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ABSTRACT

Beam-focusing using only moveout parameter (slope).

INTRODUCTION

The background is referred to (Biondi, 2010).

THEORY

First define the correlation panel after the beam(local window) decomposition:

C(h, τ ; xs, xg, v) =

∫
dt Pcal(h, t− τ, xs, xg, v) Pobs(h, t; xs, xg). (1)

Assume the move out function has the form

θxs,xg(b, h) = bh = bg(h), (2)

in which h is the local offset, g(h) = h.

The local maximization objective function that measure the flatness is

JFL(xs, xg) =

∫ ∫
dh dτ C(h, τ + θ(b); xs, xg, v0)C(h, τ ; xs, xg, v(x)). (3)

Keep in mind that b in the context of the paper is always a function of xs, xg, i.e.
b(xs, xg).

Because b maximize JFL, then we have

∂JFL

∂b
= 0 (4)

To find out the relation between b and v(x), differentiate the equation (4) with b
and v. we have

∂2JFL

∂b2

∂b

∂v
= −∂JFL

∂b∂v
(5)
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in which we can find

∂JFL

∂b
=

∫ ∫
dh dτĊ(h, τ + θ; v0)g(h)C(h, τ, v) = 0

(Ċ, C̈ indicate the first and second derviate on time axis.) and let

∂2JFL

∂b2
=

∫ ∫
dh dτ C̈(h, τ + θ; v0)g

2(h)C(h, τ ; v) = E22.

Then we have

E22
∂b

∂v
= −∂JFL

∂b∂v
(6)

Then the right hand side

∂JFL

∂b∂v
=

∫ ∫
dh dτ Ċ(h, τ + θ; v0)g(h)

∂C(h, τ ; v)

∂v

and from Tarantola (1984) the waveform inversion theory, we have

∂C(h, τ ; v)

∂v
=

1

v3

∫
dt Pobs(h, t + τ ; xs, xg)Ġ(x, t; xg, h, 0) ∗ Ṗcal(x, t; xs), (7)

in which G stands for Green’s function for wavefield propagation. Ġ, Ṗ stands for
first derivative over time as well, ∗ stands for convolution along time axis.

On the other side, the objective function we want to maximize is

J =
1

2

∑
xs

∑
xg

∫
dτ

[∫
dhC(h, τ + θ(b, h); xs, xg, v0)

]2

To calculate the gradient, ( To give a concise notation, C(h, τ + θ(b, h); xs, xg, v0)
is simply denoted as C(h, τ + θ; v0))

∂J

∂v
=

∑
xs

∑
xg

∫
dτ

∫
dhC(h, τ + θ; v0)

[∫
dh Ċ(h, τ + θ; v0)(g(h)

∂b

∂v
)

]

notice that ∂b
∂v

is independent of τ and h, so they can be taken out of the integral,
denote

A(τ, a, b; xs, xg, v0) =

∫
dhC(h, τ + θ; xs, xg, v0) (8)

B1(τ, a, b; xs, xg, v0) =

∫
dh Ċ(h, τ + θ; xs, xg, v)g(h) (9)
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Then

∂J

∂v(x)
=

∑
xs

∑
xg

∫
dτ A(τ ; v0)

(
B1(τ ; v)

∂b

∂v

)
=

∑
xs

∑
xg

∫
dτ (A(τ ; v0)B1(τ ; v))

∂b

∂v

Let ∫
dτ A(τ ; v0)B1(τ ; v) = B2(v0, v)

, then

∂J

∂v(x)
=

∑
xs

∑
xg

B2(v0; v)
∂b

∂v
(10)

from (6) and (7), we have

∂b
∂v

= − 1

E22

( ∫ ∫
dh dτ Ċ(h, τ + θ; v0)g(h)∂C

∂v

)
, (11)

Let
B2

E22

= H.

