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ABSTRACT

We propose a new method to perform wave-equation migration velocity analysis
using angle-domain common image gathers. Instead of maximizing the image-
stack-power objective function directly with respect to the slowness, we link the
objective function to the slowness indirectly through an intermediate moveout
parameter. Since this approach is robust against the cycle-skipping problem, it
produces more reasonable gradients. Also the proposed method does not require
explicit picking of the moveout parameters. Our data examples shows the great
potential of this method.

INTRODUCTION

Wave-equation migration velocity analysis (WEMVA) methods aim to utilize velocity
information from the migrated images to improve the velocity model. Using the
wave equation is potentially more accurate than ray-based methods becauses it better
describes wave-propagation physics and will give a more physically realistic senstivity
kernel for the velocity update. Evaluating the flatness of the angle-dommain common
image gathers (ADCIGs) (Biondi and Symes, 2004) is so far the most favored choice
when forming WEMVA optimization problems.

Several WEMVA methods have been proposed, but there is no consensus on the
best method. The maximum-stack power method (Chavent and Jacewitz, 1995) di-
rectly maximizes the angle stack of the ADCIGs, but similar to the Full Waveform
Inversion (FWI) (Tarantola, 1984) method, it is prone to cycle-skipping when the
velocity error is too large. The differential-semblance optimization (DSO) (Symes
and Carazzone, 1991; Shen et al., 2005; Shen and Symes, 2008) penalizes the first
derivative along the angle axis on the ADCIGs. This objective function is easy to
implement but will falsely over-penalize an already flat angle gather with variant am-
plitudes; and the differential operator significantly amplifies the noise in the image,
thus generating unwanted artifacts in the velocity upgrade. Sava (2004) uses prestack
Stolt residual migration to help construct the image perturbation. The cycle-skipping
problem is avoided this way, however the user is required to pick a ρ parameter at
each model point, and the picking is not trivial. Furthermore the Stolt migration
can only migrate images using constant velocity for the entire velocity model. There
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is some question whether the ρ parameters picked with these image-ρ cubes always
represent the correct trend of the velocity update.

In this report, we propose a new method which extends from the theory in Biondi
(2010, 2011). This method extracts the velocity-focusing information in the angle
domain and tries to maximize the angle-stack power of ADCIGs as well. To tackle
the cycle-skipping issue, we present a new way to construct the image perturbation by
introducing an intermediate moveout parameter that describes the kinematics change
of the ADCIGs caused by the velocity change; and that kinematic change then links
to the change of objective function. The rest of the paper is divided into two parts:
first the theoretical framework is explained; then we demonstrate the effectiveness of
our method with several synthetic examples.

THEORY

Practical experience indicates that slowness is a better parameterization than velocity.
For clarity, the model space is parameterized as slowness for the rest of the derivation
in this paper. To make it simple, the derivation is presented in 2D; however it is
straightforward to extend it to three dimensions.

from slowness perturbation to the change in image kinematics

In this section we present the formula that links the slowness perturbation to the shifts
of the ADCIGs. Starting from the initial slowness model s0(z, x), we first define the
pre-stack common-image gather in the angle domain as I(z, γ, x; s0), where γ is the
reflection angle. If we choose a different slowness s(z, x), the new image I(z, γ, x; s)
will be different from I(z, γ, x; s0) in terms of both kinematics and amplitude. If, as
is commonly done, we focus on the kinematic change, then a way to characterize this
kinematic change is to define a shift parameter b at each image location, b(γ, z, x),
such that if we apply this shift parameter to the initial image, the resulting image
I(z + b, γ, x; s0) will agree with the new image I(z, γ, x; s) in terms of kinematics.
This is indicated by the maximum point of the auxilary objective function:

Jaux(b) =

∫ L/2

−L/2

dzw

∫
dγ I(z + zw + b, γ; z, x, s0)I(z + zw, γ; z, x, s) for each x,z. (1)

Note that in order to handle multiple events, we use a local window of length L along
the depth axis. For the rest of the paper, the integration bound for variable zw is
always [−L/2, L/2], and each Jaux is defined within that window around image point
(x,z). I(z + zw, γ; z, x) = I(z + zw, γ, x) represents a windowed version of the entire
image.

