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SUMMARY

Conformal mapping is a technique used widely in applied physics
and engineering fields to facilitate numerical solution of boundary
value problems involving solution domains characterized by com-
plex geometry. The predominant reason for applying a conformal
mapping procedure is to transform an irregular solution domain to
one of symmetric geometry. The conformal map transform has
the property that the angle between neighboring arc segments is
(locally) conserved under the mapping. Accordingly, in the con-
text of wave-equation imaging under topography, conformal map-
ping can transform an irregular, topographically-influenced solu-
tion domain to a regular computational mesh. In this paper, we
demonstrate that the use of the conformal mapping transform cou-
pled with Riemannian wavefield extrapolation generates an orthog-
onal coordinate system and the governing wavefield continuation
equation required for wave-equation migration directly from a to-
pographic surface. We illustrate the potential of this approach by
migrating a 2-D prestack data set acquired on a geologic model of
thrust belt.

INTRODUCTION

Migration of seismic land data acquired on topography presents a
significant imaging challenge. One technique used to correct for
the deleterious effects of topography in a more accurate fashion
than simple statics corrections is to include a wavefield datuming
step in the processing flow (Berryhill, 1979). Usually, this step
propagates wavefields down to a common subsurface depth level.
However, the presence of strong lateral velocity contrast directly
beneath the surface can generate significant wavefield triplication
that leads to non-optimal datuming results, especially if Kirchhoff-
based methods are used. Therefore, a migration workflow that in-
cludes an upward or downward wavefield continuation processing
step should produce better imaging results.

However, in practice wavefield continuation is seldom applied di-
rectly to data sets acquired on topography without significant pre-
processing. The predominant challenge is that the metric of source
and geophone arrays seldom conform to a regular computational
mesh. Rather, due to instrument cabling, geophone arrays are more
likely to uniformly sample the topographic surface. Two common
solutions to this problem are either to employ a migration proce-
dure involving wavefield injection (Jiao et al., 2004), or to perform
an upward-datuming prior to migration (Bevc, 1997). Migration
by wavefield injection commences at the global topographic max-
imum where the data recorded at this station are injected into the
wavefield. The wavefield is then continued downward and data are
injected into the wavefield whenever the extrapolation step reaches
the height of the topography. Two drawbacks of this approach
are that data need to be regularized beforehand to a uniform grid
usually through interpolation, and that the additional number of
fine-scale extrapolation steps significantly increase cost. Upward
wavefield datuming or “flooding the topography” procedures are
employed to generate a regular wavefield above the highest point.
This processing step can be done successfully with Kirchhoff or
other migration operators. One downside of this approach is, again,
the increased preprocessing cost. In general, although these meth-
ods produce good results, a significant amount of data preprocess-
ing is required to render Cartesian-based wave-equation migration
approaches applicable and data fidelity may be compromised.

In this paper, we argue that many of the difficulties with state-of-
the-art migration from topography technology could be precluded
by abandoning the Cartesian coordinate system for one confor-

mal with the topographic surface. To find such a method, we ob-
serve that wave-equation imaging is a specific example of a bound-
ary value problem (BVP) that has a solution domain defined by a
polygonal boundary. (Images are the superposition of the monochro-
matic solutions to a number of BVPs of different frequency.) This
observation motivates us to examine the results of other applied
fields that routinely solve BVPs.

One method routinely employed to help solve BVPs is conformal
mapping. This procedure defines how to transform the physical
solution domain to a more symmetric canonical domain through
mapping in the complex plane (Kythe, 1998). Relating this concept
to wave-equation imaging from topography, we suggest using con-
formal mapping to transform the topographically-influenced phys-
ical domain to a canonical domain characterized by a rectangular
computational grid. We term this new orthogonal calculation mesh
a “topographic” coordinate system. Moreover, the forward and in-
verse conformal map transforms are also used in defining the wave-
field extrapolation equations appropriate for the canonical domain.
Consequently, we are both able to perform wavefield extrapolation
and to apply the imaging condition in the topographic coordinate
domain. The final image is generated by mapping the topographic
coordinate image to the physical domain using the inverse confor-
mal mapping transform.

