F-K Domain Wavefield Continuation with Arbitrary Velocities

Gabriel Alvarez and Brad Artman

SEP120 page: 311-317

Email:gabriel@sep.stanford.edu-brad@sep.stanford.edu

Motivation

- Mixed-domain methods interpolate wavefields to account for laterally varying velocities. Can we interpolate phases instead?

Motivation

- Mixed-domain methods interpolate wavefields to account for laterally varying velocities. Can we interpolate phases instead?
- Interpolating phases will allow arbitrary velocity variations and a faster and simpler algorithm

Overview of PSPI (I)

Overview of PSPI (II)

In ω-k space:

$$
\mathbf{W}_{l}^{N+1}=\mathbf{W}^{N} e^{i k_{z_{l}} \Delta z}
$$

where:
\mathbf{W}^{N} : Wavefield at depth N
V_{l} : l-th Reference velocity
\mathbf{W}_{l}^{N+1} : Wavefield at depth $N+1$ continued with V_{l}
and
$k_{z_{l}}=\sqrt{\frac{\omega^{2}}{V_{l}^{2}}-|\mathbf{k}|^{2}}$
is the dispersion relation

Overview of PSPI (III)

Overview of PSPI (IV)

In ω-x space:

$$
\mathbf{w}^{N+1}(j)=\sum_{l=1}^{n v} \sigma_{l} \mathbf{w}_{l}^{N}(j)
$$

where:
σ_{l} : interpolation factor
$\mathbf{w}_{l}^{N+1}(j)$: wavefield in $\omega-\mathbf{x}$ at location j

Overview of Extended Split-step

Overview of Split-step Correction

The split-step correction is given by:

$$
e^{i\left(\frac{\omega}{V}-\frac{\omega}{V_{l}}\right) \Delta z},
$$

where V is the true velocity is applied before the interpolation and is intended to compensate, to a first order, for the difference between V and V_{l}.

The Idea of Interpolating Phases (I)

In Phase shift extrapolation for $V(z)$:

$$
\mathbf{W}^{N+1}=\mathbf{W}^{N} e^{i \theta_{z}}
$$

In $V(\mathbf{x}, z)$ find an "equivalent" phase such that:

$$
\mathbf{W}^{N+1}=\mathbf{W}^{N} e^{i \theta_{z \mathrm{eq}}}
$$

The Idea of Interpolating phases (II)

For any two complex numbers $z_{1}=A \theta_{1}$ and $z_{2}=A \theta_{2}$:

$$
\Phi\left(\frac{z_{1}+z_{2}}{2}\right)=\frac{\theta_{1}+\theta_{2}}{2}
$$

The Idea of Interpolating phases (II)

For any two complex numbers $z_{1}=A \theta_{1}$ and $z_{2}=A \theta_{2}$:

$$
\Phi\left(\frac{z_{1}+z_{2}}{2}\right)=\frac{\theta_{1}+\theta_{2}}{2}
$$

and

$$
\operatorname{Amp}\left(\frac{z_{1}+z_{2}}{2}\right)=\frac{A}{\sqrt{2}} \sqrt{1+\cos \left(\theta_{2}-\theta_{1}\right)} \neq A
$$

The Proposed Algorithm

Wavefield Extrapolation with Arbitrary Velocities in ω-K

Basic Concept

Assume that as many reference velocities as spatial locations are used at each depth step.

Basic Concept

- Assume that as many reference velocities as spatial locations are used at each depth step.
$n v=n \mathbf{x}$

Basic Concept

- Assume that as many reference velocities as spatial locations are used at each depth step.
- $n v=n \mathbf{x}$.
- No split-step correction is required.

Basic Concept

- Assume that as many reference velocities as spatial locations are used at each depth step.
- $n v=n \mathbf{x}$.
- No split-step correction is required.
- No need for high-order approximation of the dispersion relation.

Basic Concept

- Assume that as many reference velocities as spatial locations are used at each depth step.
- $n v=n \mathbf{x}$.
- No split-step correction is required.
- No need for high-order approximation of the dispersion relation.
- Wavefield interpolation is replaced by selection.

