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ABSTRACT

We extend Riemannian wavefield extrapolation (RWE) to prestack migration using 2D ellip-

tic coordinate systems. The corresponding 2D elliptic extrapolation wavenumber introduces

only an isotropic slowness model stretch to the single-square-root operator. This enables

the use of existing Cartesian finite-difference extrapolators for propagating wavefields on

elliptic meshes. A post-stack migration example illustrates the advantages of elliptic coor-

dinates for imaging turning waves. A 2D imaging test using a velocity benchmark data set

demonstrates that the RWE prestack migration algorithm generates high-quality prestack

migration images that are more accurate than those generated by Cartesian operators of the

equivalent accuracy. We note that even in situations where RWE geometries are employed,

a high-order implementation of the one-way extrapolator operator is required for accurate
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propagation and imaging. We discuss potential extensions of the analytical approach to 3D

RWE coordinate systems.
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INTRODUCTION

Wave-equation migration techniques based on one-way extrapolators are often used for

accurate imaging of complex geologic structures. Most conventional downward continu-

ation approaches, though, are unable to handle the steeply propagating or turning wave

components often important for imaging areas of interest. A number of novel imaging ap-

proaches address these issues through a judicious decomposition of recorded wavefields [e.g.,

plane-wave migration (Whitmore, 1995)], partial and complete propagation-domain decom-

position [e.g., Gaussian beam (Hill, 2001) and Riemannian wavefield extrapolation (Sava

and Fomel, 2005; Shragge, 2006), respectively], or a combination thereof [e.g. plane-wave

migration in tilted coordinates (Shan and Biondi, 2004)]. These techniques have overcome

many, though not all, issues in the practical application of one-way extrapolation operators.

Riemannian wavefield extrapolation (RWE) is a method for propagating wavefields on

generalized coordinate meshes. The central idea of RWE is to transform the computa-

tional domain from Cartesian to a geometry where the extrapolation axis is oriented along

the general wavefield propagation direction. Ideally, solving the corresponding one-way ex-

trapolation equations in the transform domain leads to the bulk of wavefield energy being

propagated at angles relatively near to the extrapolation axis, thus improving the global

accuracy of wavefield extrapolation. One obvious application is generating high-quality

Green’s functions for point-sources in a dynamic coordinate system, where a suite of rays is

first traced through a velocity model and then used as the skeleton on which to propagate

wavefields.

Although the full-domain decomposition approach naturally adapts to propagation in a

point-source ray-coordinate system, two unresolved issues make it difficult to apply RWE
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efficiently in prestack shot-profile migration algorithms. First, receiver wavefields in shot-

profile migration are usually broadband in plane-wave dip spectrum and cannot be easily

represented by a single coordinate system (i.e., reflections from opposing dips propagate

in opposing directions). Second, the optimal meshes for the source and receiver wavefields

usually do not share a common geometry. For example, a polar coordinate system is well

suited for propagating source wavefields, while elliptic meshes are more appropriate for

receiver wavefields. This factor is detrimental to algorithmic efficiency where images are

generated by correlating source and receiver wavefields: by existing on different grids they

must both be interpolated to a common Cartesian reference frame prior to imaging. This

leads to a significant number of interpolations, which leaves the algorithm computationally

unattractive, except in target-oriented imaging situations.

The main goal of this paper is to specify a single coordinate system that enables the

accurate propagation of high-angle and turning wave components of both the source and

receiver wavefields. We demonstrate that an elliptic coordinate system forms a natural

computational grid for prestack shot-profile migration and has useful geometric properties

that facilitate numerical implementation. An elliptic coordinate system originates on the

horizontal acquisition surface and steps outward as a series of ellipses. Thus, the coordinate

system expands in a radial-like manner appropriate for computing accurate point-source

Green’s functions while allowing the dipping plane-wave components in the receiver wave-

field to propagate at large angles to either side of the acquisition surface. One consequence

of using a 2D elliptic coordinate system is that the corresponding extrapolation operator

must be modified; however, we show that elliptic geometry introduces only an isotropic ve-

locity model stretch. Existing high-order implicit Cartesian finite-difference extrapolators

with accuracy up to 80◦ from the extrapolation axis (Lee and Suh, 1985) can be used to
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propagate wavefields, readily enabling accurate imaging of wide-angle and turning waves at

a cost competitive with that of Cartesian downward continuation.