We begin the paper with an overview of conformal mapping il-
lustrated by some simple examples. We then review Riemannian
wavefield extrapolation (Sava and Fomel, 2004) and the steps re-
quired to generate appropriate wavefield extrapolation equations.
The paper concludes with prestack migration results are presented
for a data set acquired over a 2-D geological model characterized
by severe elevation relief, strong near-surface velocity contrast, and
complicated folding and faulting.

CONFORMAL MAPPING

Conformal mapping is a topic of wide-spread interest in the field
of applied complex analysis. Generally, this subject deals with the
manner in which point sets are mapped between two different ana-
lytic domains in the complex plane. In this paper, we refer only to
domains that are simply (i.e. not multiply) connected. A mapping
between complex planes may be thought of as a rule relating how
a field of points defined on a domain in the z-plane, z = x + iy,
maps to the w-plane, w = u(x , y)+ iv(x , y), according to a map-
ping function, w = f (z) (see the example in Figure 1). If for each
point in the z-plane domain there corresponds a unique number in
the w-plane, then the mapping function is analytic. In addition, if
for each point in the w-plane there corresponds precisely one point
in the z-plane, then the mapping is one-to-one and the transforma-
tion is invertible. The Cauchy-Riemann equations (Nehari, 1975)
are the necessary and sufficient conditions for function f (z) to be
analytic in a domain of interest.

A conformal map is distinguishable from other mappings between
complex planes by characteristic properties. Most important to this
discussion is the conservation of angle property: A conformal map-
ping of two continuous arcs that locally form an angle α0 in the z-
plane will generate two continuous arcs separated by the same local
angle α0 in the w-plane. Figure 1 illustrates the property that grid
lines orthogonal in the w-plane are orthogonal in the z-plane under
a conformal map. By extension, non-Cartesian orthogonal coor-
dinate systems can be created in the z-plane (or conversely in the
w-plane) by a conformal mapping of a rectangular coordinate sys-
tem in the w-plane (z-plane). The first major developments in the
theory of conformal mapping originated with the mapping theorem
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Figure 1: An example of a conformal mapping between the z-
plane, z = x + iy, and the w-plane, w(z) = u(x , y)+ iv(x , y), ac-
cording to mapping function w = z2. The shaded region in the
z-plane maps to the shaded region in the w-plane. Coordinates
(u,v) are given by (x2 − y2, 2xy). Lines in the w-plane: u = 1,
u = 4, v = 2, and v = 8, map to the following lines in the z-plane:
x2− y2 = 1, x2− y2 = 4, xy = 1. The orthogonality of line inter-
sections in the w-plane are preserved in the z-plane.

of Riemann, who proved the existence of a unique analytic map-
ping between any two simply-connected, analytic domains. Briefly,
let D be a simply-connected region. Then there exists a bijective
conformal map f : D→ U , where U is the open unit disk. By ex-
tension, if G is a another simply-connected domain, there exists a
mapping g : G→U . Hence, there exists a composite mapping op-
eration, f · g−1 : D→ G, between two arbitrary simply-connected
domains. Figure 2 illustrates the Riemann mapping theorem be-
tween three domains pertinent to the current discussion.
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Figure 2: Illustration of the Riemann Mapping Theorem between
a physical domain with an undulating upper surface, the unit cir-
cle, and a rectangular canonical domain. In this example, a for-
ward mapping function, f , exists between the physical domain and
the unit circle and, because the mapping is one-to-one, an inverse
mapping f −1 also exists. Forward and inverse mapping functions
(g and g−1) also exist between the rectilinear domain and the unit
circle. Hence, the composition of functions f · g−1 denotes a map-
ping between the physical and canonical domains, while the inverse
mapping is given by g · f −1. The mapping locations of points la-
beled 1 through 4 are specified to ensure that the sides in the phys-
ical domain correspond to the sides in the canonical domain.