Wavefield Selection

Each row is a wavefield extrapolated with the indicated velocity.

Extrapolated Wavefield in ω-x

The selection process in the ω - x is given by:

$$
\mathbf{w}^{N+1}(j)=\sum_{l=1}^{n v} \mathbf{w}_{l}^{N+1}(j) \delta_{l j}
$$

where
\mathbf{w}_{l}^{N+1} : lth row in the array of extrapolated wavefields.
$\delta_{l j}$: Kronecker delta to select the $j=l$ component.

Extrapolated Wavefield in ω-K

The equivalent equation in the ω - \mathbf{K} domain is:

$$
\mathbf{W}^{N+1}=\sum_{l=1}^{n v} \mathbf{W}_{l}^{N+1} \otimes e^{-i k_{x} \Delta x_{l}}
$$

where
$\Delta x_{l}=(l-1) \Delta x / n x$
©: circular convolution
One spatial index is used to simplify the notation.

Extrapolated Wavefield in ω-K (II)

The extrapolated wavefield in ω - \mathbf{K} is then:

$$
\mathbf{W}^{N+1}(j)=\sum_{l=1}^{n v} \sum_{m=\langle n x\rangle} \mathbf{W}_{l}^{N+1}(m) e^{-i k_{x}(j-m) \Delta x_{l}}
$$

Extrapolated Wavefield in ω-K (II)

The extrapolated wavefield in $\omega-\mathbf{K}$ is then:

$$
\mathbf{W}^{N+1}(j)=\sum_{l=1}^{n v} \sum_{m=\langle n x\rangle} \mathbf{W}_{l}^{N+1}(m) e^{-i k_{x}(j-m) \Delta x_{l}}
$$

Replacing \mathbf{W}_{l}^{N+1} in terms of \mathbf{W}^{N} and rearranging terms:

$$
\mathbf{W}^{N+1}(j)=\sum_{m=1}^{n x} \mathbf{W}^{N}(m) \sum_{l=1}^{n v} e^{-i k_{z_{l}}(m) \Delta z+k_{x}\left(\tilde{m}_{j}\right) \Delta x_{l}}
$$

Extrapolated Wavefield in ω-K (II)

The extrapolated wavefield in $\omega-\mathbf{K}$ is then:

$$
\mathbf{W}^{N+1}(j)=\sum_{l=1}^{n v} \sum_{m=\langle n x\rangle} \mathbf{W}_{l}^{N+1}(m) e^{-i k_{x}(j-m) \Delta x_{l}}
$$

Replacing \mathbf{W}_{l}^{N+1} in terms of \mathbf{W}^{N} and rearranging terms:

$$
\mathbf{W}^{N+1}(j)=\sum_{m=1}^{n x} \mathbf{W}^{N}(m) \sum_{l=1}^{n v} e^{-i k_{z_{l}}(m) \Delta z+k_{x}\left(\tilde{m}_{j}\right) \Delta x_{l}}
$$

where $\tilde{m}_{j}=\bmod (j-m, n x)$

Extrapolated Wavefield in ω-K (III)

Written as a dot product:

$$
\mathbf{W}^{N+1}(j)=\sum_{m=1}^{n x} \mathbf{W}^{N}(m) \mathbf{f}_{j}(m)=\mathbf{W}^{N} \cdot \mathbf{f}_{j} .
$$

Extrapolated Wavefield in ω-K (III)

Written as a dot product:

$$
\mathbf{W}^{N+1}(j)=\sum_{m=1}^{n x} \mathbf{W}^{N}(m) \mathbf{f}_{j}(m)=\mathbf{W}^{N} \cdot \mathbf{f}_{j} .
$$

The vector \mathbf{f}_{j} is independent of the data and contains the velocity information:

$$
\mathbf{f}_{j}=\sum_{l=1}^{n v} e^{-i k_{z_{l}}(m) \Delta z+k_{x}\left(\tilde{m}_{j}\right) \Delta x_{l}} .
$$

Practical Implementation (I)

The algorithm as described is cubic in the model dimensions.