This methodology is borrowed from Luo and Schuster (1991) who tried to find
the relation of the travel-time perturbation to the slowness change. Then ∂b

∂s
can be
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found using the rule of partial derivatvies for implicit functions (please refer to the
appendix A):

∂b

∂s
= −

∫
dzw İ(z + zw + b, γ; z, x, s0)

∂I(z+zw,γ;z,x,s)
∂s

E(γ, z, x)
, (2)

in which E(γ, z, x) =
∫

dzwÏ(z + zw + b, γ; z, x, s0)I(z + zw, γ; x, s). İ and Ï indicate
the first and second derivatives in z (depth). In practice, eq. (2) will be greatly
simplified if we evaluate this expression at s = s0, in other words b = 0. In fact, this
will always be the case if we update the intial slowness s0 after each iteration. The
simplified relation becomes

∂b

∂s
|s=s0 = −

∫
dzw İ(z + zw, γ; z, x, s0)

∂I(z+zw,γ;z,x,s)
∂s

E(γ, z, x)
, (3)

and the ∂I(z+zw,γ;z,x,s)
∂s

term is indeed the wave-equation image-space tomographic
operator. Each part in eq. (3) has clear physical implications: the E term acts as
an energy term to normalize the amplitude of the back-projected image; the back-
projected image, İ(z + zw, γ; z, x, s0) is built based on the initial image; it also has
a first-order z derivative that introduces a proper 90◦ phase shift, ensuring a well
behaved slowness update from the tomographic operator.

(a) (b)

Figure 1: Slowness sensitivity kernel at incident angle γ = 30◦ for a flat reflector (a)
and a dipping reflector (b). [ER]

For a simple illustration of eq. (3), the slowness sensitivity kernel is calculated,
by back-projecting a shift perturbation ∆b(γ, x) that has one single spike at γ =
30◦, x = 0. A uniform background velocity of 2000 m/s is used. Figure 1(a) shows
the sensitivity kernel if the reflector is flat, and figure 1(b) shows the sensitivity kernel
with a dipping reflector (dip angle = 20◦). As is clearly shown in these two plots, this
operator will project the slowness perturbation along the corresponding wave path
based on the location and reflection angle of the image shift.
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Introducing the residual moveout parameter

The previous section showed how the slowness change can be associated with the
kinematic change of the image. The remaining task is to determine how the image’s
kinematics should change by evaluating the objective function. Ideally we would like
to know the true depth of the reflector, so that we can guarantee that the correct
shift direction of the image is extracted. Unfortunately, we usually do not have the
true depth of the reflector, and have to find the shift direction by relying only on
the flatness criterion. A first attempt that directly maximizes the angle stack after
shifting the initial image would be

J(s) =
1

2

∑
x

∑
z

∫
dzw

[∫
dγ I(z + zw + b, γ, z, x; s0)

]2

. (4)

The corresponding derivative over b for a fixed (γ, z, x) is

∂J

∂b(γ, z, x)
|b=0 =

1

2

∑
x

∑
z

∫
dzw

{[∫
dγ I(z + zw, γ, z, x; s0)

]
İ(z + zw, γ, z, x; s0)

}
.

(5)
Apparently, this objective function is very susceptible to the cycle-skipping problem:
for a fixed (γ, z, x), if the image I(z + zw, γ, z, x; s0) and the angle-averaged image∫

dγ I(z + zw, γ, z, x; s0) become out of phase, the derivative of eq. (5) will point to
the wrong shift direction.

To prevent cycle-skipping, we need a way to detect the global shape of the AD-
CIGs. Almomin (2011) propose to measure the relative shift the traces at each angle
with respect to some reference trace by picking cross-correlation peak. Here we use
the residual moveout (RMO) parameters so that the objective function knows whether
the angle gather is curving up or curving down.

As shown in Biondi (2003) Chap 11, in the case of constant velocity error, the
residual moveout of an ADCIG gather is

θ(γ) = zρ0
ρ− 1

cos αx

sin2 γ

cos2 αx − sin2 γ
,

where ρ = s/s0, αx and γ are the dip angle and reflection angle respectively, and z is
the true reflector depth, zρ0 = z/ρ. If we assume the dip is small, then the expression
above can be further simplified to

θ(γ) = zρ0(ρ− 1) tan2 γ.

Therefore we introduce the moveout parameter α and the moveout function g(γ) =
tan2 γ. The objective function we want to maximize is the angle stack-power of the
inital image after applying the residual moveout:

J =
1

2

∑
x

∑
z

∫
dzw

[∫
dγ I(z + zw + αg(γ), γ, z, x; s0)

]2

.
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The derivative is

∂J

∂s
|s=s0 =

∑
x

∑
z

∫
dzw

{
(

∫
dγI(z + zw, γ, z, x; s0))

[∫
dγ İ(z + zw, γ, z, x; s0)g(γ)

∂α

∂s
)

]}
.

