s. (B-13)

The solution of Equation B-13 can be formally written as follows:

∆U = (1− E(ŝ))−1 E(ŝ)G(Û, ŝ)∆s. (B-14)

With the background wavefields and the perturbed wavefields, the perturbed im-
age can be obtained as follows:

0BBBBBB@

∆I0
∆I1
∆I2

.

.

.
∆In

1CCCCCCA =

0BBBBBBB@

bU0 0 0 · · · 0

0 bU1 0 · · · 0

0 0 bU2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · bUn

1CCCCCCCA

0BBBBBB@

∆D0
∆D1
∆D2

.

.

.
∆Dn

1CCCCCCA +

0BBBBBBB@

bD0 0 0 · · · 0

0 bD1 0 · · · 0

0 0 bD2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · bDn

1CCCCCCCA

0BBBBBB@

∆U0
∆U1
∆U2

.

.

.
∆Un

1CCCCCCA ,

or in a more compact notation,

∆I = diag
(
Û

)
∆D + diag

(
D̂

)
∆U. (B-15)

Substituting Equations B-10 and B-14 into Equation B-15 yields

∆I =
(
diag

(
Û

)
(1− E(ŝ))−1 E(ŝ)G(D̂, ŝ) +

diag
(
D̂

)
(1− E(ŝ))−1 E(ŝ)G(Û, ŝ)

)
∆s, (B-16)

from which we can read the forward tomographic operator T as follows:

T = diag
(
Û

)
(1− E(ŝ))−1 E(ŝ)G(D̂, ŝ) +

diag
(
D̂

)
(1− E(ŝ))−1 E(ŝ)G(Û, ŝ). (B-17)

APPENDIX

This appendix demonstrates a matrix representation of the adjoint tomographic op-
erator T

′
. Since the slowness perturbation ∆s is linearly related to the perturbed

wavefields, ∆D and ∆U, to obtain the back-projected slowness perturbation, we
first must get the back-projected perturbed wavefields from the perturbed image ∆I.
From Equation B-15, the back-projected perturbed source and receiver wavefields are
obtained as follows:

∆D = diag
(
Û

)
∆I (C-1)

and

∆U = diag
(
D̂

)
∆I. (C-2)
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Then the adjoint equations of Equations B-10 and B-14 are used to get the back-
projected slowness perturbation ∆s. Let us first look at the adjoint equation of
Equation B-10, which can be written as follows:

∆sD = G′(D̂, ŝ)E′(ŝ) (1− E′(ŝ))
−1

∆D. (C-3)

We can define a temporary wavefield ∆PD that satisfies the following equation:

∆PD = E′(ŝ) (1− E′(ŝ))
−1

∆D. (C-4)

After some simple algebra, the above equation can be rewritten as follows:

∆PD = E′(ŝ)∆PD + E′(ŝ)∆D. (C-5)

Substituting Equation C-1 into equation C-5 yields

∆PD = E′(ŝ)∆PD + E′(ŝ)diag
(
Û

)
∆I. (C-6)

Therefore, ∆PD can be obtained by recursive upward continuation, where ∆D =

diag
(
Û

)
∆I serves as the initial condition. The back-projected slowness perturbation

from the perturbed source wavefield is then obtained by applying the adjoint of the
scattering operator G(D̂, ŝ) to the wavefield ∆PD as follows:

∆sD = G′(D̂, ŝ)∆PD. (C-7)

Similarly, the adjoint equation of Equation B-14 reads as follows:

∆sU = G′(Û, ŝ)E(ŝ)′ (1− E(ŝ)′)
−1

∆U. (C-8)

We can also define a temporary wavefield ∆PU that satisfies the following equation:

∆PU = E(ŝ)′ (1− E(ŝ)′)
−1

∆U. (C-9)

After rewriting it, we get the following recursive form:

∆PU = E(ŝ)′∆PU + E(ŝ)′∆U

= E(ŝ)′∆PU + E(ŝ)′diag
(
D̂

)
∆I. (C-10)

The back-projected slowness perturbation from the perturbed receiver wavefield is
then obtained by applying the adjoint of the scattering operator G(Û, ŝ) to the wave-
field ∆PU as follows:

∆sU = G′(Û, ŝ)∆PU . (C-11)

The total back-projected slowness perturbation is obtained by adding ∆sD and ∆sU

together:

∆s = ∆sD + ∆sU . (C-12)
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