This paper begins with a discussion of why elliptic meshes are a natural coordinate sys-

tem choice for shot-profile prestack depth migration (PSDM). We develop an extrapolation

wavenumber appropriate for wavefield propagation on a 2D elliptic coordinate system. We

then present post-stack and prestack migration examples that illustrate the scheme’s ability

to image steep structure using turning waves. The paper concludes with a discussion on the

advantages of analytic coordinate systems relative to more dynamically generated meshes,

and two potential extensions of the analytical approach to 3D RWE coordinate systems.

ELLIPTIC COORDINATE EXTRAPOLATION

Generating an effective RWE coordinate system for prestack migration requires appropri-

ately linking mesh geometry with wavefield propagation kinematics. Figure 1a illustrates

this concept for an idealized shot-profile imaging experiment through a medium of constant

wavefield slowness s. Here, we specify source and receiver wavefields (S and R) as impulses

at source position and time [xs, τs = 0] and at receiver position and time [xr, τr = τ ], where

τ is an arbitrary time lag. The wavefields expand outward as spherical wavefronts (dashed

lines) according to

S(xs,x; t) = δ (t− s ||x− xs||) and R(xr,x; t) = δ (t− τ + s ||x− xr||) , (1)

where ||x|| is the Euclidean norm of the vector x and s is wavefield slowness. An image

I(x) can be generated by applying a correlation imaging condition at t = 0 (Claerbout,

1985),

I(x) = δ (τ − s(||x− xr||+ ||x− xs||)) , (2)
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which is the equation of an ellipse (solid line).

This suggests a natural correspondence between an elliptic coordinate system and the

prestack migration isochrons for a constant velocity model. One can observe this in Fig-

ure 1 by how well the isochron image conforms to the underlying coordinate mesh. In this

example, we intentionally did not fix the locations of the elliptic mesh foci relative to xs

and xr. Adjusting these points will alter both the elliptic mesh and how well it conforms to

the isochrons. These parameters represents two degrees of freedom that allow us to match

mesh geometry to the bulk propagation direction.

The Helmholtz equation in Elliptic coordinates

Propagating a wavefield Ψ in generalized coordinates requires encoding the mesh geometry

directly into the one-way extrapolation equations (Sava and Fomel, 2005; Shragge, 2006).

Hence, deriving an elliptic-coordinate extrapolation operator requires introducing elliptic

geometry into the Laplacian operator ∇2 of the Helmholtz equation,

∇2Ψ + ω2s2Ψ = 0. (3)

We begin with the definition of the analytic transformation between the elliptic and Carte-

sian coordinate systems (Morse and Feshbach, 1953), x1

x2

 =

 a cosh ξ2 cos ξ1

a sinh ξ2 sin ξ1

 , (4)

where [x1, x2] are the underlying Cartesian coordinate variables, [ξ1, ξ2] are the RWE elliptic

coordinates defined on the intervals ξ1 ∈ [0, π), and ξ2 ∈ [0,∞], and a is a stretch parameter

controlling coordinate system breadth. (Note that the definition in equation 4 is analogous

to the definitions of cylindrical or spherical coordinates.) As illustrated in Figure 1, lines
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of constant ξ3 represent ellipses, while those of constant ξ1 form hyperbolas. Figure 1

also shows our definition of the angle, θ(ξ), between the elliptic and Cartesian coordinates

systems. Additional information on elliptic coordinates is presented in Appendix A.

The metric tensor (gij = ∂xk
∂ξi

∂xk
∂ξj

with an implicit sum over index k) describing the

elliptic coordinate system geometry is

[gij ] =

 A2 0

0 A2

 , (5)

where A = a
√

sinh2 ξ2 + sin2 ξ1. The metric tensor determinant, |g| = A4, is required to

specify the associated (gij , or the inverse of gij) and weighted (mij =
√
|g| gij) metric

tensors,

[
gij

]
=

 A−2 0

0 A−2

 and
[
mij

]
=

 1 0

0 1

 . (6)

Interestingly, the weighted metric tensor mij in equations 6 is an identity matrix, indicating

that the transformation in equation 4 causes space to contract or dilate isotropically.

