Entropy in Seismology:

Can we extract velocity from wavefield entropy?

Data space residuals want maximum entropy, minimum sparsity. Blocky models want minimum entropy, maximum sparsity. (very different from the L1-norm).

- Remember the “wavefront healing” movie.
- Like tomography but with overwhelming multipathing.
- Complexity grows as entropy grows.
- We will see probability based inverse theory.
- Remember the “wavefront healing” movie.
- Like tomography but with overwhelming multipathing.
- Complexity grows as entropy grows.
- We will see probability based inverse theory.

Multipathing

If going backwards the complexity decreases.

From FGDP page 213
Multipathing

If going backwards the complexity decreases.

If you have SEPLIB at SEP, view this tube ~prof/bei/fdm/Fig/heal.v3

If you don’t have that, slide back and forth over this range (1:00)-(3:00) http://sep.stanford.edu/sep/jon/WavefrontHealing.mp4

From FGDP page 213
Seismic Q: Caused by (1) heat flow, (2) inner-bed multiples, or (3) extravagant multipathing?

Do any of you have computer code to model constant-Q propagation?

We seismologists think we know the heart of statistics, but statistical Mechanics gives rise to Thermodynamics, and you have forgotten how a propane refrigerator works.

Energy is always conserved, but it is made up of kinetic, potential, and thermal.

Entropy increases, but what is it?

Entropy and Energy are extrinsic. Temperature is intrinsic.

The more the volume, the more energy and more entropy.

To work backwards from nature we should minimize the ratio Entropy/Energy

Not the same as minimizing $L1/L2$ but it does have a sparseness goal for model space.
A bar suspended from its midpoint by a spring. It can (1) bounce up and down or (2) rotate.

First it bounces up and down for a while and later it rotates back and forth, then later it bounces again.

It is like two normal modes that are coupled.

The time averaged energy is the same for each mode (?)

These thoughts lead to astronomy where each normal mode is a planetary rotation, mostly independent, but actually coupled to all the other normal modes.

The coupling may be linear or nonlinear.
You have a rock in a vacuum suspended by a thread. The rock has infinite Q. You strike the rock. Internally, P waves convert to S, and S converts to P. Perform a time average of
- Energy in P
- Energy in S

What is the ratio of the two energies?

Old theoreticians published a paper on that. I didn’t understand it, but I do remember the two energies were different.

Look up “equipartition in an elastic solid”
Specific heat of monatomic and diatomic gases
(Specific heat == the ratio of temperature change to energy change)

Randomly colliding monatomic gas molecules have three degrees of freedom meaning that each atom has momentum in the three (x,y,z) coordinates.

Diatomic gases like H2, O2, N2 have three degrees from translation and, three degrees of freedom from vibration and two degrees from two possible rotation angles.

Diatomic gases at very low temperature (because of quantum effects) can no longer vibrate so the specific heat loses three degrees of freedom.
Butterfly effect

Atmospheric equations are ultrasensitive to precision... even when the PDEs are simplified to several non-linear ODEs

This discovered by Ed Lorenz at MIT
(while I did my MS degree one flight above him.)
This discovery limits the prospects of weather forecasting.
Some say this discovery led to Chaos Theory.

((Iterating towards minimum entropy might be fundamentally limited.)))
A pragmatic way to achieve sparsity is to minimize L1/L2, a pseudo entropy.

In my booklet DFNS, the chapter on multichannel spectral factorization (Kaiwen) faces the problem of scaling the PEF. Any unitary scale factor does not change the spectrum (conserves energy).

For multichannel signals, the scale factor is a unitary matrix.

The vector (0,1) is more sparse than the vector (sin,cos). At 45 degrees

\[
\frac{|\sin| + |\cos|}{\sqrt{2}/2 + \sqrt{2}/2} = \frac{\sqrt{2}}{\sqrt{2}} > 1
\]

Rotations and reflections are called “unitary operators.” For now, we are ignoring reflections (polarity changes). (Consider that to be an application labeling issue.) Scanning a single parameter θ through all angles allows us to choose the one with the most sparsity (least clutter). A general form for a 2 × 2 rotation operator is

\[
U = \begin{bmatrix}
\cos \theta & \sin \theta \\
-sin \theta & \cos \theta
\end{bmatrix}
\]

We will most commonly find a set of Fig. 5.13 with the following

\[
U^*U = I,
\]

A unitary matrix therefore conserves energy of \(r = (\text{isin}, \text{icos}) \) and variance of \(r = (\text{isin}, \text{icos}) \) as follows:

\[
(U r)^* U r = r^* U^* U r = r^* r = |r|^2
\]

5.3.1 Finding the angle of maximum sparsity (minimum entropy)

Given an angle, incrementally change the degree and by inspection as well as easily choose the one that maximally sparsifies the signal over the entire time range of the signal as follows:

\[
\text{Entropy}(\theta) = \frac{\sum_{t} |r_1(t)| + |r_2(t)|}{\sqrt{\sum_{t} r_1^2(t) + r_2^2(t)}}
\]
Which convex function shall we play with?