Define

A(zw; z, x, s0) =
∫

dγ I(z + zw, γ; z, x, s0),

B(zw; z, x, s0) =
∫

dγ İ(z + zw, γ; z, x, s0)g(γ),

then

∂J

∂s
=

∑
x

∑
z

∂J

∂α

∂α

∂s
(6)

=
∑

x

∑
z

{
∫

dzwA(zw; z, x, s0)B(zw; z, x, s0)}
∂α

∂s
.

We find there are two ways to derive the ∂α
∂s

relation (see appendix B):

1. We can link ∆s to ∆α by defining an auxilary objective function; we call this
the direct operator.

2. we can convert the perturbation of α to the shift parameter b perturbation at
each angle, through a weighted least-squares fitting formula; thus ∆α → ∆b →
∆s; and as shown previously, we know how to calculate ∂b

∂s
. We call this the

indirect operator.

The sensitivity kernel ∂α
∂s

calculated using the direct operator and the indirect
operator are shown in figure 2, as with the Toldi operator (Toldi, 1985), the charac-
teristic shape of such a sensitivity kernel is a center lobe, with two side lobes with
oppositite polarity, which reaffirms the well known fact that velocity perturbation
at the center and the side-end lateral position will change the curvature of ADCIGs
towoard opposite directions. Yet the overall average is positive, which would give the
correct update in case of a bulk shift slowness error.

Now if we review this method on eq. (6), the success of this method simply relies
on the proper behavior of the two components in eq. (6): ∂J

∂α
needs to correctly detect

the curvature of the ADCIGs so that the inversion will choose a moveout direction that
properly flatten the gathers; ∂α

∂s
needs to properly convert the curvature perturbation

to the update in slowness space.

In cases where velocity error is big, the actual curvature of the gather may be
poorly represented the ∂J

∂α
term. To further improve the robustness and precondition

the gradient, the analytic expression of ∂J
∂α

in eq. (6) is replaced by a numerical
approach. First a semblance panel of J(α) will be calculated. To ensure that the
derivative at α = 0 can determine the correct curvature that maximizes the semblance
value, a Gaussian derivative rather than a simple (−1, 1) finite-difference derivative
is applied. The width of the Gaussian can be reduced in later iterations.
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(a) (b)

Figure 2: Sensitivity kernel ∂α/∂s calulated using the direct operator (a) and the
indirect operator (b), using constant background velocity and a flat reflector. [CR]

RESULTS

We create several synthetic examples to show the effectiveness of our method. The
model is 16 km in x and 1.2 km in z. The grid sampling is 20m in x and 10m in
z. The survey geometry follows the marine acquisition convention with 4km cable
length, receiver spacing is 20m and a total of 150 shots are simulated from -6 km
to +6 km with a spacing of 80m. A total of 106 frequencies are calculated, ranging
from 5Hz to 40Hz. Unless explicitly mentioned, there is one flat reflector at a depth
around 800m and a constant background velocity of 2000m/s is used. A one-way
propagator is used for computational efficiency. For comparison, the subsurface-offset
DSO and straight maximum-stack-power method are also implemented.

The first example is a true velocity with a 1 km width Gaussian anomaly at the
center, with peak value 4000m/s. Figure 3(a) shows the anomaly (in slowness) and
Fig 3(b) shows the migrated zero subsurface-offset image, The velocity error is so
large that the center part of the reflector is pulled up significantly.

Figure 4 shows the first slowness update using the three methods. Our method
presents the most pleasing update among the three; the location of the anomaly is
correctly located, and the target region is more uniformly updated, except for the
small holes within the “W” shape due to the poorer wave path coverage caused by
the curved reflector. The DSO result shows the typical strip-shaped artifacts, and the
amplitude of the target region is weak compared to the edge artifacts. The maximum-
stack-power method suffers from cycle skipping and is not able to locate the target
area.