Practical Implementation (I)

The algorithm as described is cubic in the model dimensions.

$$
\mathbf{W}^{N+1}(j)=\sum_{m=1}^{n x} \mathbf{W}^{N}(m) \sum_{l=1}^{n v} e^{-i k_{z_{l}}(m) \Delta z+k_{x}\left(\tilde{m}_{j}\right) \Delta x_{l}}
$$

Practical Implementation (I)

The algorithm as described is cubic in the model dimensions.

$$
\mathbf{W}^{N+1}(j)=\sum_{m=1}^{n x} \mathbf{W}^{N}(m) \sum_{l=1}^{n v} e^{-i k_{z_{l}}(m) \Delta z+k_{x}\left(\tilde{m}_{j}\right) \Delta x_{l}}
$$

Practical Implementation (II)

- The algorithm can be made essentially quadratic by realizing that:
^ Velocities can be binned to within their assumed accuracy.
^ The vertical wavenumber can be precomputed, since it does not depend on velocity.

Modified Wavefield Selection

	X_{1}	X2	X_{3}					X_{n}
V_{1}	-		-				-	
V_{2}		-						
				-	\bigcirc			
V_{m}						-		\bigcirc

This time each row is an extrapolated wavefield with the indicated binned velocity.

Modified Wavefield in ω-x

The selection process to calculate the wavefield in ω - x is now:

$$
\mathbf{w}^{N+1}=\sum_{l=1}^{n v} \mathbf{w}_{l}^{N+1} \sum_{p} \delta_{p l}
$$

Modified Wavefield in ω-x

The selection process to calculate the wavefield in ω - x is now:

$$
\mathbf{w}^{N+1}=\sum_{l=1}^{n v} \mathbf{w}_{l}^{N+1} \sum_{p} \delta_{p l} .
$$

l : velocity index.
p : index to select spatial locations with the same velocity.

Modified Wavefield in ω-K

In the ω-K domain:

$$
\mathbf{W}^{N+1}(j)=\sum_{m=1}^{n x} \mathbf{W}^{N}(m) \sum_{l=1}^{n v}\left(e^{-i k_{z_{l}}(m) \Delta z} \sum_{p} e^{-i k_{x}\left(\tilde{m}_{j}\right) \Delta x_{p}}\right)
$$

Extrapolated Wavefield

Conceptually, the result is the same that we obtained before:

$$
\mathbf{W}^{N+1}(j)=\mathbf{W}^{N} \cdot \mathbf{f}_{j},
$$

Extrapolated Wavefield

Conceptually, the result is the same that we obtained before:

$$
\mathbf{W}^{N+1}(j)=\mathbf{W}^{N} \cdot \mathbf{f}_{j},
$$

only this time the vector \mathbf{f}_{j} is given by

$$
\mathbf{f}_{j}=\sum_{l=1}^{n v}\left(e^{-i k_{z_{l}}(m) \Delta z} \sum_{p} e^{-i k_{x}\left(\tilde{m}_{j}\right) \Delta x_{p}}\right) .
$$

Remarks

The algorithm, as presented, is essentially quadratic in the model dimensions. Too slow for 3-D prestack depth migration.

Remarks

- The algorithm, as presented, is essentially quadratic in the model dimensions. Too slow for 3-D prestack depth migration.
- No significant approximations have been made.

Remarks

- The algorithm, as presented, is essentially quadratic in the model dimensions. Too slow for 3-D prestack depth migration.
- No significant approximations have been made.
- The cost comes from considering every wavefield trace in the computation of every other one.

Speculative Ideas on Improving Efficiency

- Subsample the wavefield used for the computation of each wavefield trace at the next depth step.

Speculative Ideas on Improving Efficiency

- Subsample the wavefield used for the computation of each wavefield trace at the next depth step.
- Compute only a subsampled version of the wavefield and interpolate.

Speculative Ideas on Improving Efficiency

- Subsample the wavefield used for the computation of each wavefield trace at the next depth step.
- Compute only a subsampled version of the wavefield and interpolate.
- Interpolate phases two by two.

Subsample the Input Wavefield

- For the computation of each wavefield trace at the $N+1$ depth step use only, say, the even wavefield traces of the wavefield at the N depth step.