Inserting the tensor components in equations 6 into the standard expression for the

Laplacian operator (Morse and Feshbach, 1953),

∇2 =
1√
|g|

∂

∂ξi

(√
|g|gij ∂

∂ξj

)
=

1√
|g|

∂

∂ξi

(
mij ∂

∂ξj

)
, (7)

leads to the elliptic coordinate Laplacian operator,

∇2 =
1

A2

(
∂2

∂ξ2
2

+
∂2

∂ξ2
1

)
. (8)

The elliptic coordinate Helmholtz equation is derived by introducing equation 8 into equa-

tion 3 and rearranging terms to yield

[
∂2

∂ξ2
2

+
∂2

∂ξ2
1

]
Ψ + A2ω2s2Ψ = 0. (9)
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Defining an ”effective slowness” field seff = As, we may rewrite the above as

[
∂2

∂ξ2
2

+
∂2

∂ξ2
1

]
Ψ + ω2s2

effΨ = 0. (10)

Equation 10 is this paper’s most important result: an elliptic coordinate system introduces

only an isotropic slowness model stretch in the Helmholtz equation.

Dispersion relation in Elliptic coordinates

Deriving an elliptic-coordinate dispersion relation from equation 10 proceeds in the usual

manner. In the following 2D development, we use the convention that ξ2 and ξ1 are the

extrapolation direction and orthogonal coordinate, respectively. Replacing the partial dif-

ferential operators with their Fourier domain duals (Claerbout, 1985), gives

k2
ξ1 + k2

ξ2 = ω2 s2
eff , (11)

and isolating the kξ2 wavenumber contributions leads to a recursive wavefield extrapolation

operator for stepping outward in concentric ellipses in the ξ2 direction,

Ψ(ξ2 + ∆ξ2, kξ1 , ω) = Ψ(ξ2, kξ1 , ω)e±i∆ξ2kξ2 = Ψ(ξ2, kξ1 , ω)e
±i∆ξ2

q
ω2s2

eff−k2
ξ1 , (12)

where ∆ξ2 is the extrapolation step size, and ± determines whether a wavefield is propa-

gating causally (i.e., source wavefield) or acausally (i.e., receiver wavefield).

The dispersion relation in equation 12 will not be an exact expression in general because

seff varies spatially. This situation is similar to that in Cartesian wavefield extrapolation in

laterally varying media, and equation 12 can be easily implemented with existing Cartesian

extrapolation schemes (e.g., finite differences, PSPI) and using an effective slowness model

seff = As.
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An additional question worth addressing is to which angle is propagation in elliptic

coordinates accurate? Because the geometric effects of the elliptic coordinate can be incor-

porated into an effective slowness model, seff , the local angular accuracy for finite-difference

propagation is equivalent to that of a Cartesian-domain implementation. Globally, though,

the maximum propagation angle, for a given extrapolation accuracy, depends on the orienta-

tion of the local extrapolation axis. Figure 1b illustrates how the angle of the extrapolation

axis, θ = θ(ξ), locally changes in an elliptic coordinate system. In the following examples,

our ±80◦ finite-difference propagators (Lee and Suh, 1985) will have a maximum extrapo-

lation angle equal to θ(ξ)± 80◦.

Prestack migration algorithm

The expression in equation 12 can be extended to prestack migration. An initial step is

defining the foci locations of the elliptic coordinate system. Unfortunately, choosing the

optimal answer, relative to the acquisition geometry (i.e., the source and farthest-offset

locations), is not straightforward. For example, situating foci too close together pulls the

wavefields towards the focus because the local extrapolation axis angle, θ, rapidly becomes

steep (c.f., Figure 1b). In contrast, placing foci too distant from each other leads to a near-

rectilinear coordinate system that affords little improvement over Cartesian extrapolation.

We determined heuristically that optimal foci locations are an additional 10− 20% (of the

aperture length) beyond the source point and farthest receiver offset.