We use the Riemann mapping theorem to transform the topographic
domain to a rectangular computational mesh. Assisting us is an
extensive catalog of conformal maps between common geometri-
cal domains. Pertinent to the current discussion are the conformal
maps between the unit circle (U) and the upper half plane (UHP),
f : U→ UHP and its inverse f −1 : U←UHP,

f : z→
z− i

z+ i
and f −1 : i

1+ z

1− z
← z, (1)

and the mapping between the UHP and a rectangle of arbitrary
length sides, g : UHP→Rect, and its inverse g−1 : UHP←Rect,

g : w(k) =
∫ z

0

dζ
√

1− ζ 2
√

1− k2ζ 2
and g−1 : sn(w;k), (2)

where g is an elliptic integral of the first kind, k is a function of
the ratio of the length of the two sides, and sn(w;k) is a Jacobian
elliptic function (Nehari, 1975).

The first step is to define the enclosure of the physical domain
where the topographic surface defines the upper boundary. We cre-
ate the lower boundary by mirroring the topography at twice the
maximum extrapolation depth. The side boundaries are defined by
straight lines that join the top and bottom segments. The four cor-
ner points of the physical domain are also specified. The next two
steps involve calculating the forward and inverse mapping func-
tions, f and f −1, between the topographic surface and the unit
circle. The fourth step is to generate a rectilinear boundary and to
define its four corner points. The next two steps involve calculating
forward and inverse mappings functions, g and g−1, between the
boundary of the rectangle and the unit circle.

To discern where in the canonical domain to form the coordinate
system grid, we need to find the mapping of the topography bound-
ary points on the rectangular domain boundary. This is accom-
plished by calculating the image of the boundary points under com-
posite mapping operations, g−1 · f . A rectangular grid is then set
up at the image points to create the computational grid. The final
step is to map the rectilinear coordinate system, from the canon-
ical domain back to the topographic coordinates under composite
mapping operation, f −1 · g. The resulting point set, zcs

topo , defines
a coordinate system appropriate for performing wavefield continu-
ation directly from topography at the acquisition locations.

RIEMANNIAN WAVEFIELD EXTRAPOLATION

Performing wavefield extrapolation on topographic computational
meshes computed through conformal mapping requires parameter-
izing the acoustic wave-equation by a set of variables that describe
the coordinate system. In 2-D, we denote these variables the ex-
trapolation direction, τ , (analogous to depth in Cartesian wavefield
extrapolation), and the direction orthogonal, γ (analogous to hori-
zontal offset in Cartesian wavefield extrapolation). Variables τ and
γ are related to the topographic coordinate system point set through
(τ ,γ ) = (<(zcs

topo),=(zcs
topo )).

The 2-D acoustic wave-equation for wavefield, U, at frequency,
ω, governing propagation in topographic coordinates is (Sava and
Fomel, 2004),

1

α J

[

∂

∂τ

(

J

α

∂U

∂τ

)

+
∂

∂γ

(

α

J

∂U

∂γ

)]

=−ω2s2
U, (3)

where s is the slowness of the medium, α a distance scaling factor
in the extrapolation direction τ , and J a Jacobian of transformation
of coordinate γ (analogous to a geometrical ray spreading factor).
Parameters α and J are defined by

α =

[

∂x

∂τ

∂x

∂τ
+

∂z

∂τ

∂z

∂τ

]
1
2

and J =

[

∂x

∂γ

∂x

∂γ
+

∂z

∂γ

∂z

∂γ

]
1
2

(4)

where x and z are the coordinates of the underlying Cartesian basis.
Note that parameters α and J are solely components of the coor-
dinate system and are independent of the extrapolated wavefield
values.