In the second example the true velocity has a horizontal gradient, where velocity
increase linearly from 1500 m/s to 2700 m/s. Figure 5(a) shows the true model (in
slowness) and figure 5(b) shows the migrated zero subsurface-offset image. The orig-
inally flat reflector is tilted in the image because of the horizontal slowness gradient.
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(a)

(b)

Figure 3: (a) The slowness model with a Gaussian anomaly. [ER](b) The migrated
image using constant background slowness. [CR]
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(a)

(b)

(c)

Figure 4: The first slowness update direction of our method (a), the subsurface-offset
domain DSO (b), and the direct stack-power-maximization (c), true slowness refers
to figure 3(a). [CR]
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(a)

(b)

Figure 5: (a) The slowness model with a horizontal gradient from 1500m/s to 2700m/s
[ER];(b) The migrated image using constant background slowness. [CR]
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(a)

(b)

(c)

Figure 6: The first slowness update direction of our method (a), the subsurface-offset
domain DSO (b), and direct stack power maximization (c). The true slowness refers
to figure 5(a). [CR]
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Figure 6 shows the first slowness update using the three methods. Again our
method presents the most pleasing update among the three. The amplitude of the
search direction is proportional to the actual magnitude of the slowness error. A
large strip-shaped artifact is introduced at x = −4000 m in DSO update. this is
commonly seen from DSO results when there are reflector discontinuities; although
it does decently predicted the horizontal gradient shape of the slowness error. The
maximum-stack-power method is able to predict correctly when the slowness error
is small (around x = 0 m). As the slowness error reaches a certain threshold, cycle-
skipping happens and the result deteriorates.

For the third example, the true velocity is a constant 1900 m/s plus a high veloicty
anomaly at x = 2000 m/s with peak value 2850 m/s. We designed a hump-shaped
reflector to test this method’s ability to handle mild dips. Figure 7(a) shows the true
model (in slowness) and Fig 7(b) shows the migrated zero subsurface-offset image.
Figure 7(c) and 7(d) shows the first slowness update using our method and the DSO
method. The effect of the high velocity anomaly is partially cancelled by the lower
constant part (1900 m/s), nontheless, the overall result still requires a negative update
at the anomaly’s location. In the presence of a mild dipping reflector, our method
still yields a satisfying result.

The effect of the high velocity anomaly is partially cancelled by the lower constant
part (1900 m/s), nontheless, the overall result still requires a negative update at the
anomaly’s location. In the presence of a mild dipping reflector, our method still yields
a satisfying result.

Based on the gradient calculation, we implement an non-linear slowness inversion
framework. The example we tested is the marmousi velocity model. The model is
6 km in x and 1.6 km in z. The spatial sampling is 20 m. The survey geometry follows
the land acquisition convention with receiver at every surface location on the top and
a total of 51 shots are simulated covering the whole lateral span on the top with a
spacing of 120 m.

Figure 8(a) shows the true model (in velocity) and figure 8(b) shows the starting
model, which has a vertical gradient increasing from 1600 m/s to 3200 m/s. Figure
8(c) and 8(d) show the inverted velocity model using our method and subsurface-
offset DSO method. We run 20 nonlinear iterations for each inversion, and the same
extent of gradient smoothing is applied. Although both inversion result improves the
focusing of the subsurface-offset image, the outline of the true velocity structure is
much better captured with our method.

CONCLUSION

We present a new method to perform wave-equation migration velocity analysis. It
properly captures the kinematic update from the ADCIGs and projects that update
into the slowness space. We demonstrated this promising approach using several
examples. As shown previously, this method does not suffer from cycle-skipping,
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(a)

(b)

(c)

(d)

Figure 7: (a) The slowness model with a constant slower velocity 1900 m/s, there
is also a high velocity anomaly at x = 2000 m, with peak value 2850 m/s; [ER](b)
The migrated image using constant background velocity (2000 m/s). [CR](c) The
first slowness update direction using our method; [CR](d) The first slowness update
using the subsurface-offset domain DSO method. [CR]
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(a)

(b)

(c)

(d)

Figure 8: The true velocity model of Marmousi (a) (slightly smoothed) [ER]; the
starting velocity model (b) [ER]; the inverted velocity model using our method (c)
and using the subsurface-offset DSO (d). [CR]
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does not require moveout parameters picking, and can robustly improve the flatness
of the angle gathers. We plan to further develop this method and apply it to more
challenging data.
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APPENDIX-A

Details of the ∂b
∂s sensitivity kernel calculation

This section illustrates how to calculate the sensitivity kernel of the image shift pa-
rameter b(γ, x): ∂b

∂s
. Since b maximizes the auxillary objective function,

Jaux(b) =

∫
dzw

∫
dγ I(z + zw + b, γ; z, x, s0)I(z + zw, γ; z, x, s) for each z,x, (7)

we have
∂Jaux

∂b
= 0. (8)

To find the relation between b and s(x), we differentiate equation (8) with respect
to b and s, which yields

∂2Jaux

∂b2

∂b

∂s
= −∂Jaux

∂b∂s
, (9)

in which we can find

∂Jaux

∂b
=

∫
dzwİ(z + zw + b, γ; z, x, s0)I(z + zw, γ; z, x, s),

İ , Ï indicate the first and second derivatives in z (depth). Let

∂2Jaux

∂b2
=

∫
dzw Ï(z + zw + b, γ; x, z, s0)I(z + zw, γ; x, z, s) = E(x, z).