The remaining prestack migration algorithmic steps are:

1. Specify a shot-specific elliptic coordinate system for source location si, and interpolate

the Cartesian velocity model to this mesh;
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2. generate the shot-specific image, I(ξ, si), in the elliptic coordinate system at step ξ2

from the source, S, and receiver, R, wavefields

I(ξ, si) =
∑
ω

< [S∗(ξ, ω, si)R(ξ, ω, si)] ; (13)

3. propagate source and receiver wavefields (for all frequencies) by a step ∆ξ2

S(ξ2 + ∆ξ2, kξ1 , ω, si) = S(ξ2, kξ1 , ω, si) e+i∆ξ2kξ2 ,

R(ξ2 + ∆ξ2, kξ1 , ω, si) = R(ξ2, kξ1 , ω, si) e−i∆ξ2kξ2 ; (14)

4. repeat steps 2-3 until reaching the end of the elliptic coordinate mesh;

5. interpolate the single-shot, elliptic-coordinate image I(ξ, si) to Cartesian coordinates

and update the global Cartesian image I(x); and

6. repeat steps 1-5 for all shot locations.

2D MIGRATION TESTS

This section presents 2D test results for a post-stack turning-wave and the prestack veloc-

ity benchmark (Billette and Brandsberg-Dahl, 2005) data sets. We propagate all wavefields

with the one-way extrapolators described in Lee and Suh (1985) on an elliptic coordinate

system defined by equation 4 assuming effective slowness fields seff = As. Imaging results

are generated using post-stack and shot-profile migration algorithms employing the recur-

sive extrapolation relations in equations 12 and 14, respectively. Image volumes in elliptic

coordinates are subsequently transformed back to the Cartesian domain using sinc inter-

polation. The extra computational cost of generating the RWE migration results, relative

to those in Cartesian imaging, is roughly two additional interpolations per shot: one for
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the Cartesian velocity model to the elliptic mesh, and another for the elliptic image to the

Cartesian grid.

Post-stack migration example

The first elliptic coordinate migration example uses the post-stack data set shown in Fig-

ure 2. The data were generated from an adapted Sigsbee model, shown in Figure 3a, using

exploding reflector (two-way time-domain FD) modeling from all salt body edges (Sava,

2006). The imaging test involved only the turning components of the wavefield shown in

Figure 2. Figure 3a also presents the experimental geometry for the coordinate system with

foci situated at -90 km (not shown) and 5 km. Because the propagation directions of the

wavefield are known, we were able to chose foci locations that ensured that the grid gener-

ally conformed to the turning wave propagation direction. (We recognize that this example

is a special case where the dip field is oriented largely in one direction.) Figure 3b shows

the effective slowness model, seff , in the transformed coordinate system parameterized by

extrapolation step and surface take-off position axes.

Figure 4 presents the results for migration in the chosen RWE elliptic coordinates. Panel

4a shows the monochromatic post-stack migration result with the elliptic coordinate system

overlain. Post-stack migration in elliptic coordinates successfully propagates turning waves,

which arrive at normal incidence to the salt flank, as expected for exploding-reflector mod-

eling. Panel 4b shows the elliptic-coordinate version of the image in Panel 4a at successive

extrapolation steps, and illustrates that wavefield energy propagates at angles fairly steep

relative to the extrapolation axis. Panels 4c and 4d show the broadband image results in

Cartesian and elliptic coordinate systems, respectively. The salt flanks beneath the salt
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nose are accurately positioned, demonstrating the potential for imaging turning waves in

elliptic coordinates with wide-angle extrapolation operators.

Prestack migration example

We performed a prestack elliptic coordinate migration test using a velocity benchmark

model (Figure 5a). Full data offsets were not used for each shot; rather, we used a 10-km

initial migration aperture to enable more accurate propagation of turning waves within

our propagation domain. The foci for each migrated shot were located at an additional

15% (of the 10-km acquisition aperture) beyond the shot point and the farthest receiver

offset. Panel 5b shows the effective slowness model, seff , in the elliptic coordinate system.

The elliptic mesh is parameterized by extrapolation step and surface take-off position axes.