L1/L2 is cheapo entropy.
From where comes \(p \log(p) \) ?
\[\text{grad} (p \log p) = 1 + \log p \]
\[\text{grad}(\log(p))=1/p, \text{ reminds of AGC and PEF.} \]
Which: \(p=\text{energy} \) or \(p=\text{probability} \) ?
Hyperbolic penalty function

More formal documentation:
To utilize all brightness levels equally see SEP 152 in 2014 or “Jensen inequalities” article and video at http://sep.stanford.edu/sep/jon/

Internet: Entropy is “the lack of order or predictability.”

Wikipedia: In statistical mechanics, entropy is an extensive property of a thermodynamic system. It is closely related to the number \(\Omega \) of microscopic configurations that are consistent with the macroscopic quantities that characterize the system.
Physics 7-dimensional space

position, momentum
m(t, x, y, z, px, py, pz)
t, space, stepout

AGC and PEF boost the entropy.

Nuclear Physics has also spin.
We have vector-valued wave signals, images, volumes.

My wavefront healing images eventually fill space and have all dips,
but each point in space has only one dip.

Equations of Quantum Physics are not physical laws, they are probability estimates.
If you have SEPLIB at SEP, view this tube
 ~prof/bei/fdm/Fig/heal.v3

If you don’t have it, scan parts of this video
 http://sep.stanford.edu/sep/jon/WavefrontHealing.mp4
I want a toy to play with a two-lens model.

Thin lens is a simple time shift.

Plane wave
Impulse or white noise.
Steps in exp (i k^2/omega dz)
First thin lens = exp(i omega tau(x) dz)
(want zero tau response between lenses)
Second thin lens

Vision: How to estimate tau(x,z)?
Let us back propagate while minimizing the entropy.
IID = Independent and Identically Distributed
IID = PEF & AGC seem to maximize entropy

- Entropy = Negentropy = Sparseness = many amplitudes vanish
 many dips vanish

“Jensen inequalities” article and video at http://sep.stanford.edu/sep/jon/

(From the (1+epsilon) norm I got this idea in 1977 SEP 13
Stew guided me to the Jensen inequality literature in my book PVI.
I tested an application to replace our “pclip” in 2014
but it never got installed at SEP for routine work.)
Define $g = 1/\bar{r}$ so g is a gain applied to the residual $q = gr$.

g defines the L1 to L2 transition.
AUTOMATIC DEFAULT FOR HYPERBOLIC SOFTCLIP

SEP 152

Idea: Plot \(h'(d(t,x)) \) instead of \(d(t,x) \)

ABSTRACT

The hyperbolic penalty function leads us to gain residuals \(r \), initially data \(d \), by gain-parameter \(g \) in the softclip function \(h'(d) = gd/\sqrt{1 + g^2d^2} \) producing output in the range \(\pm 1 \), convenient for viewing data and for scaling in an optimization gradient. Annoyingly a numerical value of the scaling factor \(g \) must be chosen. Personal judgement with a data set here suggests starting with \(g \) as the inverse of the 75th percentile of \(|d| \) or \(|r| \). From there I explore a method of finding a \(g \) that is optimum in the sense of uniformly populating the output range \([-1, +1]\). A value of \(g \) satisfying our intuitive sensibilities was found minimizing a Jensen inequality involving sums of \(|r| \log(|r|) \). This suggests an automatic default for the \(\ell_2 \) to \(\ell_1 \) transition. I hypothesize data fitting iterations will be accelerated by applying softclip to the residual before gradient calculation.

We will learn that finding \(g \) amounts to letting the residuals choose the penalty function!

(Mostly people choose L1 or L2.)
Softclip applied to field data. It is a nonlinear data-value stretch into the range -1 to +1.

Softclip is the derivative of the hyperbolic penalty function.

Softclip has a parameter g that chooses the L1/L2 threshold. Here I chose g at 75th percentile.

I made this choice of g subjectively. Then I wondered how to choose g objectively.