Then substituting the above two equations into eq. (9) leads to

∂b

∂s
= −

∫
dzw İ(z + zw + b, γ; z, x, s0)

∂I(z+zw,γ;z,x,s)
∂s

E(γ, z, x)
, (10)

which is eq. (2).

APPENDIX-B

Details of ∂α
∂s sensitivity kernel calculation

This section provides the derivation of the direct ∂α
∂s

operator. The approach is to
define the auxilary function that links moveout parameter α(z, x) and the slowness s.

Jaux =

∫
dzw

∫
dγ I(z + zw + θ(α, β, γ), γ; z, x, s0)I(z, γ; z, x, s) for each z,x , (11)

in which
θ(α, β, γ) = α tan2 γ + β = αg(γ) + βh(γ).
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Notice that here the moveout between the initial image I(s0) and the new image I(s)
is characterized by both curvature α and constant shift β. The β parameter does
not affect the gather flatness; therefore there is no need to put it into the objective
function in () , however β is essential to describe the change of image’s kinematics.

Since α, β maximize eq (11),

{
∂Jaux

∂α
= 0

∂Jaux

∂β
= 0

. (12)

We differentiate the equation (12) with respect to α, β and s, which gives ∂2Jaux

∂α2
∂2Jaux

∂α∂β

∂2Jaux

∂α∂β
∂2Jaux

∂β2


 ∂α

∂s

∂β
∂s

 = −

 ∂Jaux

∂α∂s

∂Jaux

∂β∂s

 . (13)

Now we need to invert a Jacobian to get dα/ds. We define the following:

∂2Jaux

∂α2
=

∫
dzw

∫
dγ Ï(z + zw + θ, γ; z, x, s0)g

2(γ)I(z + zw, γ; z, x, s) = E11(z, x)

∂2Jaux

∂α∂β
=

∫
dzw

∫
dγ Ï(z + zw + θ, γ; z, x, s0)g(γ)h(γ)I(z + zw, γ; z, x, s) = E12(z, x)

∂2Jaux

∂β2
=

∫
dzw

∫
dγ Ï(z + zw + θ, γ; z, x, s0)h

2(γ)I(z + zw, γ; z, x, s) = E22(z, x)

(14)

Let the inverse of matrix E to be matrix F :

F =

[
F11 F12

F12 F22

]
=

[
E11 E12

E12 E22

]−1

Then

∂α

∂s
|s=s0 = −

∫
dzw

∫
dγ(F11g(γ) + F12h(γ))İ(z + zw, γ; z, x, s0)

∂I(z + zw, γ; z, x, s)

∂s
.

(15)

There is another way to define the relation between α and s, leading to the indidi-
rect ∂α

∂s
operator using a weighted least-squares fitting formula. Suppose we have the

locations of one event in the ADCIGs at location (γi, zi), and we introduce a moveout
formula θ(γ) = z0 + α tan2 γ. Now we define the best fitted intercept and curvature
(z0 and α) values as follows:

(z0, α) = arg min
z0,α

∑
i

{(zi − α tan2 γi − z0)
2w2

i }, (16)

SEP–143



Zhang and Biondi 17 WEMVA and residual moveout

where wi is the energy of the event at angle γi, serving as a weight for the least-squares
fitting. We denote x =

∑
i xiw

2
i (the weighted average of quantity x), then

α =
1 (z tan2 γ)− tan2 γ z

1 tan4 γ − (tan2 γ)2
.

It is easy to find ∆α if there is a pertubation of bi on zi:

∂α

∂bi

=
w2

i (1 tan2 γi − tan2 γ)

1 tan4 γ − (tan2 γ)2
. (17)

Finally,
∂α

∂s
=

∑
i

∂α

∂bi

∂bi

∂s
, (18)

where ∂α
∂bi

, ∂bi

∂s
are defined respectively in equations (17) and (10).
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