Importantly, the steep salt body structure to the right becomes relatively low angle under

this coordinate transformation, and should be better imaged.

Figure 6 presents the prestack migration results for the elliptic coordinate system.

Panel 6a shows the RWE shot-profile migration result in elliptic coordinates, while panel

6b presents the corresponding Cartesian image generated by finite-difference operators of

equivalent accuracy. (Note that slightly different source wavelets were used in the two mi-

grations leading to a phase rotation between the two images.) The salt body to the left is

well-imaged in most areas in both images, though is improved in, for example, the circled

location. The salt body flanks to the right (circled locations), illuminated largely by turning

and prismatic waves are better imaged in the elliptic system.
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Discussion

One question naturally arising when using RWE propagation in a prestack migration algo-

rithm is how does one obtain the optimal trade-off between using i) low-order extrapolators

on a more dynamic coordinate system (e.g., ray coordinates); and ii) high-order extrap-

olators on a mesh less conformal to the wavefield propagation direction. Based on our

experience, we argue that a parametric coordinate system (such as a tilted Cartesian or an

elliptic mesh) offers the advantage of developing analytic extrapolation operators that read-

ily lend themselves to high-order finite-difference schemes. While coordinate systems based

on ray-tracing better conform to the wavefield propagation direction, numerically gener-

ated meshes do not lend themselves as easily to high-order extrapolators because of the

greater number, and spatially variability, of the corresponding mixed-domain coefficients.

In addition, analytic coordinates allow the user to specify a coordinate system adequate

for propagating both the source and receiver wavefields, rather than optimizing for one or

the other. One caveat, however, is that higher-order extrapolators are usually required for

analytic coordinate systems because, though they are more optimal for global propagation,

they are less conformal to the local extrapolation direction.

A second question worth addressing is how can the analytic coordinate approach be

extended to 3D prestack shot-profile migration? Although a complete study of 3D possi-

bilities is beyond the scope of the paper, two candidate coordinate systems for wavefield

extrapolation in the ξ3 direction are elliptic cylindrical and oblate spheroidal coordinates.

(These coordinate systems are discussed in Appendix B).

The elliptic cylindrical coordinate system, shown in Figure 7, extends the 2D elliptic

mesh invariantly in the second lateral dimension (ξ2 now) and leads to a fairly basic ex-
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pression for the extrapolation wavenumber kξ3 (see Appendix B). This coordinate system

should be well suited for narrow-azimuth geometries where the elliptic surfaces (i.e., ξ1) are

oriented in the inline direction, leaving the cylindrical coordinate (i.e., ξ2) to extend in the

crossline direction. One disadvantage is that waves cannot be overturned in the crossline

direction; the degree to which this is problematic, though, largely depends on the velocity

model and reflector geometry.

The oblate spheroidal coordinates, shown in Figure 8, incorporates a more spherical-like

geometry and would enable steep-angle and turning wave propagation at all azimuths. This

coordinate system likely is well suited for wide-azimuth data sets containing arrivals from

a rich swath of azimuths. One drawback, though, is that this geometry leads to a more

complicated and difficult-to-implement expression for extrapolation wavenumber kξ3 (see

Appendix B).

Overall, the applicability of imaging in 3D analytic coordinate systems remains an open

research topic that will be addressed by the authors in a future paper.

CONCLUSIONS

This paper extends Riemannian wavefield extrapolation to 2D prestack shot-profile migra-

tion. We choose an elliptic coordinate system that generally conforms to the wave propaga-

tion direction and enables wide-angle extrapolation of both source and receiver wavefields.

