next up previous print clean
Next: INTRODUCTION TO DIP Up: PRESTACK MIGRATION Previous: Prestack migration ellipse

Constant offset migration

Considering h in equation (6) to be a constant, enables us to write a subroutine for migrating constant-offset sections. Subroutine flathyp() [*] is easily prepared from subroutine kirchfast() [*] by replacing its hyperbola equation with equation (6).  

# Flat topped hyperbolas and constant-offset section migration
#
subroutine flathyp(   adj, add, vel    , h, t0,dt,dx, modl,nt,nx, data)
integer ix,iz,it,ib,  adj, add,                            nt,nx
real    t, amp, z,b,            vel(nt), h, t0,dt,dx, modl(nt,nx),data(nt,nx)
call adjnull(        adj, add,                        modl,nt*nx, data,nt*nx)
do ib= -nx, nx {        b = dx * ib             # b = midpt separation y-y0
    do iz= 2, nt {      z = t0 + dt * (iz-1)    # z = zero-offset time
        t = .5 * ( sqrt( z**2 +((b-h)*2/vel(iz))**2) +
                   sqrt( z**2 +((b+h)*2/vel(iz))**2)   )
        it = 1.5 + (t - t0) / dt
     if( it > nt )                     break
        amp = (z/t)/ sqrt(t)
        do ix= max0(1, 1-ib),  min0(nx, nx-ib)
                 if( adj == 0 )
                        data(it,ix+ib)= data(it,ix+ib) + modl(iz,ix   ) * amp
                 else
                        modl(iz,ix   )= modl(iz,ix   ) + data(it,ix+ib) * amp
        }
    }
return; end

The amplitude in subroutine flathyp() should be improved when we have time to do so. Forward and backward responses to impulses of subroutine flathyp() are found in Figures 4 and 5.

 
Cos.1
Figure 4
Migrating impulses on a constant-offset section with subroutine flathyp(). Notice that shallow impulses (shallow compared to h) appear ellipsoidal while deep ones appear circular.

Cos.1
view burn build edit restore

 
Cos.0
Figure 5
Forward modeling from an earth impulse with subroutine flathyp().

Cos.0
view burn build edit restore

It is not easy to show that equation (5) can be cast in the standard mathematical form of an ellipse, namely, a stretched circle. But the result is a simple one, and an important one for later analysis. Feel free to skip forward over the following verification of this ancient wisdom. To help reduce algebraic verbosity, define a new y equal to the old one shifted by y0. Also make the definitions
   \begin{eqnarray}
t\,v \ \ \ \ &=&\ \ \ \ 2\ A\
\\ \alpha\ \ \ \ &=&\ \ \ \ z^2 \...
 ...number
\\ \alpha\ \ -\ \ \beta\ \ \ \ &=&\ \ \ \ 4\ y\ h \nonumber\end{eqnarray} (7)
With these definitions, (5) becomes

\begin{displaymath}
2\ A\ \eq \ \sqrt \alpha \ \ +\ \ \sqrt \beta \end{displaymath}

Square to get a new equation with only one square root.

\begin{displaymath}
4\ A^2 \ \ -\ \ (\alpha\ +\ \beta) \ \eq \ 2\ \sqrt{ \alpha \beta }\end{displaymath}

Square again to eliminate the square root.
\begin{eqnarraystar}
16\ A^4 \ \ -\ \ 8\ A^2 \, (\alpha\ +\ \beta) \ \ +\ \ (\al...
 ... +\ \beta) \ \ +\ \ (\alpha\ -\ \beta)^2 \ \ \ \ &=&
\ \ \ \ 0\end{eqnarraystar}
Introduce definitions of $\alpha$ and $\beta$.

\begin{displaymath}
16\ A^4 \ \ -\ \ 8\ A^2 \ [\,2\,z^2 \ +\ 2\,y^2 \ +\ 2\,h^2 ] \ \ +\ \ 
16\ y^2 \, h^2 \ \eq \ 0 \end{displaymath}

Bring y and z to the right.
   \begin{eqnarray}
A^4 \ \ -\ \ A^2 \, h^2 \ \ \ \ &=&\ \ \ \ \nonumber
A^2 \, ( z...
 ... \ \ \ \ &=&\ \ \ \ {z^2 \over 1 \ -\ {h^2 \over A^2}}\ \ +\ \ y^2\end{eqnarray}
(8)
Finally, recalling all earlier definitions and replacing y by y-y0, we obtain the canonical form of an ellipse with semi-major axis A and semi-minor axis B:  
 \begin{displaymath}
{(y\ -\ y_0)^2 \over A^2} \ +\ {z^2 \over B^2} \eq 1 \ \ \ ,\end{displaymath} (9)
where
\begin{eqnarray}
A &\eq& {v\ t \over 2} \\  B &\eq& \sqrt{A^2\ -\ h^2}\end{eqnarray} (10)
(11)

Fixing t, equation (9) is the equation for a circle with a stretched z-axis. The above algebra confirms that the ``string and tack'' definition of an ellipse matches the ``stretched circle'' definition. An ellipse in earth model space corresponds to an impulse on a constant-offset section.


next up previous print clean
Next: INTRODUCTION TO DIP Up: PRESTACK MIGRATION Previous: Prestack migration ellipse
Stanford Exploration Project
12/26/2000