Analogous to wavefield continuation on a Cartesian mesh, a dis-
persion relation must be specified that forms the basis for all de-
rived extrapolation operators in a topographic coordinate system.
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The relation being sought is the wavenumber along the extrapola-
tion direction, kτ . Following Sava and Fomel (2004), the partial
derivative operators in (3) are expanded out to generate a second-
order partial differential equation with non-zero cross derivatives.
Fourier-domain wavenumbers are then substituted for the partial
differential operators acting on wavefield, U, and the quadratic for-
mula is applied to yield the expression for kτ ,

kτ =
iα
2J

∂
∂τ

(

J
α

)

± (5)

[

(ωsα)2−
(

α
2J

∂
∂τ

(

J
α

))2
+

iα
J

∂
∂γ

(

α
J

)

kγ −
α2

J 2 k2
γ

]
1
2

.

One relatively straightforward way to apply wavenumber kτ in an
extrapolation scheme is to develop the topographic coordinate sys-
tem equivalent to a phase-screen extrapolation operator. In the fol-
lowing example, we treat solely the kinematic, one-way propaga-
tion of recorded wavefields. This asymptotic approximation leads
us to drop the first-order partial differential terms in (5),

kτ =±

√

a2ω2−b2k2
γ , (6)

where a = sα and b = α/J . The expansion of kτ about reference
parameters a0 and b0 is,

kτ ≈ kτ0+
∂kτ

∂a

∣

∣

∣

∣

a0,b0

(a−a0)+
∂kτ

∂b

∣

∣

∣

∣

a0,b0

(b−b0) , (7)

where subscript 0 denotes reference. Partial derivatives with re-
spect to parameters a and b are,

∂kτ

∂a

∣

∣

∣

∣

a0,b0

= ω 1
√

1−
( b0kγ

ωa0

)2
≈ ω



1+
c1

( b0kγ
ωa0

)2

1−3c2

( b0kγ
ωa0

)2



 , (8)

∂kτ

∂b

∣

∣

∣

∣

a0,b0

= −ω
b0
a0

(

kγ

ω

)2 1
√

1−
( b0kγ

ωa0

)2
≈−ω

b0
a0

(

kγ

ω

)2
,

where the square root function in the denominator has been ex-
panded using a Padé approximation. The choice of numerical con-
stants c1 =

1
2 and c2 = 0 yields a 15◦ finite-difference term, and a

phase-screen approximation for extrapolation wavenumber, kτ ,

kτ ≈ kτ0+ω (a−a0)+ω

[

c1

(

a0
b0

)2
(a−a0)− b0

a0
(b−b0)

]

(

kγ

ω

)2

1−3c2

(

b0
a0

)2 (

kγ

ω

)2
. (9)

Extending this approach to include multiple reference media (e.g.,
phase-shift plus interpolation (Gazdag and Sguazzero, 1984)) over
the two parameters is possible; however, this extension is not treated
here. The approximation for wavenumber, kτ , given in (9) is used
in a conventional wavefield extrapolation scheme that extends the
recorded wavefield away from the acquisition surface into the sub-
surface. This involves solving a one-way wave-equation. Our
prestack migration example is computed using a shot profile mi-
gration code. This involves extrapolating the source and receiver
wavefields, S and R, independently using,

Sτ+1τ = Sτ e−ikτ 1τ and Rτ+1τ =Rτ eikτ 1τ (10)

and applying an imaging condition to generate image, I(τ ,γ ),

I(τ ,γ ) =
∑

i

∑

w

S(τ ,γ ,ω;si)R (τ ,γ ,ω;si), (11)

where the line over the receiver wavefield indicates complex conju-
gate. Image I(τ ,γ ) is then mapped to a Cartesian coordinate sys-
tem using sinc-based interpolation operators in the neighborhood
of each mapped point to generate the final image, I(x , z).