Subsample the Input Wavefield

- For the computation of each wavefield trace at the $N+1$ depth step use only, say, the even wavefield traces of the wavefield at the N depth step.

$$
\mathbf{W}^{N+1}(j)=\sum_{m=1,2}^{n x} \mathbf{W}^{N}(m) \mathbf{f}_{j}(m),
$$

Subsample the Input Wavefield

- For the computation of each wavefield trace at the $N+1$ depth step use only, say, the even wavefield traces of the wavefield at the N depth step.

$$
\mathbf{W}^{N+1}(j)=\sum_{m=1,2}^{n x} \mathbf{W}^{N}(m) \mathbf{f}_{j}(m),
$$

- Subsampling in wavenumber domain implies windowing in the space domain.

Subsample the Input Wavefield

- For the computation of each wavefield trace at the $N+1$ depth step use only, say, the even wavefield traces of the wavefield at the N depth step.

$$
\mathbf{W}^{N+1}(j)=\sum_{m=1,2}^{n x} \mathbf{W}^{N}(m) \mathbf{f}_{j}(m),
$$

- Subsampling in wavenumber domain implies windowing in the space domain.
- May be a better approximation at shallow than a at deeper depths.

Subsample the Computed Wavefield

- Compute only, say, every other wavefield trace at depth step $N+1$ using all traces of the wavefield at the N depth step.

Subsample the Computed Wavefield

- Compute only, say, every other wavefield trace at depth step $N+1$ using all traces of the wavefield at the N depth step.

$$
\mathbf{W}^{N+1}(2 j)=\sum_{m=1}^{n x} \mathbf{W}^{N}(m) \mathbf{f}_{j}(m),
$$

Subsample the Computed Wavefield

- Compute only, say, every other wavefield trace at depth step $N+1$ using all traces of the wavefield at the N depth step.

$$
\mathbf{W}^{N+1}(2 j)=\sum_{m=1}^{n x} \mathbf{W}^{N}(m) \mathbf{f}_{j}(m),
$$

- Linearly interpolate for the wavefield traces not computed.

Subsample the Computed Wavefield

- Compute only, say, every other wavefield trace at depth step $N+1$ using all traces of the wavefield at the N depth step.

$$
\mathbf{W}^{N+1}(2 j)=\sum_{m=1}^{n x} \mathbf{W}^{N}(m) \mathbf{f}_{j}(m),
$$

- Linearly interpolate for the wavefield traces not computed.
- This implies that the wavefield is somewhat smooth in the spatial direction.

Interpolating Phases Two-by-Two

For any two phases θ_{1} and θ_{2} :

$$
\Phi\left(\frac{e^{i \theta_{1}+e^{i \theta_{2}}}}{2}\right)=\frac{\theta_{1}+\theta_{2}}{2}
$$

Interpolating Phases Two-by-Two

For any two phases θ_{1} and θ_{2} :

$$
\Phi\left(\frac{e^{i \theta_{1}+e^{i \theta_{2}}}}{2}\right)=\frac{\theta_{1}+\theta_{2}}{2}
$$

But

$$
\operatorname{Amp}\left(\frac{e^{i \theta_{1}}+e^{i \theta_{2}}}{2}\right)=\frac{1}{\sqrt{2}} \sqrt{1+\cos \left(\theta_{2}-\theta_{1}\right)} \neq 1
$$

The question is: can we pair-up the sum of exponentials such that the amplitude term becomes a normalization?

Interpolating Phases Sketch

Interpolating Phases Sketch

Conclusions and Future Work

- It is possible to do F-K wavefield continuation with arbitrary spatial velocity variations.

Conclusions and Future Work

- It is possible to do F-K wavefield continuation with arbitrary spatial velocity variations.
- The resulting algorithm is quadratic in the spatial dimensions so needs to be made more efficient.

Conclusions and Future Work

- It is possible to do F-K wavefield continuation with arbitrary spatial velocity variations.
- The resulting algorithm is quadratic in the spatial dimensions so needs to be made more efficient.
- We have given some untested ideas on how to overcome the high cost. Testing those ideas is the next step.

