jon@geo.stanford.edu.

## ABSTRACTWind a wire onto a cylinder to create a helix. I show that a filter on the 1-D space of the wire mimics a 2-D filter on the cylindrical surface. Thus 2-D convolution can be done with a 1-D convolution program. I show some examples of 2-D recursive filtering (also called 2-D deconvolution or 2-D polynomial division). In 2-D as in 1-D, the computational advantage of recursive filters is the speed with which they propagate information over long distances. We can estimate 2-D prediction-error filters (PEFs), that are assured of being stable for 2-D recursion. Such 2-D and 3-D recursions are general-purpose preconditioners that vastly speed the solution of a wide class of geophysical estimation problems. The helix transformation also enables us the partial-differential equation of wave extrapolation as though it was an ordinary-differential equation. |

- INTRODUCTION
- THE HELIX FILTERING IDEA
- EXAMPLES OF SIMPLE 2-D RECURSIVE FILTERS
- PROGRAM FOR MULTIDIMENSIONAL CONVOLUTION
- FEATURES OF 1-D THAT APPLY TO MANY DIMENSIONS
- FINITE DIFFERENCES ON A HELIX
- GEOESTIMATION: EMPTY BIN EXAMPLE
- FURTHER APPLICATIONS
- REFERENCES
- About this document ...

10/23/1998