NUMERICAL EXAMPLES

We test the conformal mapping and Riemannian wavefield extrap-
olation approach on a synthetic dataset computed on a rugged to-
pographic surface. The geological model is a merger of common
geologic features from the Canadian Foothills. The velocity model,
shown in the top panel of Figure 4, consists of steep thrust fault
planes and complex folds typical of a mountainous thrust region.
The topographic boundary of interest is demarcated by the velocity
model discontinuity nearest to the surface. The total relief of the
Earth’s surface in this model is 1600 m. Also note that the complex
near-surface velocity structure should present a significant imaging
challenge (Gray and Marfurt, 1995).

Figure 3 shows the a conformally mapped coordinate system that
incorporates the topography shown in top panel of Figure 4. One
important observation is that topography causes focusing of the co-
ordinate system. In particular, the coordinate system compresses
under local topographic maxima, and expands beneath local topo-
graphic minima. This suggests that Jacobian spreading factor J in
(3) will be strongly dependent on the local radius of curvature of
the topographic surface. However, as the topographic fronts move
farther from the surface, the topographic influenced diminishes and
the fronts move toward becoming a flat datum. (Hence, this ap-
proach could also be used for wavefield datuming.)

Figure 3: Conformally mapped topographic coordinate system.
Note the compression (extension) of the rays under topographic
maxima (minima). The influence of topography on the coordinate
system diminishes farther from the surface.

A prestack wave-equation imaging test was conducted using a syn-
thetic data set generated by an acoustic, 2-D, finite-difference code.
The data set is comprised of 278 shot gathers with a split-spread
geophone geometry where absolute offsets range between 15 m and
3600 m. Geophone and source spacing are 15 m and 90 m, respec-
tively. Data were generated on a regular Cartesian mesh. Thus, we
interpolated the data to fit on a grid uniform along the topographic
surface. Data fidelity may have been lowered by this processing
step; however, we emphasize that this step is normally of modest
importance since field data likely are nearly uniformly spaced on
the topographic surface.

A preliminary prestack migration image is presented in Figure 4.
The majority of reflectors are well positioned; however, diffrac-
tions and discontinuous reflectors exist at locations directly be-
neath topographic minima and maxima. Although these anoma-
lies may be caused by the data regularization procedure, they more
likely arise from limitations imposed by the phase-screen approx-
imation. Also present are vertical streaks of higher (lower) am-
plitude directly under local topographic minima (maxima). We
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Figure 4: Top: Canadian Foothills velocity model constructed from composite 2-D geologic model. Total elevation relief is approximately
1600 m. The topographic boundary of interest is demarcated by the velocity model discontinuity nearest to the surface. Bottom: The prelim-
inary prestack migration image using Riemannian wavefield extrapolation on a coordinate system generated through conformal mapping.

attribute these anomalous amplitudes to a combination of: i) the
simplicity of the weighing function used in the interpolation of the
image between the topographic and Cartesian coordinate systems;
and ii) our non-consideration of the dynamic terms in (6). Geo-
logical structure poorly imaged or absent include sections of the
steeply-dipping fold belt, which is probably due to limitations im-
posed by both the limited angular bandwidth of the phase-screen
approximation, and our use of only one reference medium.

CONCLUDING REMARKS

Performing wave-equation migration directly from topographic sur-
faces is achievable with a minimum of preprocessing in topographic
coordinate systems. We show that conformal mapping generates
the required topographic coordinate systems, and that the confor-
mal map transform determines the appropriate wavefield extrapo-
lation equations. We also conclude that multiple reference media
are likely needed to image under complicated topography, which
is consistent with wavefield extrapolation practice in a Cartesian
coordinate system. By extension, we show that upward datum-
ing on a coordinate system generated through conformal mapping
transformation could work as a pre-imaging processing step. More-
over, upward datuming could be more effective than downward mi-
gration direct from topography, since a constant velocity function
would likely improve the range over which the phase-screen ap-
proximation is accurate. Standard Cartesian-based migration tech-
nology could then be used to downward continue the upward da-
tumed wavefields.
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