Post-stack migration results of a turning wave data set validate the approach, while the 2D

prestack imaging results show that the RWE migration algorithm generates images more

accurate than the corresponding Cartesian results. The cost difference between the elliptic

and Cartesian imaging algorithms is only two additional interpolations per migrated shot

14



profile. Finally, we argue that parametric coordinate systems are a good trade-off between

the competing constraints of meshes conformal to the wavefield propagation direction and

coordinate system simplicity because one can readily develop analytic wavenumbers and

more accurate high-order extrapolation implementations.
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APPENDIX A

ELLIPTIC COORDINATE SYSTEMS

Similar to cylindrical or spherical coordinate systems, the relationships between Cartesian

and elliptic geometris in equation 4 cannot be derived per se. Exploring constant coordinate

surfaces, however, provides additional insight into some characteristics of the elliptic coor-

dinate system. As illustrated by the following trigonometric identities, curves of constant

ξ1 represent hyperbolas

x2
1

a2cos2ξ1
− x2

2

a2sinξ1
= cosh2ξ2 − sinh2ξ2 = 1, (A-1)

while curves of constant ξ2 form ellipses

x2
1

a2cosh2ξ2

+
x2

2

a2sinhξ2
= cos2ξ2 + sin2ξ2 = 1. (A-2)

Thus, outward extrapolation in the ξ2 direction would step a wavefield through a family of

elliptic surfaces defined by equation A-2.

Equation A-1 may also be used to derive an expression that defines the local extrapo-

lation axis angle, θ(ξ), relative to vertical reference. Taking the total derivative of equa-

tion A-1,

2 x1 dx1

a2 cosh2 ξ1

+
2 x2 dx2

a2 sinh2 ξ1

= 0, (A-3)

and further manipulating the result yields the local extrapolation axis angle θ(ξ)

tan θ =
dx1

dx2
=

x2 cos2 ξ1

x1 sin2 ξ1
= tanh ξ2 cot ξ1. (A-4)

Figure 1a illustrates these angles for the elliptic coordinate system.
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APPENDIX B

ONE-WAY EXTRAPOLATION IN 3D COORDINATE SYSTEMS

This appendix develops the dispersion relationship for extrapolating waves for two 3D el-

liptic coordinate systems: elliptic cylindrical and oblate spheroidal. Readers interested in

a more complete theoretical development are directed to Shragge (2006).

Elliptic Cylindrical Coordinates

The analytic transformation between the elliptic cylindrical and Cartesian coordinate sys-

tems is 
x1

x2

x3

 =


a cosh ξ3 cos ξ1

ξ2

a sinh ξ3 sin ξ1

 , (B-1)

where [x1, x2, x3] are the underlying Cartesian coordinate variables, [ξ1, ξ2, ξ3] the RWE

elliptic cylindrical coordinates defined on intervals ξ1 ∈ [0, 2π), ξ2 ∈ [−∞,∞] and ξ3 ∈

[0,∞], and parameter a is a stretch parameter controlling the breadth of the coordinate

system.

The metric tensor (gij = ∂xk
∂ξi

∂xk
∂ξj

) describing the geometry of the elliptic coordinate

system is given by,

[gij ] =


A2 0 0

0 1 0

0 0 A2

 , (B-2)

where A = a
√

sinh2 ξ3 + sin2 ξ1. The determinant of the metric tensor is: |g| = A4. The
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associated (inverse) metric tensor is given by,

[
gij

]
=


A−2 0 0

0 1 0

0 0 A−2

 , (B-3)

and weighted metric tensor (mij =
√
|g| gij) is given by,

[
mij

]
=


1 0 0

0 A2 0

0 0 1

 . (B-4)

The corresponding extrapolation wavenumber is generated by using tensors gij and mij

in the general wavenumber expression for 3D non-orthogonal coordinate system (Shragge,

2006). Note that even though the elliptic coordinate system varies spatially, the local

curvature parameters (ni = ∂mij

∂ξj ) remain constant: n1 = n2 = n3 = 0. Thus, inserting the

values of gij , mij and nj leads to the following extrapolation wavenumber, kξ3 , for stepping

outward in concentric ellipses,

kξ3 = ±
√

A2s2ω2 − k2
ξ1
−Ak2

ξ2
. (B-5)

The wavenumber for 2D extrapolation in elliptic coordinates reduces to

kξ3 |kξ2
=0 = ±

√
A2s2ω2 − k2

ξ1
. (B-6)
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Oblate Spheroidal Coordinates

