next up previous print clean
Next: Acoustic wave-equation in 3D Up: Shragge: GRWE Previous: Introduction

Generalized Riemannian Geometry

Geometry in a generalized 3D Riemannian space is described by a symmetric metric tensor, gij=gji, that relates the geometry in a non-orthogonal coordinate system, $\{x_1,x_2,x_3\}$, to an underlying Cartesian mesh, $\{\xi_1,\xi_2,\xi_3\}$ Guggenheimer (1977). In matrix form, the metric tensor is written,  
 \begin{displaymath}
\left[g_{ij}\right] 
= 
\left[\begin{array}
{ccc}
g_{11} & g...
 ...g_{22} & g_{23} \ g_{13} & g_{23} & g_{33} \end{array}\right],\end{displaymath} (1)
where g11, g12, g22, g13, g23 and $\AA$ are functions linking the two coordinate systems through,
   \begin{eqnarray}
g_{11}=\frac{\partial x_k}{\partial \xi_1}\frac{\partial x_k}{\...
 ...\partial x_k}{\partial \xi_3}\frac{\partial x_k}{\partial \xi_3}. \end{eqnarray}
(2)
(Summation notation - gii = g11+g22+g33 - is used in equations throughout this paper.) The associated (or inverse) metric tensor, gij, is defined by $g_{ij}=\,\vert\mathbf{g}\vert\,g^{ij}$, where $\vert\mathbf{g}\vert$ is metric tensor matrix determinant. The associated metric tensor is given by,  
 \begin{displaymath}
 \left[g^{ij}\right] =\frac{1}{\left\vert\mathbf{g}\right\ve...
 ..._{13}-g_{11}g_{23}& g_{11}g_{22}-g_{12}^2 
 \end{array}\right],\end{displaymath} (3)
and has the following metric determinant,  
 \begin{displaymath}
 \vert\mathbf{g}\vert = \AA\,(g_{11}g_{22}-g_{12}^2)\, \left...
 ...13}^2-2g_{12}g_{23}g_{13}}{\AA(g_{11}g_{22}-g_{12}^2)} \right].\end{displaymath} (4)
Weighted metric tensor, $m^{ij}=\sqrt{\left\vert \mathbf{g} \right\vert}\, g^{ij}$, is a useful definition for the following development.
next up previous print clean
Next: Acoustic wave-equation in 3D Up: Shragge: GRWE Previous: Introduction
Stanford Exploration Project
4/5/2006