Here's how I did it:

“The best g tries to use all brightness levels in equal amounts.”
Figure 2: Top left is the default plot in our laboratory. You see the easy part of a shot

SEP's default pclip

Bin count

Hardest

Best

Softest

Value of softclipped data

Black

White
AGC flattens residuals in physical space
PEF flattens residuals in dip space
Softclip flattens residuals in probability --- That’s maximum entropy, I think.
Here is how I found the best g, the location for the L1 to L2 transition.
Let $r =$ residual or data.
Let $q = \text{softclip}(g, r)$
Find $p=$bins containing counts of q values.
Evaluate many g values to best uniformize the counts in the bins. (I will soon define “best uniform”).

Allowing negative subscripts, take $p(-15:15)$ to be 31 bins.

Given: $q(i) = \text{softclip}(g, r(i))$
\begin{verbatim}
Do i= 1, 80000 {
 p(15.9*q(i)) += 1
}
\end{verbatim}

WE WILL SEE THAT:
The best g will **minimize** the Jensen inequality of the convex function ($p \log p$).
The Jensen inequality will define the intrinsic **Entropy**.
Minimum Entropy attempts to cluster the values of q.

Amplitude binning is similar to operators we are familiar with.

1. Amplitude bin counting
2. Scatter-gather
3. AGC
4. TV-Decon

These operators have adjoints that are easy to code, but these operators tend to be non-linear. These operators change if you change the data upon which they were built, but they become quasi-linear for large statistical windows and small g values.

A conceptual probability function estimate:
Take all the non-sorted data values and replace each by the index of its sorted counterpart. This is extremely nonlinear but it should resemble the hyperbolic stretch of best g.
Now that we understand binning, we might suspect that a blocky model has sparse bins.

Velocity \(v(z) = (5,5,5,5,9,9,9) \)

Depth \(z \)

P = bin(i) = (0,0,0,0,4,0,0,0,3,0,0,0,0)

Large entropy would fill bins about equally. Small entropy fills bins sparsely, I am guessing.

Want large entropy in residual space. (like AGC & PDF)
Want small entropy in model space?
Entropy is unchanged when layers are intermingled.
Good for a water bucket full of marbles: Only two densities, water and marbles. Sand and shale.
On this slide $p(i)$ is the count in the i-th bin. So it is the probability of the ordinate of the bin.

Examples of Jensen inequalities

The most familiar example of a Jensen inequality occurs when the weights are all equal to $1/N$ and the convex function $f(x) = x^2$. In this case the Jensen inequality $f(p) - f(\bar{p}) \geq 0$ gives the familiar result that the mean of the squares is greater than the square of the mean:

$$Q = \frac{1}{N} \sum_{i=1}^{N} x_i^2 - \left(\frac{1}{N} \sum_{i=1}^{N} x_i \right)^2 \geq 0$$

In many applications the population consists of positive members only, so the function $f(x)$ need have a positive second derivative only for positive values of p. The function $f(p) = 1/p$ fields a Jensen inequality for the harmonic mean:

$$H = \sum_{i=1}^{n} \frac{w_i}{p_i} - \frac{1}{\sum w_i p_i} \geq 0$$

A more important case is the geometric inequality. Here $f(p) = -\ln(p)$ and

$$G = -\sum w_i \ln p_i + \ln \sum w_i p_i \geq 0$$

The more familiar form of the geometric inequality results from exponentiation and a choice of weights equal to $1/N$:

$$\frac{1}{N} \sum_{i=1}^{N} p_i - \prod_{i=1}^{N} p_i^{1/N} \geq 0$$

In other words, the product of square roots of two values is smaller than half the sum of the values.

The function $f(p) = p \ln(p)$ is also convex. That’s not obvious, so let us check. First, $f' = 1 + \ln(p)$. Then $f'' = 1/p > 0$, so yes it is convex for $|p| > 0$. The average of the function minus the function of the average $f(p) - f(\bar{p}) = E(f) - f(E) \geq 0$ is:

$$S_{\text{intrinsic}} = \sum w_i p_i \ln p_i - \ln \left(\sum w_i p_i \right) \ln \sum w_i p_i \geq 0$$

This inequality is similar to what we may find in Physics and Information Theory. It might be exactly that, but they tend to use integrals instead of sums, so it is not easy to find it expressed in the “programmer ready form” there. No worries at $p = 0$. The logarithm diverges, but p is stronger so the product $p \ln(p)$ is zero.

I tried this one for many values of g. The chosen g comes from minimum S. Bigger on later slide.
Compare Jensen inequalities. Why choose $p \log(p)$?

(Applications might apply them to amplitudes, energies, probabilities, all, or ML.)

1. $p \log(p)$ allows $p=0$ elements. (Geometric and Harmonic blow up at $p=0$.)

2. p-squared is **very insensitive** to small p. (Arithmetic inequality)

3. $p \log(p)$ respects small p-values although it does attend more to large ones.