Then plug eq (11) into (10), we have

∂J

∂v
= H

∫ ∫
dh dτ Ċ(h, τ + θ; v0)g(h)

∂C

∂v
(12)

=

∫ ∫
dh dτ Ċ(h, τ + θ; v0)(Hg(h))

∂C

∂v
(13)

Plug eq (7) in, we have

∂J

∂v
= − 2

v3

∑
xs

∑
xg

{
∫ ∫

dh dτ Ċ(h, τ+θ; v0)(Hg(h))
∫

dt Pobs(h, t+τ ;xs, xg)Ġ(x, t;xg, h, 0)∗Ṗcal(x, t;xs)}

(14)

Manipulate the internal triple integration in simlary way as in Tarantola (1984),
we have

∂J

∂v
= − 2

v3

∑
xs

∑
xg

∫
dt Ṗcal(x, t; xs)

∫
dh Ġ(x,−t; xg, h, 0)∗S(t, h, θ; xs, xg, v0), (15)

in which

S(t, h, θ; xs, xg, v0) = H(xg, xs)g(h)

∫
dτ [Ċ(h, τ + θ; v0, xg, xs)Pobs(h, t + τ, xs, xg)]

(16)
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We can further simplify it by changing the integration varibles. Let xr = xg + h,
replace the integration variable xg, then we have∑

xg

∫
dh Ġ(x,−t;xg, h, 0) ∗t Hg(h)

∫
dτ [Ċ(h, τ + θ; v0, xg, xs)Pobs(h, t + τ, xs, xg)] =∑

xr
Ġ(x,−t;xr, 0) ∗t

(∫
dτĊ(τ + θ; v0, xr)Pobs(xr, t + τ)

∫
dhH(xr − h)g(h)

) (17)

Then if we evaluate ∂J
∂v

at v = v0, then θ = 0. and the equation (15) & (16) illustrates
us how to implement the gradient calculation on computers.

PRELIMINARY RESULTS

Here I implemented a simple scenario where we have constant velocity error. The
velocity grid has a grid size of 10m by 10m, 130 grid points in depth and 552 grid
points in width. One shot is placed on the center top of the domain, receivers down
the bottom, spacing is also 10m. The true velocity is 3000m/s, and the initial velocity
is 3300m/s. The beam size is 15 grid pts, i.e 140m width.

Figure 1 shows the gradient calculated from two methods: the Traveltime Tomog-
raphy method and the method presented in this report. In the following I am showing
the calculation procedure provided by the Theory section step by step.

FUTURE WORK
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(a)

(b)

Figure 1: (a) Velocity Gradient obtained by YiLuo’s Traveltime Tomography method;
(b) Velocity Gradient obtained by this method.
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Figure 2: The observed data.

Figure 3: The correlation between dobs and dcal.
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(a) (b)

Figure 4: the correlation C(h, τ) for the local beam at xg = 100m and xg = 2560m
respectively; In plot (a) the event is slightly tilted.

(a) (b)

Figure 5: the first derivative of correlation Ċ(h, τ) for the local beam at xg = 100m
and xg = 2560m respectively.

(a) (b)

Figure 6: the first derivative of correlation C̈(h, τ) for the local beam at xg = 100m
and xg = 2560m respectively.
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(a)

Figure 7: the local moveout function g(h) = h.

(a)

Figure 8: the E22 term for each beam location xg.

(a) (b)

Figure 9: The trace A(τ) for the local beam at xg = 100m and xg = 2560m respec-
tively.
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(a) (b)

Figure 10: The trace B1(τ) for the local beam at xg = 100m and xg = 2560m
respectively.

(a)

Figure 11: The B2 (i.e. ∂J
∂b

) for each beam location. Notice that (a) plot has negative
values on the edge.

(a)

Figure 12: The H term for each beam location.
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(a) (b)

Figure 13: The data to be back projected, contributed by the beam at xg = 100m
and xg = 2560m respectively.
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Figure 14: Convolution of H2 and g; see eq (17).
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(a)

(b)

Figure 15: (a) Back projected data by YiLuo’s Traveltime Tomography method; (b)
Back projected data obtained by this method. (The secondary weak events in (b) is
the modeling artifact from the imperfect absorbing boundaries.