The analytic transformation between the oblate spheroidal and Cartesian coordinate sys-

tems is 
x1

x2

x3

 =


a cosh ξ3 cos ξ1 cos ξ2

a cosh ξ3 cos ξ1 sin ξ2

a sinh ξ3 sin ξ1

 . (B-7)

where coordinates are defined on intervals ξ1 ∈ [0, 2π), ξ2 ∈ [0, 2π) and ξ3 ∈ [0,∞], a is a

stretch parameter controlling the breadth of the coordinate system. The metric tensor gij

describing the geometry of oblate spheroidal coordinates is,

[gij ] =


A2 0 0

0 B2 0

0 0 A2

 , (B-8)

where A = a
√

sinh2 ξ3 + sin2 ξ1 and B = a cosh ξ3 cos ξ1. The metric tensor determinant is

given by |g| = A4 B2, the associated (inverse) metric tensor by,

[
gij

]
=


A−2 0 0

0 B−2 0

0 0 A−2

 , (B-9)

and the weighted metric tensor by,

[
mij

]
=


B 0 0

0 A2

B 0

0 0 B

 . (B-10)

We generate the corresponding extrapolation wavenumber by inputting tensors gij and

mij into the generalized wavenumber expression for 3D non-orthogonal coordinate systems

(Shragge, 2006). Unlike in elliptic cylindrical coordinates, though, the oblate spheroidal
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system has non-stationary ni coefficients: n1 = a cosh ξ3 sin ξ1, n2 = 0 and n3 = a sinh ξ3.

The resulting extrapolation wavenumber is

kξ3 =
i tanh ξ3

2
±

√
A2s2ω2 − k2

ξ1
−

√
sinh2ξ3 + sin2ξ1

cosh ξ3 cos ξ1
k2

ξ2
+ ikξ1tan ξ1 −

1
4
tanh2 ξ3. (B-11)

The wavenumber for 2D extrapolation in elliptic coordinates reduces to

kξ3 |kξ2
=0 = ±

√
A2s2ω2 − k2

ξ1
+ ikξ1tan ξ1 −

1
4
tanh2 ξ3. (B-12)
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S and R, respectively. The corresponding image is an elliptic isochron surface derived by
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model with the elliptic coordinate system overlain. b) Effective slowness model in the

transformed elliptic coordinates system.
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difference propagators. b) Cartesian migration result generated by finite-difference extrap-

olators of equivalent accuracy to those in Panel a.
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Figure 1: Illustrations of elliptic coordinate system. a) Constant-velocity imaging exper-

iment with punctual source and receiver wavefields (dashed lines) from locations marked

S and R, respectively. The corresponding image is an elliptic isochron surface derived by

cross-correlating the source and receiver wavefields (solid line). b) Grid rotation angles for

the elliptic coordinate system.

Shragge & Shan – GEO-2007-0231
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Figure 2: Post-stack turning-wave data. Data set generated by two-way time-domain finite-

difference modeling from all salt body edges of the velocity model in Figure 3a.

Shragge & Shan – GEO-2007-0231
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Figure 3: Post-stack turning wave model. a) Velocity model used to generate turning wave

data in Figure 2 with coordinate system overlain. b) Effective slowness model seff in elliptic

coordinates.

Shragge & Shan – GEO-2007-0231
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Figure 4: Post-stack turning wave migration result. a) Monochromatic Cartesian image with

overlain elliptic coordinates. b) Monochromatic elliptic coordinate image. c) Broadband

Cartesian image. d) Broadband elliptic coordinate image.

Shragge & Shan – GEO-2007-0231
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Figure 5: Prestack migration test in elliptic coordinates. a) benchmark synthetic velocity

model with the elliptic coordinate system overlain. b) Effective slowness model in the

transformed elliptic coordinates system.

Shragge & Shan – GEO-2007-0231

27



Figure 6: Synthetic migration results. a) Elliptic-coordinate migration result using finite-

difference propagators. b) Cartesian migration result generated by finite-difference extrap-

olators of equivalent accuracy to those in Panel a.

Shragge & Shan – GEO-2007-0231

28



Figure 7: Four extrapolation steps of an elliptic cylindrical coordinate system.

Shragge & Shan – GEO-2007-0231
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Figure 8: Three extrapolation steps of an oblate spheroidal coordinate system.

Shragge & Shan – GEO-2007-0231
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