4. The Kulback-Leibler Divergence $P \log(P/Q)$ found in t-SNE of machine learning is a minor restatement of $p \log(p)$ where Q is a prior density.
Specify a thin lens with 200 yet-unknown coefficients, say $\tau(x)$.

Now we want the entropy gradient, its derivative by $\tau(x)$.

From data $r(t,x)$; $q =$ SoftClip $|gr|$; $p(i) =$ probability$(q) =$ bincount(q)

Check the positivity of the second derivative of $p \ln p$. The 1st derivative is $\ln p + 1$. The 2nd derivative is $1/p > 0$ for all $p > 0$.

Choose weights $w_i = 1/N$. The average of the function minus the function of the average is $S_{\text{extrinsic}} = p \ln p - \bar{p} \ln \bar{p} \geq 0$.

\[
S_{\text{extrinsic}} = \sum w_i p_i \ln p_i - \left(\sum w_i p_i \right) \ln \sum w_i p_i \geq 0 \quad (1)
\]

\[
S_{\text{intrinsic}} = \frac{\sum w_i p_i \ln p_i}{\left(\sum w_i p_i \right)} - \ln \sum w_i p_i \geq 0 \quad (2)
\]

If by monkeying with the parameters underlying p_i you can drive $S_{\text{intrinsic}}$ downwards, then you have driven the p_i towards one another.

We have the wrong sign convention. We have a choice of three: (1) introduce a minus sign, or (2) call S the negentropy, or (3) call S the Sparsity instead of Entropy.

Once we have the gradient of S w.r.t lens thickness $\tau(x)$, we can try various-sized jumps to reduce intrinsic entropy.
Random thoughts about \(p \log(p) \)

- Physics books often take \(P \) as probability.
 - Why? Because they often assume Gaussian probability. Then the most probable is where the derivative vanishes. Most probable implies minimum variance = least squares.

- The Kulback-Leibler Divergence \(\sum P \log(P/Q) \) found in t-SNE of machine learning is a minor restatement of \(\sum (w \cdot p \log(p)) \) where \(Q \) is a prior density and weights \(w=Q \).

- Outside the space of our study, we pad with \(|r(i)|=0 \). Does this affect results?

- I never showed you the gradient of the intrinsic Jensen inequality for \(p \log(p) \). You can do it. Or ask Mathematica to help you. Haha. \(\frac{dS}{dg} = \frac{dS}{dp} \frac{dp}{dg} \)
I want to play with a two-lens model.

Thin lens is a simple time shift.

Plane wave
Impulse or white noise.

Steps in \(\exp \left(\frac{i k^2}{\omega} dz \right) \)

First thin lens = \(\exp \left(\frac{i \omega}{\tau} dz \right) \)
(want zero \(\tau \) response between lenses)

Second thin lens

Observation. How to estimate \(\tau \)? Let us back propagate while minimizing the entropy.
In Physics, entropy is said to be a rough function. We want to minimize it? We better smooth?

While finding the best g, I was maximizing. I never computed a gradient. I simply evaluated the entropy at significantly spaced intervals and chose the g of the largest entropy.

If our unknown is a vector or an image, the roughness might be a problem. Who knows? This is science!
Are there any easier applications to think about?

1. So far, what Jon did was easy: Jon found the L1/L2 transition g on the hyperbolic penalty. You might look for simple applications such as 1-D. What holds back mathematicians is that they seek problems with solutions. For the $P \log(P)$ method, all we need is the gradient. We can find step sizes by experimentation --- just the same way mathematicians tell us to find epsilon. (Haha)

2. Antoine and Jon worked out a **sparseness decon** and got very happy results on all 5 datasets tried. Could we repeat that performance with $p \log(p)$ binning --- a wholly different approach?

3. In the presence of multiple reflections, the Dix method for interval velocity suddenly becomes very complicated. This binning approach seems ideal for clustering. But, can we build a demonstration?

4. What is the relationship between **machine learning** and $p \log(p)$?

5. Have you any ideas?
Research is a strenuous and devoted attempt to force nature into the conceptual boxes supplied by professional education.

~Thomas Kuhn, The Structure of Scientific Revolutions
An environment for **cultivating creativity** emerges through

- Projects
- Peers
- Play
- Passion

--- Mitchell Resnick
Inventor of MIT Scratch
An environment for **cultivating creativity** emerges through

- Projects
- Peers
- Play
- Passion

--- Mitchell Resnick
Inventor of MIT Scratch

Want to explore some toys?
Go to scratch.mit.edu. There select **explore**, then search for **Machine Learning**.
Recall Kjartansson from IEI